This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/point.c
Ken Hughes e209676d3d -- Bugfix 3453: coercion operations were doing an extra incref on coerced
objects.  Also found extra increfs on some newly-created quat and matrix
   objects, from calls to Matrix_Identity() and Quaternion_Identity().
2005-12-05 19:02:30 +00:00

525 lines
16 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Mathutils.h"
#include "BLI_blenlib.h"
#include "BKE_utildefines.h"
#include "gen_utils.h"
//-------------------------DOC STRINGS ---------------------------
char Point_Zero_doc[] = "() - set all values in the point to 0";
char Point_toVector_doc[] = "() - create a vector representation of this point";
//-----------------------METHOD DEFINITIONS ----------------------
struct PyMethodDef Point_methods[] = {
{"zero", (PyCFunction) Point_Zero, METH_NOARGS, Point_Zero_doc},
{"toVector", (PyCFunction) Point_toVector, METH_NOARGS, Point_toVector_doc},
{NULL, NULL, 0, NULL}
};
//-----------------------------METHODS----------------------------
//--------------------------Vector.toPoint()----------------------
//create a new point object to represent this vector
PyObject *Point_toVector(PointObject * self)
{
float vec[3];
int x;
for(x = 0; x < self->size; x++){
vec[x] = self->coord[x];
}
return newVectorObject(vec, self->size, Py_NEW);
}
//----------------------------Point.zero() ----------------------
//set the point data to 0,0,0
PyObject *Point_Zero(PointObject * self)
{
int x;
for(x = 0; x < self->size; x++) {
self->coord[x] = 0.0f;
}
return EXPP_incr_ret((PyObject*)self);
}
//----------------------------dealloc()(internal) ----------------
//free the py_object
static void Point_dealloc(PointObject * self)
{
Py_XDECREF(self->coerced_object);
//only free py_data
if(self->data.py_data){
PyMem_Free(self->data.py_data);
}
PyObject_DEL(self);
}
//----------------------------getattr()(internal) ----------------
//object.attribute access (get)
static PyObject *Point_getattr(PointObject * self, char *name)
{
if(STREQ(name,"x")){
return PyFloat_FromDouble(self->coord[0]);
}else if(STREQ(name, "y")){
return PyFloat_FromDouble(self->coord[1]);
}else if(STREQ(name, "z")){
if(self->size > 2){
return PyFloat_FromDouble(self->coord[2]);
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"point.z: illegal attribute access\n");
}
}
if(STREQ(name, "wrapped")){
if(self->wrapped == Py_WRAP)
return EXPP_incr_ret((PyObject *)Py_True);
else
return EXPP_incr_ret((PyObject *)Py_False);
}
return Py_FindMethod(Point_methods, (PyObject *) self, name);
}
//----------------------------setattr()(internal) ----------------
//object.attribute access (set)
static int Point_setattr(PointObject * self, char *name, PyObject * v)
{
PyObject *f = NULL;
f = PyNumber_Float(v);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"point.attribute = x: argument not a number\n");
}
if(STREQ(name,"x")){
self->coord[0] = (float)PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "y")){
self->coord[1] = (float)PyFloat_AS_DOUBLE(f);
}else if(STREQ(name, "z")){
if(self->size > 2){
self->coord[2] = (float)PyFloat_AS_DOUBLE(f);
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"point.z = x: illegal attribute access\n");
}
}else{
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_AttributeError,
"point.attribute = x: unknown attribute\n");
}
Py_DECREF(f);
return 0;
}
//----------------------------print object (internal)-------------
//print the object to screen
static PyObject *Point_repr(PointObject * self)
{
int i;
char buffer[48], str[1024];
BLI_strncpy(str,"[",1024);
