In that case it can now fall back to CPU memory, at the cost of reduced performance. For scenes that fit in GPU memory, this commit should not cause any noticeable slowdowns. We don't use all physical system RAM, since that can cause OS instability. We leave at least half of system RAM or 4GB to other software, whichever is smaller. For image textures in host memory, performance was maybe 20-30% slower in our tests (although this is highly hardware and scene dependent). Once other type of data doesn't fit on the GPU, performance can be e.g. 10x slower, and at that point it's probably better to just render on the CPU. Differential Revision: https://developer.blender.org/D2056
398 lines
9.6 KiB
C++
398 lines
9.6 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <sstream>
|
|
|
|
#include "device/device.h"
|
|
#include "device/device_intern.h"
|
|
#include "device/device_network.h"
|
|
|
|
#include "render/buffers.h"
|
|
|
|
#include "util/util_foreach.h"
|
|
#include "util/util_list.h"
|
|
#include "util/util_logging.h"
|
|
#include "util/util_map.h"
|
|
#include "util/util_time.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
class MultiDevice : public Device
|
|
{
|
|
public:
|
|
struct SubDevice {
|
|
explicit SubDevice(Device *device_)
|
|
: device(device_) {}
|
|
|
|
Device *device;
|
|
map<device_ptr, device_ptr> ptr_map;
|
|
};
|
|
|
|
list<SubDevice> devices;
|
|
device_ptr unique_key;
|
|
|
|
MultiDevice(DeviceInfo& info, Stats &stats, bool background_)
|
|
: Device(info, stats, background_), unique_key(1)
|
|
{
|
|
foreach(DeviceInfo& subinfo, info.multi_devices) {
|
|
Device *device = Device::create(subinfo, sub_stats_, background);
|
|
|
|
/* Always add CPU devices at the back since GPU devices can change
|
|
* host memory pointers, which CPU uses as device pointer. */
|
|
if(subinfo.type == DEVICE_CPU) {
|
|
devices.push_back(SubDevice(device));
|
|
}
|
|
else {
|
|
devices.push_front(SubDevice(device));
|
|
}
|
|
}
|
|
|
|
#ifdef WITH_NETWORK
|
|
/* try to add network devices */
|
|
ServerDiscovery discovery(true);
|
|
time_sleep(1.0);
|
|
|
|
vector<string> servers = discovery.get_server_list();
|
|
|
|
foreach(string& server, servers) {
|
|
Device *device = device_network_create(info, stats, server.c_str());
|
|
if(device)
|
|
devices.push_back(SubDevice(device));
|
|
}
|
|
#endif
|
|
}
|
|
|
|
~MultiDevice()
|
|
{
|
|
foreach(SubDevice& sub, devices)
|
|
delete sub.device;
|
|
}
|
|
|
|
const string& error_message()
|
|
{
|
|
foreach(SubDevice& sub, devices) {
|
|
if(sub.device->error_message() != "") {
|
|
if(error_msg == "")
|
|
error_msg = sub.device->error_message();
|
|
break;
|
|
}
|
|
}
|
|
|
|
return error_msg;
|
|
}
|
|
|
|
virtual bool show_samples() const
|
|
{
|
|
if(devices.size() > 1) {
|
|
return false;
|
|
}
|
|
return devices.front().device->show_samples();
|
|
}
|
|
|
|
bool load_kernels(const DeviceRequestedFeatures& requested_features)
|
|
{
|
|
foreach(SubDevice& sub, devices)
|
|
if(!sub.device->load_kernels(requested_features))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void mem_alloc(device_memory& mem)
|
|
{
|
|
device_ptr key = unique_key++;
|
|
|
|
foreach(SubDevice& sub, devices) {
|
|
mem.device = sub.device;
|
|
mem.device_pointer = 0;
|
|
mem.device_size = 0;
|
|
|
|
sub.device->mem_alloc(mem);
|
|
sub.ptr_map[key] = mem.device_pointer;
|
|
}
|
|
|
|
mem.device = this;
|
|
mem.device_pointer = key;
|
|
stats.mem_alloc(mem.device_size);
|
|
}
|
|
|
|
void mem_copy_to(device_memory& mem)
|
|
{
|
|
device_ptr existing_key = mem.device_pointer;
|
|
device_ptr key = (existing_key)? existing_key: unique_key++;
|
|
size_t existing_size = mem.device_size;
