This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/split/kernel_next_iteration_setup.h
Brecht Van Lommel 148b0fef09 Fix T54317: overlapping volume render bug after recent changes.
Increasing the samplig dimensions like this is not optimal, I'm looking
into some deeper changes to reuse the random number and change the RR
probabilities, but this should fix the bug for now.
2018-03-19 21:22:15 +01:00

265 lines
9.7 KiB
C++

/*
* Copyright 2011-2015 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
/*This kernel takes care of setting up ray for the next iteration of
* path-iteration and accumulating radiance corresponding to AO and
* direct-lighting
*
* Ray state of rays that are terminated in this kernel are changed
* to RAY_UPDATE_BUFFER.
*
* Note on queues:
* This kernel fetches rays from the queue QUEUE_ACTIVE_AND_REGENERATED_RAYS
* and processes only the rays of state RAY_ACTIVE.
* There are different points in this kernel where a ray may terminate and
* reach RAY_UPDATE_BUFF state. These rays are enqueued into
* QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS queue. These rays will still be present
* in QUEUE_ACTIVE_AND_REGENERATED_RAYS queue, but since their ray-state has
* been changed to RAY_UPDATE_BUFF, there is no problem.
*
* State of queues when this kernel is called:
* At entry,
* - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE,
* RAY_REGENERATED, RAY_UPDATE_BUFFER rays.
* - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with
* RAY_TO_REGENERATE and RAY_UPDATE_BUFFER rays.
* At exit,
* - QUEUE_ACTIVE_AND_REGENERATED_RAYS will be filled with RAY_ACTIVE,
* RAY_REGENERATED and more RAY_UPDATE_BUFFER rays.
* - QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS will be filled with
* RAY_TO_REGENERATE and more RAY_UPDATE_BUFFER rays.
*/
#ifdef __BRANCHED_PATH__
ccl_device_inline void kernel_split_branched_indirect_light_init(KernelGlobals *kg, int ray_index)
{
kernel_split_branched_path_indirect_loop_init(kg, ray_index);
ADD_RAY_FLAG(kernel_split_state.ray_state, ray_index, RAY_BRANCHED_LIGHT_INDIRECT);
}
ccl_device void kernel_split_branched_transparent_bounce(KernelGlobals *kg, int ray_index)
{
ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index];
ShaderData *sd = kernel_split_sd(sd, ray_index);
ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
# ifdef __VOLUME__
if(!(sd->flag & SD_HAS_ONLY_VOLUME)) {
# endif
/* continue in case of transparency */
*throughput *= shader_bsdf_transparency(kg, sd);
if(is_zero(*throughput)) {
kernel_split_path_end(kg, ray_index);
return;
}
/* Update Path State */
path_state_next(kg, state, LABEL_TRANSPARENT);
# ifdef __VOLUME__
}
else {
if(!path_state_volume_next(kg, state)) {
kernel_split_path_end(kg, ray_index);
return;
}
}
# endif
ray->P = ray_offset(sd->P, -sd->Ng);
ray->t -= sd->ray_length; /* clipping works through transparent */
# ifdef __RAY_DIFFERENTIALS__
ray->dP = sd->dP;
ray->dD.dx = -sd->dI.dx;
ray->dD.dy = -sd->dI.dy;
# endif /* __RAY_DIFFERENTIALS__ */
# ifdef __VOLUME__
/* enter/exit volume */
kernel_volume_stack_enter_exit(kg, sd, state->volume_stack);
# endif /* __VOLUME__ */
}
#endif /* __BRANCHED_PATH__ */
ccl_device void kernel_next_iteration_setup(KernelGlobals *kg,
ccl_local_param unsigned int *local_queue_atomics)
{
if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
*local_queue_atomics = 0;
}
ccl_barrier(CCL_LOCAL_MEM_FENCE);
if(ccl_global_id(0) == 0 && ccl_global_id(1) == 0) {
/* If we are here, then it means that scene-intersect kernel
* has already been executed atleast once. From the next time,
* scene-intersect kernel may operate on queues to fetch ray index
*/
*kernel_split_params.use_queues_flag = 1;
/* Mark queue indices of QUEUE_SHADOW_RAY_CAST_AO_RAYS and
* QUEUE_SHADOW_RAY_CAST_DL_RAYS queues that were made empty during the
* previous kernel.
