1140 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1140 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * The Original Code is: all of this file.
 | 
						|
 *
 | 
						|
 * Contributor(s): none yet.
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 * (uit traces) maart 95
 | 
						|
 */
 | 
						|
 | 
						|
/** \file blender/blenlib/intern/scanfill.c
 | 
						|
 *  \ingroup bli
 | 
						|
 */
 | 
						|
 | 
						|
#include <stdio.h>
 | 
						|
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
#include <limits.h>
 | 
						|
 | 
						|
#include "MEM_guardedalloc.h"
 | 
						|
 | 
						|
#include "BLI_callbacks.h"
 | 
						|
#include "BLI_listbase.h"
 | 
						|
#include "BLI_math.h"
 | 
						|
#include "BLI_memarena.h"
 | 
						|
#include "BLI_utildefines.h"
 | 
						|
#include "BLI_strict_flags.h"
 | 
						|
 | 
						|
#include "BLI_scanfill.h"  /* own include */
 | 
						|
 | 
						|
/* local types */
 | 
						|
typedef struct PolyFill {
 | 
						|
	unsigned int edges, verts;
 | 
						|
	float min_xy[2], max_xy[2];
 | 
						|
	unsigned short nr;
 | 
						|
	unsigned char f;
 | 
						|
} PolyFill;
 | 
						|
 | 
						|
typedef struct ScanFillVertLink {
 | 
						|
	ScanFillVert *vert;
 | 
						|
	ScanFillEdge *edge_first, *edge_last;
 | 
						|
} ScanFillVertLink;
 | 
						|
 | 
						|
 | 
						|
/* local funcs */
 | 
						|
 | 
						|
#define SF_EPSILON   0.00003f
 | 
						|
#define SF_EPSILON_SQ (SF_EPSILON * SF_EPSILON)
 | 
						|
 | 
						|
#define SF_VERT_AVAILABLE  1  /* available - in an edge */
 | 
						|
#define SF_VERT_ZERO_LEN 255
 | 
						|
 | 
						|
/* Optionally set ScanFillEdge f to this to mark original boundary edges.
 | 
						|
 * Only needed if there are internal diagonal edges passed to BLI_scanfill_calc. */
 | 
						|
#define SF_EDGE_BOUNDARY 1
 | 
						|
#define SF_EDGE_UNKNOWN  2    /* TODO, what is this for exactly? - need to document it! */
 | 
						|
 | 
						|
/**
 | 
						|
 * \note this is USHRT_MAX so incrementing  will set to zero
 | 
						|
 * which happens if callers choose to increment #ScanFillContext.poly_nr before adding each curve.
 | 
						|
 * Nowhere else in scanfill do we make use of intentional overflow like this.
 | 
						|
 */
 | 
						|
#define SF_POLY_UNSET USHRT_MAX
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* ****  FUNCTIONS FOR QSORT *************************** */
 | 
						|
 | 
						|
 | 
						|
static int vergscdata(const void *a1, const void *a2)
 | 
						|
{
 | 
						|
	const ScanFillVertLink *x1 = a1, *x2 = a2;
 | 
						|
	
 | 
						|
	if      (x1->vert->xy[1] < x2->vert->xy[1]) return  1;
 | 
						|
	else if (x1->vert->xy[1] > x2->vert->xy[1]) return -1;
 | 
						|
	else if (x1->vert->xy[0] > x2->vert->xy[0]) return  1;
 | 
						|
	else if (x1->vert->xy[0] < x2->vert->xy[0]) return -1;
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static int vergpoly(const void *a1, const void *a2)
 | 
						|
{
 | 
						|
	const PolyFill *x1 = a1, *x2 = a2;
 | 
						|
 | 
						|
	if      (x1->min_xy[0] > x2->min_xy[0]) return  1;
 | 
						|
	else if (x1->min_xy[0] < x2->min_xy[0]) return -1;
 | 
						|
	else if (x1->min_xy[1] > x2->min_xy[1]) return  1;
 | 
						|
	else if (x1->min_xy[1] < x2->min_xy[1]) return -1;
 | 
						|
	
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* ****  FILL ROUTINES *************************** */
 | 
						|
 | 
						|
ScanFillVert *BLI_scanfill_vert_add(ScanFillContext *sf_ctx, const float vec[3])
 | 
						|
{
 | 
						|
	ScanFillVert *sf_v;
 | 
						|
	
 | 
						|
	sf_v = BLI_memarena_alloc(sf_ctx->arena, sizeof(ScanFillVert));
 | 
						|
 | 
						|
	BLI_addtail(&sf_ctx->fillvertbase, sf_v);
 | 
						|
 | 
						|
	sf_v->tmp.p = NULL;
 | 
						|
	copy_v3_v3(sf_v->co, vec);
 | 
						|
 | 
						|
	/* just zero out the rest */
 | 
						|
	zero_v2(sf_v->xy);
 | 
						|
	sf_v->keyindex = 0;
 | 
						|
	sf_v->poly_nr = sf_ctx->poly_nr;
 | 
						|
	sf_v->edge_tot = 0;
 | 
						|
	sf_v->f = 0;
 | 
						|
 | 
						|
	return sf_v;
 | 
						|
}
 | 
						|
 | 
						|
ScanFillEdge *BLI_scanfill_edge_add(ScanFillContext *sf_ctx, ScanFillVert *v1, ScanFillVert *v2)
 | 
						|
{
 | 
						|
	ScanFillEdge *sf_ed;
 | 
						|
 | 
						|
	sf_ed = BLI_memarena_alloc(sf_ctx->arena, sizeof(ScanFillEdge));
 | 
						|
	BLI_addtail(&sf_ctx->filledgebase, sf_ed);
 | 
						|
	