|
|
|
|
foreach(SubDevice& sub, devices) {
|
|
mem.device = sub.device;
|
|
mem.device_pointer = (existing_key)? sub.ptr_map[existing_key]: 0;
|
|
mem.device_size = existing_size;
|
|
|
|
sub.device->mem_copy_to(mem);
|
|
sub.ptr_map[key] = mem.device_pointer;
|
|
}
|
|
|
|
mem.device = this;
|
|
mem.device_pointer = key;
|
|
stats.mem_alloc(mem.device_size - existing_size);
|
|
}
|
|
|
|
void mem_copy_from(device_memory& mem, int y, int w, int h, int elem)
|
|
{
|
|
device_ptr key = mem.device_pointer;
|
|
int i = 0, sub_h = h/devices.size();
|
|
|
|
foreach(SubDevice& sub, devices) {
|
|
int sy = y + i*sub_h;
|
|
int sh = (i == (int)devices.size() - 1)? h - sub_h*i: sub_h;
|
|
|
|
mem.device = sub.device;
|
|
mem.device_pointer = sub.ptr_map[key];
|
|
|
|
sub.device->mem_copy_from(mem, sy, w, sh, elem);
|
|
i++;
|
|
}
|
|
|
|
mem.device = this;
|
|
mem.device_pointer = key;
|
|
}
|
|
|
|
void mem_zero(device_memory& mem)
|
|
{
|
|
device_ptr existing_key = mem.device_pointer;
|
|
device_ptr key = (existing_key)? existing_key: unique_key++;
|
|
size_t existing_size = mem.device_size;
|
|
|
|
foreach(SubDevice& sub, devices) {
|
|
mem.device = sub.device;
|
|
mem.device_pointer = (existing_key)? sub.ptr_map[existing_key]: 0;
|
|
mem.device_size = existing_size;
|
|
|
|
sub.device->mem_zero(mem);
|
|
sub.ptr_map[key] = mem.device_pointer;
|
|
}
|
|
|
|
mem.device = this;
|
|
mem.device_pointer = key;
|
|
stats.mem_alloc(mem.device_size - existing_size);
|
|
}
|
|
|
|
void mem_free(device_memory& mem)
|
|
{
|
|
device_ptr key = mem.device_pointer;
|
|
size_t existing_size = mem.device_size;
|
|
|
|
foreach(SubDevice& sub, devices) {
|
|
mem.device = sub.device;
|
|
mem.device_pointer = sub.ptr_map[key];
|
|
mem.device_size = existing_size;
|
|
|
|
sub.device->mem_free(mem);
|
|
sub.ptr_map.erase(sub.ptr_map.find(key));
|
|
}
|
|
|
|
mem.device = this;
|
|
mem.device_pointer = 0;
|
|
mem.device_size = 0;
|
|
stats.mem_free(existing_size);
|
|
}
|
|
|
|
void const_copy_to(const char *name, void *host, size_t size)
|
|
{
|
|
foreach(SubDevice& sub, devices)
|
|
sub.device->const_copy_to(name, host, size);
|
|
}
|
|
|
|
void draw_pixels(device_memory& rgba, int y, int w, int h, int dx, int dy, int width, int height, bool transparent,
|
|
const DeviceDrawParams &draw_params)
|
|
{
|
|
device_ptr key = rgba.device_pointer;
|
|
int i = 0, sub_h = h/devices.size();
|
|
int sub_height = height/devices.size();
|
|
|
|
foreach(SubDevice& sub, devices) {
|
|
int sy = y + i*sub_h;
|
|
int sh = (i == (int)devices.size() - 1)? h - sub_h*i: sub_h;
|
|
int sheight = (i == (int)devices.size() - 1)? height - sub_height*i: sub_height;
|
|
int sdy = dy + i*sub_height;
|
|
/* adjust math for w/width */
|
|
|
|
rgba.device_pointer = sub.ptr_map[key];
|
|
sub.device->draw_pixels(rgba, sy, w, sh, dx, sdy, width, sheight, transparent, draw_params);
|
|
i++;
|
|
}
|
|
|
|
rgba.device_pointer = key;
|
|
}
|
|
|
|
void map_tile(Device *sub_device, RenderTile& tile)
|
|
{
|
|
foreach(SubDevice& sub, devices) {
|
|
if(sub.device == sub_device) {
|
|
if(tile.buffer) tile.buffer = sub.ptr_map[tile.buffer];
|
|
}
|
|
}
|
|
}
|
|
|
|
int device_number(Device *sub_device)
|
|
{
|
|
int i = 0;
|
|
|
|
foreach(SubDevice& sub, devices) {
|
|
if(sub.device == sub_device)
|
|
return i;
|
|
i++;
|
|
}
|
|
|
|
return -1;
|
|
}
|
|
|
|
void map_neighbor_tiles(Device *sub_device, RenderTile *tiles)
|
|
{
|
|
for(int i = 0; i < 9; i++) {
|
|
if(!tiles[i].buffers) {
|
|
continue;
|
|
}
|
|
|
|
/* If the tile was rendered on another device, copy its memory to
|
|
* to the current device now, for the duration of the denoising task.