for(i = 0; i < self->size; i++){
if(i < (self->size - 1)){
sprintf(buffer, "%.6f, ", self->coord[i]);
strcat(str,buffer);
}else{
sprintf(buffer, "%.6f", self->coord[i]);
strcat(str,buffer);
}
}
strcat(str, "](point)");
return PyString_FromString(str);
}
//---------------------SEQUENCE PROTOCOLS------------------------
//----------------------------len(object)------------------------
//sequence length
static int Point_len(PointObject * self)
{
return self->size;
}
//----------------------------object[]---------------------------
//sequence accessor (get)
static PyObject *Point_item(PointObject * self, int i)
{
if(i < 0 || i >= self->size)
return EXPP_ReturnPyObjError(PyExc_IndexError,
"point[attribute]: array index out of range\n");
return Py_BuildValue("f", self->coord[i]);
}
//----------------------------object[]-------------------------
//sequence accessor (set)
static int Point_ass_item(PointObject * self, int i, PyObject * ob)
{
PyObject *f = NULL;
f = PyNumber_Float(ob);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnIntError(PyExc_TypeError,
"point[attribute] = x: argument not a number\n");
}
if(i < 0 || i >= self->size){
Py_DECREF(f);
return EXPP_ReturnIntError(PyExc_IndexError,
"point[attribute] = x: array assignment index out of range\n");
}
self->coord[i] = (float)PyFloat_AS_DOUBLE(f);
Py_DECREF(f);
return 0;
}
//----------------------------object[z:y]------------------------
//sequence slice (get)
static PyObject *Point_slice(PointObject * self, int begin, int end)
{
PyObject *list = NULL;
int count;
CLAMP(begin, 0, self->size);
CLAMP(end, 0, self->size);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
PyFloat_FromDouble(self->coord[count]));
}
return list;
}
//----------------------------object[z:y]------------------------
//sequence slice (set)
static int Point_ass_slice(PointObject * self, int begin, int end,
PyObject * seq)
{
int i, y, size = 0;
float coord[3];
PyObject *v, *f;
CLAMP(begin, 0, self->size);
CLAMP(end, 0, self->size);
begin = MIN2(begin,end);
size = PySequence_Length(seq);
if(size != (end - begin)){
return EXPP_ReturnIntError(PyExc_TypeError,
"point[begin:end] = []: size mismatch in slice assignment\n");
}
for (i = 0; i < size; i++) {
v = PySequence_GetItem(seq, i);
if (v == NULL) { // Failed to read sequence
return EXPP_ReturnIntError(PyExc_RuntimeError,
"point[begin:end] = []: unable to read sequence\n");
}
f = PyNumber_Float(v);
if(f == NULL) { // parsed item not a number
Py_DECREF(v);
return EXPP_ReturnIntError(PyExc_TypeError,
"point[begin:end] = []: sequence argument not a number\n");
}
coord[i] = (float)PyFloat_AS_DOUBLE(f);
EXPP_decr2(f,v);
}
//parsed well - now set in point
for(y = 0; y < size; y++){
self->coord[begin + y] = coord[y];
}
return 0;
}
//------------------------NUMERIC PROTOCOLS----------------------
//------------------------obj + obj------------------------------
//addition
static PyObject *Point_add(PyObject * v1, PyObject * v2)
{
int x, size;
float coord[3];
PointObject *coord1 = NULL, *coord2 = NULL;
VectorObject *vec = NULL;
coord1 = (PointObject*)v1;
coord2 = (PointObject*)v2;
if(!coord1->coerced_object){
if(coord2->coerced_object){
if(VectorObject_Check(coord2->coerced_object)){ //POINT + VECTOR
//Point translation
vec = (VectorObject*)coord2->coerced_object;
size = coord1->size;
if(vec->size == size){
for(x = 0; x < size; x++){
coord[x] = coord1->coord[x] + vec->vec[x];
}
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Point addition: arguments are the wrong size....\n");
}
return newPointObject(coord, size, Py_NEW);
}
}else{ //POINT + POINT
size = coord1->size;