 | 
						|
	sf_ed->v1 = v1;
 | 
						|
	sf_ed->v2 = v2;
 | 
						|
 | 
						|
	/* just zero out the rest */
 | 
						|
	sf_ed->poly_nr = sf_ctx->poly_nr;
 | 
						|
	sf_ed->f = 0;
 | 
						|
	sf_ed->tmp.c = 0;
 | 
						|
 | 
						|
	return sf_ed;
 | 
						|
}
 | 
						|
 | 
						|
static void addfillface(ScanFillContext *sf_ctx, ScanFillVert *v1, ScanFillVert *v2, ScanFillVert *v3)
 | 
						|
{
 | 
						|
	/* does not make edges */
 | 
						|
	ScanFillFace *sf_tri;
 | 
						|
 | 
						|
	sf_tri = BLI_memarena_alloc(sf_ctx->arena, sizeof(ScanFillFace));
 | 
						|
	BLI_addtail(&sf_ctx->fillfacebase, sf_tri);
 | 
						|
	
 | 
						|
	sf_tri->v1 = v1;
 | 
						|
	sf_tri->v2 = v2;
 | 
						|
	sf_tri->v3 = v3;
 | 
						|
}
 | 
						|
 | 
						|
static bool boundisect(PolyFill *pf2, PolyFill *pf1)
 | 
						|
{
 | 
						|
	/* has pf2 been touched (intersected) by pf1 ? with bounding box */
 | 
						|
	/* test first if polys exist */
 | 
						|
 | 
						|
	if (pf1->edges == 0 || pf2->edges == 0) return 0;
 | 
						|
 | 
						|
	if (pf2->max_xy[0] < pf1->min_xy[0]) return 0;
 | 
						|
	if (pf2->max_xy[1] < pf1->min_xy[1]) return 0;
 | 
						|
 | 
						|
	if (pf2->min_xy[0] > pf1->max_xy[0]) return 0;
 | 
						|
	if (pf2->min_xy[1] > pf1->max_xy[1]) return 0;
 | 
						|
 | 
						|
	/* join */
 | 
						|
	if (pf2->max_xy[0] < pf1->max_xy[0]) pf2->max_xy[0] = pf1->max_xy[0];
 | 
						|
	if (pf2->max_xy[1] < pf1->max_xy[1]) pf2->max_xy[1] = pf1->max_xy[1];
 | 
						|
 | 
						|
	if (pf2->min_xy[0] > pf1->min_xy[0]) pf2->min_xy[0] = pf1->min_xy[0];
 | 
						|
	if (pf2->min_xy[1] > pf1->min_xy[1]) pf2->min_xy[1] = pf1->min_xy[1];
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void mergepolysSimp(ScanFillContext *sf_ctx, PolyFill *pf1, PolyFill *pf2)    /* add pf2 to pf1 */
 | 
						|
{
 | 
						|
	ScanFillVert *eve;
 | 
						|
	ScanFillEdge *eed;
 | 
						|
 | 
						|
	/* replace old poly numbers */
 | 
						|
	for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
 | 
						|
		if (eve->poly_nr == pf2->nr) {
 | 
						|
			eve->poly_nr = pf1->nr;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
 | 
						|
		if (eed->poly_nr == pf2->nr) {
 | 
						|
			eed->poly_nr = pf1->nr;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	pf1->verts += pf2->verts;
 | 
						|
	pf1->edges += pf2->edges;
 | 
						|
	pf2->verts = pf2->edges = 0;
 | 
						|
	pf1->f = (pf1->f | pf2->f);
 | 
						|
}
 | 
						|
 | 
						|
static bool testedgeside(const float v1[2], const float v2[2], const float v3[2])
 | 
						|
/* is v3 to the right of v1-v2 ? With exception: v3 == v1 || v3 == v2 */
 | 
						|
{
 | 
						|
	float inp;
 | 
						|
 | 
						|
	inp = (v2[0] - v1[0]) * (v1[1] - v3[1]) +
 | 
						|
	      (v1[1] - v2[1]) * (v1[0] - v3[0]);
 | 
						|
 | 
						|
	if (inp < 0.0f) {
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else if (inp == 0.0f) {
 | 
						|
		if (v1[0] == v3[0] && v1[1] == v3[1]) return 0;
 | 
						|
		if (v2[0] == v3[0] && v2[1] == v3[1]) return 0;
 | 
						|
	}
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
static bool addedgetoscanvert(ScanFillVertLink *sc, ScanFillEdge *eed)
 | 
						|
{
 | 
						|
	/* find first edge to the right of eed, and insert eed before that */
 | 
						|
	ScanFillEdge *ed;
 | 
						|
	float fac, fac1, x, y;
 | 
						|
 | 
						|
	if (sc->edge_first == NULL) {
 | 
						|
		sc->edge_first = sc->edge_last = eed;
 | 
						|
		eed->prev = eed->next = NULL;
 | 
						|
		return 1;
 | 
						|
	}
 | 
						|
 | 
						|
	x = eed->v1->xy[0];
 | 
						|
	y = eed->v1->xy[1];
 | 
						|
 | 
						|
	fac1 = eed->v2->xy[1] - y;
 | 
						|
	if (fac1 == 0.0f) {
 | 
						|
		fac1 = 1.0e10f * (eed->v2->xy[0] - x);
 | 
						|
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		fac1 = (x - eed->v2->xy[0]) / fac1;
 | 
						|
	}
 | 
						|
 | 
						|
	for (ed = sc->edge_first; ed; ed = ed->next) {
 | 
						|
 | 
						|
		if (ed->v2 == eed->v2) {
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		fac = ed->v2->xy[1] - y;
 | 
						|
		if (fac == 0.0f) {
 | 
						|
			fac = 1.0e10f * (ed->v2->xy[0] - x);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			fac = (x - ed->v2->xy[0]) / fac;
 | 
						|
		}
 | 
						|
 | 
						|