*/
kernel_split_params.queue_index[QUEUE_SHADOW_RAY_CAST_AO_RAYS] = 0;
kernel_split_params.queue_index[QUEUE_SHADOW_RAY_CAST_DL_RAYS] = 0;
}
int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
ray_index = get_ray_index(kg, ray_index,
QUEUE_ACTIVE_AND_REGENERATED_RAYS,
kernel_split_state.queue_data,
kernel_split_params.queue_size,
0);
ccl_global char *ray_state = kernel_split_state.ray_state;
# ifdef __VOLUME__
/* Reactivate only volume rays here, most surface work was skipped. */
if(IS_STATE(ray_state, ray_index, RAY_HAS_ONLY_VOLUME)) {
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_ACTIVE);
}
# endif
bool active = IS_STATE(ray_state, ray_index, RAY_ACTIVE);
if(active) {
ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index];
ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
ShaderData *sd = kernel_split_sd(sd, ray_index);
ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
#ifdef __BRANCHED_PATH__
if(!kernel_data.integrator.branched || IS_FLAG(ray_state, ray_index, RAY_BRANCHED_INDIRECT)) {
#endif
/* Compute direct lighting and next bounce. */
if(!kernel_path_surface_bounce(kg, sd, throughput, state, &L->state, ray)) {
kernel_split_path_end(kg, ray_index);
}
#ifdef __BRANCHED_PATH__
}
else if(sd->flag & SD_HAS_ONLY_VOLUME) {
kernel_split_branched_transparent_bounce(kg, ray_index);
}
else {
kernel_split_branched_indirect_light_init(kg, ray_index);
if(kernel_split_branched_path_surface_indirect_light_iter(kg,
ray_index,
1.0f,
kernel_split_sd(branched_state_sd, ray_index),
true,
true))
{
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
}
else {
kernel_split_branched_path_indirect_loop_end(kg, ray_index);
kernel_split_branched_transparent_bounce(kg, ray_index);
}
}
#endif /* __BRANCHED_PATH__ */
}
/* Enqueue RAY_UPDATE_BUFFER rays. */
enqueue_ray_index_local(ray_index,
QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
IS_STATE(ray_state, ray_index, RAY_UPDATE_BUFFER) && active,
kernel_split_params.queue_size,
local_queue_atomics,
kernel_split_state.queue_data,
kernel_split_params.queue_index);
#ifdef __BRANCHED_PATH__
/* iter loop */
if(ccl_global_id(0) == 0 && ccl_global_id(1) == 0) {
kernel_split_params.queue_index[QUEUE_LIGHT_INDIRECT_ITER] = 0;
}
ray_index = get_ray_index(kg, ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0),
QUEUE_LIGHT_INDIRECT_ITER,
kernel_split_state.queue_data,
kernel_split_params.queue_size,
1);
if(IS_STATE(ray_state, ray_index, RAY_LIGHT_INDIRECT_NEXT_ITER)) {
/* for render passes, sum and reset indirect light pass variables
* for the next samples */
PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
path_radiance_sum_indirect(L);
path_radiance_reset_indirect(L);
if(kernel_split_branched_path_surface_indirect_light_iter(kg,
ray_index,
1.0f,
kernel_split_sd(branched_state_sd, ray_index),
true,
true))
{
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
}
else {
kernel_split_branched_path_indirect_loop_end(kg, ray_index);
kernel_split_branched_transparent_bounce(kg, ray_index);
}
}
# ifdef __VOLUME__
/* Enqueue RAY_VOLUME_INDIRECT_NEXT_ITER rays */
ccl_barrier(CCL_LOCAL_MEM_FENCE);
if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
*local_queue_atomics = 0;
}
ccl_barrier(CCL_LOCAL_MEM_FENCE);
ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
enqueue_ray_index_local(ray_index,
QUEUE_VOLUME_INDIRECT_ITER,
IS_STATE(kernel_split_state.ray_state, ray_index, RAY_VOLUME_INDIRECT_NEXT_ITER),
kernel_split_params.queue_size,
local_queue_atomics,
kernel_split_state.queue_data,
kernel_split_params.queue_index);
# endif /* __VOLUME__ */
# ifdef __SUBSURFACE__
/* Enqueue RAY_SUBSURFACE_INDIRECT_NEXT_ITER rays */
ccl_barrier(CCL_LOCAL_MEM_FENCE);
if(ccl_local_id(0) == 0 && ccl_local_id(1) == 0) {
*local_queue_atomics = 0;
}
ccl_barrier(CCL_LOCAL_MEM_FENCE);
ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
enqueue_ray_index_local(ray_index,
QUEUE_SUBSURFACE_INDIRECT_ITER,
IS_STATE(kernel_split_state.ray_state, ray_index, RAY_SUBSURFACE_INDIRECT_NEXT_ITER),
kernel_split_params.queue_size,
local_queue_atomics,
kernel_split_state.queue_data,
kernel_split_params.queue_index);
# endif /* __SUBSURFACE__ */
#endif /* __BRANCHED_PATH__ */
}
CCL_NAMESPACE_END