if(coord2->size == size){
for(x = 0; x < size; x++) {
coord[x] = coord1->coord[x] + coord2->coord[x];
}
}else{
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Point addition: arguments are the wrong size....\n");
}
return newPointObject(coord, size, Py_NEW);
}
}
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Point addition: arguments not valid for this operation....\n");
}
//------------------------obj - obj------------------------------
//subtraction
static PyObject *Point_sub(PyObject * v1, PyObject * v2)
{
int x, size;
float coord[3];
PointObject *coord1 = NULL, *coord2 = NULL;
coord1 = (PointObject*)v1;
coord2 = (PointObject*)v2;
if(coord1->coerced_object || coord2->coerced_object){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Point subtraction: arguments not valid for this operation....\n");
}
if(coord1->size != coord2->size){
return EXPP_ReturnPyObjError(PyExc_AttributeError,
"Point subtraction: points must have the same dimensions for this operation\n");
}
size = coord1->size;
for(x = 0; x < size; x++) {
coord[x] = coord1->coord[x] - coord2->coord[x];
}
//Point - Point = Vector
return newVectorObject(coord, size, Py_NEW);
}
//------------------------obj * obj------------------------------
//mulplication
static PyObject *Point_mul(PyObject * p1, PyObject * p2)
{
int x, size;
float coord[3], scalar;
PointObject *coord1 = NULL, *coord2 = NULL;
PyObject *f = NULL;
MatrixObject *mat = NULL;
QuaternionObject *quat = NULL;
coord1 = (PointObject*)p1;
coord2 = (PointObject*)p2;
if(coord1->coerced_object){
if (PyFloat_Check(coord1->coerced_object) ||
PyInt_Check(coord1->coerced_object)){ // FLOAT/INT * POINT
f = PyNumber_Float(coord1->coerced_object);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Point multiplication: arguments not acceptable for this operation\n");
}
scalar = (float)PyFloat_AS_DOUBLE(f);
size = coord2->size;
for(x = 0; x < size; x++) {
coord[x] = coord2->coord[x] * scalar;
}
Py_DECREF(f);
return newPointObject(coord, size, Py_NEW);
}
}else{
if(coord2->coerced_object){
if (PyFloat_Check(coord2->coerced_object) ||
PyInt_Check(coord2->coerced_object)){ // POINT * FLOAT/INT
f = PyNumber_Float(coord2->coerced_object);
if(f == NULL) { // parsed item not a number
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Point multiplication: arguments not acceptable for this operation\n");
}
scalar = (float)PyFloat_AS_DOUBLE(f);
size = coord1->size;
for(x = 0; x < size; x++) {
coord[x] = coord1->coord[x] * scalar;
}
Py_DECREF(f);
return newPointObject(coord, size, Py_NEW);
}else if(MatrixObject_Check(coord2->coerced_object)){ //POINT * MATRIX
mat = (MatrixObject*)coord2->coerced_object;
return row_point_multiplication(coord1, mat);
}else if(QuaternionObject_Check(coord2->coerced_object)){ //POINT * QUATERNION
quat = (QuaternionObject*)coord2->coerced_object;
if(coord1->size != 3){
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Point multiplication: only 3D point rotations (with quats) currently supported\n");
}
return quat_rotation((PyObject*)coord1, (PyObject*)quat);
}
}
}
return EXPP_ReturnPyObjError(PyExc_TypeError,
"Point multiplication: arguments not acceptable for this operation\n");
}
//-------------------------- -obj -------------------------------
//returns the negative of this object
static PyObject *Point_neg(PointObject *self)
{
int x;
for(x = 0; x < self->size; x++){
self->coord[x] = -self->coord[x];
}
return EXPP_incr_ret((PyObject *)self);
}
//------------------------coerce(obj, obj)-----------------------
//coercion of unknown types to type PointObject for numeric protocols