		if (fac > fac1) {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	if (ed) BLI_insertlinkbefore((ListBase *)&(sc->edge_first), ed, eed);
 | 
						|
	else BLI_addtail((ListBase *)&(sc->edge_first), eed);
 | 
						|
 | 
						|
	return 1;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static ScanFillVertLink *addedgetoscanlist(ScanFillVertLink *scdata, ScanFillEdge *eed, unsigned int len)
 | 
						|
{
 | 
						|
	/* inserts edge at correct location in ScanFillVertLink list */
 | 
						|
	/* returns sc when edge already exists */
 | 
						|
	ScanFillVertLink *sc, scsearch;
 | 
						|
	ScanFillVert *eve;
 | 
						|
 | 
						|
	/* which vert is left-top? */
 | 
						|
	if (eed->v1->xy[1] == eed->v2->xy[1]) {
 | 
						|
		if (eed->v1->xy[0] > eed->v2->xy[0]) {
 | 
						|
			eve = eed->v1;
 | 
						|
			eed->v1 = eed->v2;
 | 
						|
			eed->v2 = eve;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else if (eed->v1->xy[1] < eed->v2->xy[1]) {
 | 
						|
		eve = eed->v1;
 | 
						|
		eed->v1 = eed->v2;
 | 
						|
		eed->v2 = eve;
 | 
						|
	}
 | 
						|
	/* find location in list */
 | 
						|
	scsearch.vert = eed->v1;
 | 
						|
	sc = (ScanFillVertLink *)bsearch(&scsearch, scdata, len,
 | 
						|
	                                 sizeof(ScanFillVertLink), vergscdata);
 | 
						|
 | 
						|
	if (UNLIKELY(sc == NULL)) {
 | 
						|
		printf("Error in search edge: %p\n", (void *)eed);
 | 
						|
	}
 | 
						|
	else if (addedgetoscanvert(sc, eed) == false) {
 | 
						|
		return sc;
 | 
						|
	}
 | 
						|
 | 
						|
	return NULL;
 | 
						|
}
 | 
						|
 | 
						|
static bool boundinsideEV(ScanFillEdge *eed, ScanFillVert *eve)
 | 
						|
/* is eve inside boundbox eed */
 | 
						|
{
 | 
						|
	float minx, maxx, miny, maxy;
 | 
						|
 | 
						|
	if (eed->v1->xy[0] < eed->v2->xy[0]) {
 | 
						|
		minx = eed->v1->xy[0];
 | 
						|
		maxx = eed->v2->xy[0];
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		minx = eed->v2->xy[0];
 | 
						|
		maxx = eed->v1->xy[0];
 | 
						|
	}
 | 
						|
	if (eve->xy[0] >= minx && eve->xy[0] <= maxx) {
 | 
						|
		if (eed->v1->xy[1] < eed->v2->xy[1]) {
 | 
						|
			miny = eed->v1->xy[1];
 | 
						|
			maxy = eed->v2->xy[1];
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			miny = eed->v2->xy[1];
 | 
						|
			maxy = eed->v1->xy[1];
 | 
						|
		}
 | 
						|
		if (eve->xy[1] >= miny && eve->xy[1] <= maxy) {
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
static void testvertexnearedge(ScanFillContext *sf_ctx)
 | 
						|
{
 | 
						|
	/* only vertices with (->edge_tot == 1) are being tested for
 | 
						|
	 * being close to an edge, if true insert */
 | 
						|
 | 
						|
	ScanFillVert *eve;
 | 
						|
	ScanFillEdge *eed, *ed1;
 | 
						|
 | 
						|
	for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
 | 
						|
		if (eve->edge_tot == 1) {
 | 
						|
			/* find the edge which has vertex eve,
 | 
						|
			 * note: we _know_ this will crash if 'ed1' becomes NULL
 | 
						|
			 * but this will never happen. */
 | 
						|
			for (ed1 = sf_ctx->filledgebase.first;
 | 
						|
			     !(ed1->v1 == eve || ed1->v2 == eve);
 | 
						|
			     ed1 = ed1->next)
 | 
						|
			{
 | 
						|
				/* do nothing */
 | 
						|
			}
 | 
						|
 | 
						|
			if (ed1->v1 == eve) {
 | 
						|
				ed1->v1 = ed1->v2;
 | 
						|
				ed1->v2 = eve;
 | 
						|
			}
 | 
						|
 | 
						|
			for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
 | 
						|
				if (eve != eed->v1 && eve != eed->v2 && eve->poly_nr == eed->poly_nr) {
 | 
						|
					if (compare_v2v2(eve->xy, eed->v1->xy, SF_EPSILON)) {
 | 
						|
						ed1->v2 = eed->v1;
 | 
						|
						eed->v1->edge_tot++;
 | 
						|
						eve->edge_tot = 0;
 | 
						|
						break;
 | 
						|
					}
 | 
						|
					else if (compare_v2v2(eve->xy, eed->v2->xy, SF_EPSILON)) {
 | 
						|
						ed1->v2 = eed->v2;
 | 
						|
						eed->v2->edge_tot++;
 | 
						|
						eve->edge_tot = 0;
 | 
						|
						break;
 | 
						|
					}
 | 
						|
					else {
 | 
						|
						if (boundinsideEV(eed, eve)) {
 | 
						|
							const float dist = dist_squared_to_line_v2(eed->v1->xy, eed->v2->xy, eve->xy);
 | 
						|
							if (dist < SF_EPSILON_SQ) {
 | 
						|
								/* new edge */
 | 
						|
								ed1 = BLI_scanfill_edge_add(sf_ctx, eed->v1, eve);
 | 
						|
								