|
|
* Note that this temporarily modifies the RenderBuffers and calls
|
|
* the device, so this function is not thread safe. */
|
|
device_vector<float> &mem = tiles[i].buffers->buffer;
|
|
if(mem.device != sub_device) {
|
|
/* Only copy from device to host once. This is faster, but
|
|
* also required for the case where a CPU thread is denoising
|
|
* a tile rendered on the GPU. In that case we have to avoid
|
|
* overwriting the buffer being denoised by the CPU thread. */
|
|
if(!tiles[i].buffers->map_neighbor_copied) {
|
|
tiles[i].buffers->map_neighbor_copied = true;
|
|
mem.copy_from_device(0, mem.data_size, 1);
|
|
}
|
|
|
|
Device *original_device = mem.device;
|
|
device_ptr original_ptr = mem.device_pointer;
|
|
size_t original_size = mem.device_size;
|
|
|
|
mem.device = sub_device;
|
|
mem.device_pointer = 0;
|
|
mem.device_size = 0;
|
|
|
|
mem.copy_to_device();
|
|
tiles[i].buffer = mem.device_pointer;
|
|
|
|
mem.device = original_device;
|
|
mem.device_pointer = original_ptr;
|
|
mem.device_size = original_size;
|
|
}
|
|
}
|
|
}
|
|
|
|
void unmap_neighbor_tiles(Device * sub_device, RenderTile * tiles)
|
|
{
|
|
for(int i = 0; i < 9; i++) {
|
|
if(!tiles[i].buffers) {
|
|
continue;
|
|
}
|
|
|
|
device_vector<float> &mem = tiles[i].buffers->buffer;
|
|
if(mem.device != sub_device) {
|
|
Device *original_device = mem.device;
|
|
device_ptr original_ptr = mem.device_pointer;
|
|
size_t original_size = mem.device_size;
|
|
|
|
mem.device = sub_device;
|
|
mem.device_pointer = tiles[i].buffer;
|
|
|
|
/* Copy denoised tile to the host. */
|
|
if(i == 4) {
|
|
mem.copy_from_device(0, mem.data_size, 1);
|
|
}
|
|
|
|
sub_device->mem_free(mem);
|
|
|
|
mem.device = original_device;
|
|
mem.device_pointer = original_ptr;
|
|
mem.device_size = original_size;
|
|
|
|
/* Copy denoised tile to the original device. */
|
|
if(i == 4) {
|
|
mem.copy_to_device();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int get_split_task_count(DeviceTask& task)
|
|
{
|
|
int total_tasks = 0;
|
|
list<DeviceTask> tasks;
|
|
task.split(tasks, devices.size());
|
|
foreach(SubDevice& sub, devices) {
|
|
if(!tasks.empty()) {
|
|
DeviceTask subtask = tasks.front();
|
|
tasks.pop_front();
|
|
|
|
total_tasks += sub.device->get_split_task_count(subtask);
|
|
}
|
|
}
|
|
return total_tasks;
|
|
}
|
|
|
|
void task_add(DeviceTask& task)
|
|
{
|
|
list<DeviceTask> tasks;
|
|
task.split(tasks, devices.size());
|
|
|
|
foreach(SubDevice& sub, devices) {
|
|
if(!tasks.empty()) {
|
|
DeviceTask subtask = tasks.front();
|
|
tasks.pop_front();
|
|
|
|
if(task.buffer) subtask.buffer = sub.ptr_map[task.buffer];
|
|
if(task.rgba_byte) subtask.rgba_byte = sub.ptr_map[task.rgba_byte];
|
|
if(task.rgba_half) subtask.rgba_half = sub.ptr_map[task.rgba_half];
|
|
if(task.shader_input) subtask.shader_input = sub.ptr_map[task.shader_input];
|
|
if(task.shader_output) subtask.shader_output = sub.ptr_map[task.shader_output];
|
|
|
|
sub.device->task_add(subtask);
|
|
}
|
|
}
|
|
}
|
|
|
|
void task_wait()
|
|
{
|
|
foreach(SubDevice& sub, devices)
|
|
sub.device->task_wait();
|
|
}
|
|
|
|
void task_cancel()
|
|
{
|
|
foreach(SubDevice& sub, devices)
|
|
sub.device->task_cancel();
|
|
}
|
|
|
|
protected:
|
|
Stats sub_stats_;
|
|
};
|
|
|
|
Device *device_multi_create(DeviceInfo& info, Stats &stats, bool background)
|
|
{
|
|
return new MultiDevice(info, stats, background);
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|