/*Coercion() is called whenever a math operation has 2 operands that
it doesn't understand how to evaluate. 2+Matrix for example. We want to
evaluate some of these operations like: (vector * 2), however, for math
to proceed, the unknown operand must be cast to a type that python math will
understand. (e.g. in the case above case, 2 must be cast to a vector and
then call vector.multiply(vector, scalar_cast_as_vector)*/
static int Point_coerce(PyObject ** p1, PyObject ** p2)
{
if(VectorObject_Check(*p2) || PyFloat_Check(*p2) || PyInt_Check(*p2) ||
MatrixObject_Check(*p2) || QuaternionObject_Check(*p2)) {
PyObject *coerced = EXPP_incr_ret(*p2);
*p2 = newPointObject(NULL,3,Py_NEW);
((PointObject*)*p2)->coerced_object = coerced;
Py_INCREF (*p1);
return 0;
}
return EXPP_ReturnIntError(PyExc_TypeError,
"point.coerce(): unknown operand - can't coerce for numeric protocols");
}
//-----------------PROTOCOL DECLARATIONS--------------------------
static PySequenceMethods Point_SeqMethods = {
(inquiry) Point_len, /* sq_length */
(binaryfunc) 0, /* sq_concat */
(intargfunc) 0, /* sq_repeat */
(intargfunc) Point_item, /* sq_item */
(intintargfunc) Point_slice, /* sq_slice */
(intobjargproc) Point_ass_item, /* sq_ass_item */
(intintobjargproc) Point_ass_slice, /* sq_ass_slice */
};
static PyNumberMethods Point_NumMethods = {
(binaryfunc) Point_add, /* __add__ */
(binaryfunc) Point_sub, /* __sub__ */
(binaryfunc) Point_mul, /* __mul__ */
(binaryfunc) 0, /* __div__ */
(binaryfunc) 0, /* __mod__ */
(binaryfunc) 0, /* __divmod__ */
(ternaryfunc) 0, /* __pow__ */
(unaryfunc) Point_neg, /* __neg__ */
(unaryfunc) 0, /* __pos__ */
(unaryfunc) 0, /* __abs__ */
(inquiry) 0, /* __nonzero__ */
(unaryfunc) 0, /* __invert__ */
(binaryfunc) 0, /* __lshift__ */
(binaryfunc) 0, /* __rshift__ */
(binaryfunc) 0, /* __and__ */
(binaryfunc) 0, /* __xor__ */
(binaryfunc) 0, /* __or__ */
(coercion) Point_coerce, /* __coerce__ */
(unaryfunc) 0, /* __int__ */
(unaryfunc) 0, /* __long__ */
(unaryfunc) 0, /* __float__ */
(unaryfunc) 0, /* __oct__ */
(unaryfunc) 0, /* __hex__ */
};
//------------------PY_OBECT DEFINITION--------------------------
PyTypeObject point_Type = {
PyObject_HEAD_INIT(NULL)
0, /*ob_size */
"point", /*tp_name */
sizeof(PointObject), /*tp_basicsize */
0, /*tp_itemsize */
(destructor) Point_dealloc, /*tp_dealloc */
(printfunc) 0, /*tp_print */
(getattrfunc) Point_getattr, /*tp_getattr */
(setattrfunc) Point_setattr, /*tp_setattr */
0, /*tp_compare */
(reprfunc) Point_repr, /*tp_repr */
&Point_NumMethods, /*tp_as_number */
&Point_SeqMethods, /*tp_as_sequence */
};
//------------------------newPointObject (internal)-------------
//creates a new point object
/*pass Py_WRAP - if point is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if point is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newPointObject(float *coord, int size, int type)
{
PointObject *self;
int x;
point_Type.ob_type = &PyType_Type;
self = PyObject_NEW(PointObject, &point_Type);
self->data.blend_data = NULL;
self->data.py_data = NULL;
if(size > 3 || size < 2)
return NULL;
self->size = size;
self->coerced_object = NULL;
if(type == Py_WRAP){
self->data.blend_data = coord;
self->coord = self->data.blend_data;
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->data.py_data = PyMem_Malloc(size * sizeof(float));
self->coord = self->data.py_data;
if(!coord) { //new empty
for(x = 0; x < size; x++){
self->coord[x] = 0.0f;
}
}else{
for(x = 0; x < size; x++){
self->coord[x] = coord[x];
}
}
self->wrapped = Py_NEW;
}else{ //bad type
return NULL;
}
return (PyObject *) self;
}