 | 
						|
								/* printf("fill: vertex near edge %x\n", eve); */
 | 
						|
								ed1->poly_nr = eed->poly_nr;
 | 
						|
								eed->v1 = eve;
 | 
						|
								eve->edge_tot = 3;
 | 
						|
								break;
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static void splitlist(ScanFillContext *sf_ctx, ListBase *tempve, ListBase *temped, unsigned short nr)
 | 
						|
{
 | 
						|
	/* everything is in templist, write only poly nr to fillist */
 | 
						|
	ScanFillVert *eve, *eve_next;
 | 
						|
	ScanFillEdge *eed, *eed_next;
 | 
						|
 | 
						|
	BLI_movelisttolist(tempve, &sf_ctx->fillvertbase);
 | 
						|
	BLI_movelisttolist(temped, &sf_ctx->filledgebase);
 | 
						|
 | 
						|
 | 
						|
	for (eve = tempve->first; eve; eve = eve_next) {
 | 
						|
		eve_next = eve->next;
 | 
						|
		if (eve->poly_nr == nr) {
 | 
						|
			BLI_remlink(tempve, eve);
 | 
						|
			BLI_addtail(&sf_ctx->fillvertbase, eve);
 | 
						|
		}
 | 
						|
 | 
						|
	}
 | 
						|
	
 | 
						|
	for (eed = temped->first; eed; eed = eed_next) {
 | 
						|
		eed_next = eed->next;
 | 
						|
		if (eed->poly_nr == nr) {
 | 
						|
			BLI_remlink(temped, eed);
 | 
						|
			BLI_addtail(&sf_ctx->filledgebase, eed);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static unsigned int scanfill(ScanFillContext *sf_ctx, PolyFill *pf, const int flag)
 | 
						|
{
 | 
						|
	ScanFillVertLink *scdata;
 | 
						|
	ScanFillVertLink *sc = NULL, *sc1;
 | 
						|
	ScanFillVert *eve, *v1, *v2, *v3;
 | 
						|
	ScanFillEdge *eed, *eed_next, *ed1, *ed2, *ed3;
 | 
						|
	unsigned int a, b, verts, maxface, totface;
 | 
						|
	const unsigned short nr = pf->nr;
 | 
						|
	bool twoconnected = false;
 | 
						|
 | 
						|
	/* PRINTS */
 | 
						|
#if 0
 | 
						|
	verts = pf->verts;
 | 
						|
	for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
 | 
						|
		printf("vert: %x co: %f %f\n", eve, eve->xy[0], eve->xy[1]);
 | 
						|
	}
 | 
						|
 | 
						|
	for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
 | 
						|
		printf("edge: %x  verts: %x %x\n", eed, eed->v1, eed->v2);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/* STEP 0: remove zero sized edges */
 | 
						|
	if (flag & BLI_SCANFILL_CALC_REMOVE_DOUBLES) {
 | 
						|
		for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
 | 
						|
			if (equals_v2v2(eed->v1->xy, eed->v2->xy)) {
 | 
						|
				if (eed->v1->f == SF_VERT_ZERO_LEN && eed->v2->f != SF_VERT_ZERO_LEN) {
 | 
						|
					eed->v2->f = SF_VERT_ZERO_LEN;
 | 
						|
					eed->v2->tmp.v = eed->v1->tmp.v;
 | 
						|
				}
 | 
						|
				else if (eed->v2->f == SF_VERT_ZERO_LEN && eed->v1->f != SF_VERT_ZERO_LEN) {
 | 
						|
					eed->v1->f = SF_VERT_ZERO_LEN;
 | 
						|
					eed->v1->tmp.v = eed->v2->tmp.v;
 | 
						|
				}
 | 
						|
				else if (eed->v2->f == SF_VERT_ZERO_LEN && eed->v1->f == SF_VERT_ZERO_LEN) {
 | 
						|
					eed->v1->tmp.v = eed->v2->tmp.v;
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					eed->v2->f = SF_VERT_ZERO_LEN;
 | 
						|
					eed->v2->tmp.v = eed->v1;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* STEP 1: make using FillVert and FillEdge lists a sorted
 | 
						|
	 * ScanFillVertLink list
 | 
						|
	 */
 | 
						|
	sc = scdata = MEM_mallocN(sizeof(*scdata) * pf->verts, "Scanfill1");
 | 
						|
	verts = 0;
 | 
						|
	for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
 | 
						|
		if (eve->poly_nr == nr) {
 | 
						|
			if (eve->f != SF_VERT_ZERO_LEN) {
 | 
						|
				verts++;
 | 
						|
				eve->f = 0;  /* flag for connectedges later on */
 | 
						|
				sc->vert = eve;
 | 
						|
				sc->edge_first = sc->edge_last = NULL;
 | 
						|
				/* if (even->tmp.v == NULL) eve->tmp.u = verts; */ /* Note, debug print only will work for curve polyfill, union is in use for mesh */
 | 
						|
				sc++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	qsort(scdata, verts, sizeof(ScanFillVertLink), vergscdata);
 | 
						|
 | 
						|
	if (flag & BLI_SCANFILL_CALC_REMOVE_DOUBLES) {
 | 
						|
		for (eed = sf_ctx->filledgebase.first; eed; eed = eed_next) {
 | 
						|
			eed_next = eed->next;
 | 
						|
			BLI_remlink(&sf_ctx->filledgebase, eed);
 | 
						|
			/* This code is for handling zero-length edges that get
 | 
						|
			 * collapsed in step 0. It was removed for some time to
 | 
						|
			 * fix trunk bug #4544, so if that comes back, this code
 | 
						|
			 * may need some work, or there will have to be a better
 | 
						|
			 * fix to #4544.
 | 
						|
			 *
 | 
						|
			 * warning, this can hang on un-ordered edges, see: [#33281]
 | 
						|
			 * for now disable 'BLI_SCANFILL_CALC_REMOVE_DOUBLES' for ngons.
 | 
						|
			 */
 | 
						|
			if (eed->v1->f == SF_VERT_ZERO_LEN) {
 | 
						|
				v1 = eed->v1;
 | 
						|
				while ((eed->v1->f == SF_VERT_ZERO_LEN) && (eed->v1->tmp.v != v1) && (eed->v1 != eed->v1->tmp.v))
 | 
						|
					eed->v1 = eed->v1->tmp.v;
 | 
						|
			}
 | 
						|
			if (eed->v2->f == SF_VERT_ZERO_LEN) {
 | 
						|
				v2 = eed->v2;
 | 
						|
				while ((eed->v2->f == SF_VERT_ZERO_LEN) && (eed->v2->tmp.v != v2) && (eed->v2 != eed->v2->tmp.v))
 | 
						|
					eed->v2 = eed->v2->tmp.v;
 | 
						|
			}
 | 
						|
			if (eed->v1 != eed->v2) {
 | 
						|
				addedgetoscanlist(scdata, eed, verts);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		for (eed = sf_ctx->filledgebase.first; eed; eed = eed_next) {
 | 
						|
			eed_next = eed->next;
 | 
						|
			BLI_remlink(&sf_ctx->filledgebase, eed);
 | 
						|
			if (eed->v1 != eed->v2) {
 | 
						|
				addedgetoscanlist(scdata, eed, verts);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#if 0
 | 
						|
	sc = sf_ctx->_scdata;
 | 
						|
	for (a = 0; a < verts; a++) {
 | 
						|
		printf("\nscvert: %x\n", sc->vert);
 | 
						|
		for (eed = sc->edge_first; eed; eed = eed->next) {
 | 
						|
			printf(" ed %x %x %x\n", eed, eed->v1, eed->v2);
 | 
						|
		}
 | 
						|
		sc++;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
	/* STEP 2: FILL LOOP */
 | 
						|
 | 
						|
	if (pf->f == 0)
 | 
						|
		twoconnected = true;
 | 
						|
 | 
						|
	/* (temporal) security: never much more faces than vertices */
 | 
						|
	totface = 0;
 | 
						|
	if (flag & BLI_SCANFILL_CALC_HOLES) {
 | 
						|
		maxface = 2 * verts;       /* 2*verts: based at a filled circle within a triangle */
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		maxface = verts - 2;       /* when we don't calc any holes, we assume face is a non overlapping loop */
 | 
						|
	}
 | 
						|
 | 
						|
	sc = scdata;
 | 
						|
	for (a = 0; a < verts; a++) {
 | 
						|
		/* printf("VERTEX %d index %d\n", a, sc->vert->tmp.u); */
 | 
						|
		/* set connectflags  */
 | 
						|
		for (ed1 = sc->edge_first; ed1; ed1 = eed_next) {
 | 
						|
			eed_next = ed1->next;
 | 
						|
			if (ed1->v1->edge_tot == 1 || ed1->v2->edge_tot == 1) {
 | 
						|
				BLI_remlink((ListBase *)&(sc->edge_first), ed1);
 | 
						|
				BLI_addtail(&sf_ctx->filledgebase, ed1);
 | 
						|
				if (ed1->v1->edge_tot > 1) ed1->v1->edge_tot--;
 | 
						|
				if (ed1->v2->edge_tot > 1) ed1->v2->edge_tot--;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				ed1->v2->f = SF_VERT_AVAILABLE;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		while (sc->edge_first) { /* for as long there are edges */
 | 
						|
			ed1 = sc->edge_first;
 | 
						|
			ed2 = ed1->next;
 | 
						|
			
 | 
						|
			/* commented out... the ESC here delivers corrupted memory (and doesnt work during grab) */
 | 
						|
			/* if (callLocalInterruptCallBack()) break; */
 | 
						|
			if (totface >= maxface) {
 | 
						|
				/* printf("Fill error: endless loop. Escaped at vert %d,  tot: %d.\n", a, verts); */
 | 
						|
				a = verts;
 | 
						|
				break;
 | 
						|
			}
 | 
						|
			if (ed2 == NULL) {
 | 
						|
				sc->edge_first = sc->edge_last = NULL;
 | 
						|
				/* printf("just 1 edge to vert\n"); */
 | 
						|
				BLI_addtail(&sf_ctx->filledgebase, ed1);
 | 
						|
				ed1->v2->f = 0;
 | 
						|
				ed1->v1->edge_tot--;
 | 
						|
				ed1->v2->edge_tot--;
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				/* test rest of vertices */
 | 
						|
				ScanFillVertLink *best_sc = NULL;
 | 
						|
				float best_angle = 3.14f;
 | 
						|
				float miny;
 | 
						|
				bool firsttime = false;
 | 
						|
				
 | 
						|
				v1 = ed1->v2;
 | 
						|
				v2 = ed1->v1;
 | 
						|
				v3 = ed2->v2;
 | 
						|
				
 | 
						|
				/* this happens with a serial of overlapping edges */
 | 
						|
				if (v1 == v2 || v2 == v3) break;
 | 
						|
				
 | 
						|
				/* printf("test verts %d %d %d\n", v1->tmp.u, v2->tmp.u, v3->tmp.u); */
 | 
						|
				miny = min_ff(v1->xy[1], v3->xy[1]);
 | 
						|
				sc1 = sc + 1;
 | 
						|
 | 
						|
				for (b = a + 1; b < verts; b++, sc1++) {
 | 
						|
					if (sc1->vert->f == 0) {
 | 
						|
						if (sc1->vert->xy[1] <= miny) break;
 | 
						|
						if (testedgeside(v1->xy, v2->xy, sc1->vert->xy)) {
 | 
						|
							if (testedgeside(v2->xy, v3->xy, sc1->vert->xy)) {
 | 
						|
								if (testedgeside(v3->xy, v1->xy, sc1->vert->xy)) {
 | 
						|
									/* point is in triangle */
 | 
						|
									
 | 
						|
									/* because multiple points can be inside triangle (concave holes) */
 | 
						|
									/* we continue searching and pick the one with sharpest corner */
 | 
						|
									
 | 
						|
									if (best_sc == NULL) {
 | 
						|
										/* even without holes we need to keep checking [#35861] */
 | 
						|
										best_sc = sc1;
 | 
						|
									}
 | 
						|
									else {
 | 
						|
										float angle;
 | 
						|
										
 | 
						|
										/* prevent angle calc for the simple cases only 1 vertex is found */
 | 
						|
										if (firsttime == false) {
 | 
						|
											best_angle = angle_v2v2v2(v2->xy, v1->xy, best_sc->vert->xy);
 | 
						|
											firsttime = true;
 | 
						|
										}
 | 
						|
 | 
						|
										angle = angle_v2v2v2(v2->xy, v1->xy, sc1->vert->xy);
 | 
						|
										if (angle < best_angle) {
 | 
						|
											best_sc = sc1;
 | 
						|
											best_angle = angle;
 | 
						|
										}
 | 
						|
									}
 | 
						|
										
 | 
						|
								}
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
					
 | 
						|
				if (best_sc) {
 | 
						|
					/* make new edge, and start over */
 | 
						|
					/* printf("add new edge %d %d and start again\n", v2->tmp.u, best_sc->vert->tmp.u); */
 | 
						|
 | 
						|
					ed3 = BLI_scanfill_edge_add(sf_ctx, v2, best_sc->vert);
 | 
						|
					BLI_remlink(&sf_ctx->filledgebase, ed3);
 | 
						|
					BLI_insertlinkbefore((ListBase *)&(sc->edge_first), ed2, ed3);
 | 
						|
					ed3->v2->f = SF_VERT_AVAILABLE;
 | 
						|
					ed3->f = SF_EDGE_UNKNOWN;
 | 
						|
					ed3->v1->edge_tot++;
 | 
						|
					ed3->v2->edge_tot++;
 | 
						|
				}
 | 
						|
				else {
 | 
						|
					/* new triangle */
 | 
						|
					/* printf("add face %d %d %d\n", v1->tmp.u, v2->tmp.u, v3->tmp.u); */
 | 
						|
					addfillface(sf_ctx, v1, v2, v3);
 | 
						|
					totface++;
 | 
						|
					BLI_remlink((ListBase *)&(sc->edge_first), ed1);
 | 
						|
					BLI_addtail(&sf_ctx->filledgebase, ed1);
 | 
						|
					ed1->v2->f = 0;
 | 
						|
					ed1->v1->edge_tot--;
 | 
						|
					ed1->v2->edge_tot--;
 | 
						|
					/* ed2 can be removed when it's a boundary edge */
 | 
						|
					if ((ed2->f == 0 && twoconnected) || (ed2->f == SF_EDGE_BOUNDARY)) {
 | 
						|
						BLI_remlink((ListBase *)&(sc->edge_first), ed2);
 | 
						|
						BLI_addtail(&sf_ctx->filledgebase, ed2);
 | 
						|
						ed2->v2->f = 0;
 | 
						|
						ed2->v1->edge_tot--;
 | 
						|
						ed2->v2->edge_tot--;
 | 
						|
					}
 | 
						|
 | 
						|
					/* new edge */
 | 
						|
					ed3 = BLI_scanfill_edge_add(sf_ctx, v1, v3);
 | 
						|
					BLI_remlink(&sf_ctx->filledgebase, ed3);
 | 
						|
					ed3->f = SF_EDGE_UNKNOWN;
 | 
						|
					ed3->v1->edge_tot++;
 | 
						|
					ed3->v2->edge_tot++;
 | 
						|
					
 | 
						|
					/* printf("add new edge %x %x\n", v1, v3); */
 | 
						|
					sc1 = addedgetoscanlist(scdata, ed3, verts);
 | 
						|
					
 | 
						|
					if (sc1) {  /* ed3 already exists: remove if a boundary */
 | 
						|
						/* printf("Edge exists\n"); */
 | 
						|
						ed3->v1->edge_tot--;
 | 
						|
						ed3->v2->edge_tot--;
 | 
						|
 | 
						|
						for (ed3 = sc1->edge_first; ed3; ed3 = ed3->next) {
 | 
						|
							if ((ed3->v1 == v1 && ed3->v2 == v3) || (ed3->v1 == v3 && ed3->v2 == v1)) {
 | 
						|
								if (twoconnected || ed3->f == SF_EDGE_BOUNDARY) {
 | 
						|
									BLI_remlink((ListBase *)&(sc1->edge_first), ed3);
 | 
						|
									BLI_addtail(&sf_ctx->filledgebase, ed3);
 | 
						|
									ed3->v1->edge_tot--;
 | 
						|
									ed3->v2->edge_tot--;
 | 
						|
								}
 | 
						|
								break;
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
 | 
						|
			/* test for loose edges */
 | 
						|
			for (ed1 = sc->edge_first; ed1; ed1 = eed_next) {
 | 
						|
				eed_next = ed1->next;
 | 
						|
				if (ed1->v1->edge_tot < 2 || ed1->v2->edge_tot < 2) {
 | 
						|
					BLI_remlink((ListBase *)&(sc->edge_first), ed1);
 | 
						|
					BLI_addtail(&sf_ctx->filledgebase, ed1);
 | 
						|
					if (ed1->v1->edge_tot > 1) ed1->v1->edge_tot--;
 | 
						|
					if (ed1->v2->edge_tot > 1) ed1->v2->edge_tot--;
 | 
						|
				}
 | 
						|
			}
 | 
						|
			/* done with loose edges */
 | 
						|
		}
 | 
						|
 | 
						|
		sc++;
 | 
						|
	}
 | 
						|
 | 
						|
	MEM_freeN(scdata);
 | 
						|
 | 
						|
	BLI_assert(totface <= maxface);
 | 
						|
 | 
						|
	return totface;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void BLI_scanfill_begin(ScanFillContext *sf_ctx)
 | 
						|
{
 | 
						|
	memset(sf_ctx, 0, sizeof(*sf_ctx));
 | 
						|
	sf_ctx->poly_nr = SF_POLY_UNSET;
 | 
						|
	sf_ctx->arena = BLI_memarena_new(BLI_SCANFILL_ARENA_SIZE, __func__);
 | 
						|
}
 | 
						|
 | 
						|
void BLI_scanfill_begin_arena(ScanFillContext *sf_ctx, MemArena *arena)
 | 
						|
{
 | 
						|
	memset(sf_ctx, 0, sizeof(*sf_ctx));
 | 
						|
	sf_ctx->poly_nr = SF_POLY_UNSET;
 | 
						|
	sf_ctx->arena = arena;
 | 
						|
}
 | 
						|
 | 
						|
void BLI_scanfill_end(ScanFillContext *sf_ctx)
 | 
						|
{
 | 
						|
	BLI_memarena_free(sf_ctx->arena);
 | 
						|
	sf_ctx->arena = NULL;
 | 
						|
 | 
						|
	BLI_listbase_clear(&sf_ctx->fillvertbase);
 | 
						|
	BLI_listbase_clear(&sf_ctx->filledgebase);
 | 
						|
	BLI_listbase_clear(&sf_ctx->fillfacebase);
 | 
						|
}
 | 
						|
 | 
						|
void BLI_scanfill_end_arena(ScanFillContext *sf_ctx, MemArena *arena)
 | 
						|
{
 | 
						|
	BLI_memarena_clear(arena);
 | 
						|
	BLI_assert(sf_ctx->arena == arena);
 | 
						|
 | 
						|
	BLI_listbase_clear(&sf_ctx->fillvertbase);
 | 
						|
	BLI_listbase_clear(&sf_ctx->filledgebase);
 | 
						|
	BLI_listbase_clear(&sf_ctx->fillfacebase);
 | 
						|
}
 | 
						|
 | 
						|
unsigned int BLI_scanfill_calc_ex(ScanFillContext *sf_ctx, const int flag, const float nor_proj[3])
 | 
						|
{
 | 
						|
	/*
 | 
						|
	 * - fill works with its own lists, so create that first (no faces!)
 | 
						|
	 * - for vertices, put in ->tmp.v the old pointer
 | 
						|
	 * - struct elements xs en ys are not used here: don't hide stuff in it
 | 
						|
	 * - edge flag ->f becomes 2 when it's a new edge
 | 
						|
	 * - mode: & 1 is check for crossings, then create edges (TO DO )
 | 
						|
	 * - returns number of triangle faces added.
 | 
						|
	 */
 | 
						|
	ListBase tempve, temped;
 | 
						|
	ScanFillVert *eve;
 | 
						|
	ScanFillEdge *eed, *eed_next;
 | 
						|
	PolyFill *pflist, *pf;
 | 
						|
	float *min_xy_p, *max_xy_p;
 | 
						|
	unsigned int totfaces = 0;  /* total faces added */
 | 
						|
	unsigned short a, c, poly = 0;
 | 
						|
	bool ok;
 | 
						|
	float mat_2d[3][3];
 | 
						|
 | 
						|
	BLI_assert(!nor_proj || len_squared_v3(nor_proj) > FLT_EPSILON);
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
	for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
 | 
						|
		/* these values used to be set,
 | 
						|
		 * however they should always be zero'd so check instead */
 | 
						|
		BLI_assert(eve->f == 0);
 | 
						|
		BLI_assert(sf_ctx->poly_nr || eve->poly_nr == 0);
 | 
						|
		BLI_assert(eve->edge_tot == 0);
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
#if 0
 | 
						|
	if (flag & BLI_SCANFILL_CALC_QUADTRI_FASTPATH) {
 | 
						|
		const int totverts = BLI_countlist(&sf_ctx->fillvertbase);
 | 
						|
 | 
						|
		if (totverts == 3) {
 | 
						|
			eve = sf_ctx->fillvertbase.first;
 | 
						|
 | 
						|
			addfillface(sf_ctx, eve, eve->next, eve->next->next);
 | 
						|
			return 1;
 | 
						|
		}
 | 
						|
		else if (totverts == 4) {
 | 
						|
			float vec1[3], vec2[3];
 | 
						|
 | 
						|
			eve = sf_ctx->fillvertbase.first;
 | 
						|
			/* no need to check 'eve->next->next->next' is valid, already counted */
 | 
						|
			/* use shortest diagonal for quad */
 | 
						|
			sub_v3_v3v3(vec1, eve->co, eve->next->next->co);
 | 
						|
			sub_v3_v3v3(vec2, eve->next->co, eve->next->next->next->co);
 | 
						|
 | 
						|
			if (dot_v3v3(vec1, vec1) < dot_v3v3(vec2, vec2)) {
 | 
						|
				addfillface(sf_ctx, eve, eve->next, eve->next->next);
 | 
						|
				addfillface(sf_ctx, eve->next->next, eve->next->next->next, eve);
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				addfillface(sf_ctx, eve->next, eve->next->next, eve->next->next->next);
 | 
						|
				addfillface(sf_ctx, eve->next->next->next, eve, eve->next);
 | 
						|
			}
 | 
						|
			return 2;
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/* first test vertices if they are in edges */
 | 
						|
	/* including resetting of flags */
 | 
						|
	for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
 | 
						|
		BLI_assert(sf_ctx->poly_nr != SF_POLY_UNSET || eed->poly_nr == SF_POLY_UNSET);
 | 
						|
		eed->v1->f = SF_VERT_AVAILABLE;
 | 
						|
		eed->v2->f = SF_VERT_AVAILABLE;
 | 
						|
	}
 | 
						|
 | 
						|
	for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
 | 
						|
		if (eve->f & SF_VERT_AVAILABLE) {
 | 
						|
			break;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (UNLIKELY(eve == NULL)) {
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		float n[3];
 | 
						|
 | 
						|
		if (nor_proj) {
 | 
						|
			copy_v3_v3(n, nor_proj);
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			/* define projection: with 'best' normal */
 | 
						|
			/* Newell's Method */
 | 
						|
			/* Similar code used elsewhere, but this checks for double ups
 | 
						|
			 * which historically this function supports so better not change */
 | 
						|
			float *v_prev;
 | 
						|
 | 
						|
			zero_v3(n);
 | 
						|
			eve = sf_ctx->fillvertbase.last;
 | 
						|
			v_prev = eve->co;
 | 
						|
 | 
						|
			for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
 | 
						|
				if (LIKELY(!compare_v3v3(v_prev, eve->co, SF_EPSILON))) {
 | 
						|
					add_newell_cross_v3_v3v3(n, v_prev, eve->co);
 | 
						|
					v_prev = eve->co;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		if (UNLIKELY(normalize_v3(n) == 0.0f)) {
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		axis_dominant_v3_to_m3(mat_2d, n);
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	/* STEP 1: COUNT POLYS */
 | 
						|
	if (sf_ctx->poly_nr != SF_POLY_UNSET) {
 | 
						|
		poly = (unsigned short)(sf_ctx->poly_nr + 1);
 | 
						|
		sf_ctx->poly_nr = SF_POLY_UNSET;
 | 
						|
	}
 | 
						|
 | 
						|
	if (flag & BLI_SCANFILL_CALC_HOLES && (poly == 0)) {
 | 
						|
		for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
 | 
						|
			mul_v2_m3v3(eve->xy, mat_2d, eve->co);
 | 
						|
 | 
						|
			/* get first vertex with no poly number */
 | 
						|
			if (eve->poly_nr == SF_POLY_UNSET) {
 | 
						|
				unsigned int toggle = 0;
 | 
						|
				/* now a sort of select connected */
 | 
						|
				ok = true;
 | 
						|
				eve->poly_nr = poly;
 | 
						|
 | 
						|
				while (ok) {
 | 
						|
 | 
						|
					ok = false;
 | 
						|
 | 
						|
					toggle++;
 | 
						|
					for (eed = (toggle & 1) ? sf_ctx->filledgebase.first : sf_ctx->filledgebase.last;
 | 
						|
					     eed;
 | 
						|
					     eed = (toggle & 1) ? eed->next : eed->prev)
 | 
						|
					{
 | 
						|
						if (eed->v1->poly_nr == SF_POLY_UNSET && eed->v2->poly_nr == poly) {
 | 
						|
							eed->v1->poly_nr = poly;
 | 
						|
							eed->poly_nr = poly;
 | 
						|
							ok = true;
 | 
						|
						}
 | 
						|
						else if (eed->v2->poly_nr == SF_POLY_UNSET && eed->v1->poly_nr == poly) {
 | 
						|
							eed->v2->poly_nr = poly;
 | 
						|
							eed->poly_nr = poly;
 | 
						|
							ok = true;
 | 
						|
						}
 | 
						|
						else if (eed->poly_nr == SF_POLY_UNSET) {
 | 
						|
							if (eed->v1->poly_nr == poly && eed->v2->poly_nr == poly) {
 | 
						|
								eed->poly_nr = poly;
 | 
						|
								ok = true;
 | 
						|
							}
 | 
						|
						}
 | 
						|
					}
 | 
						|
				}
 | 
						|
 | 
						|
				poly++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		/* printf("amount of poly's: %d\n", poly); */
 | 
						|
	}
 | 
						|
	else if (poly) {
 | 
						|
		/* we pre-calculated poly_nr */
 | 
						|
		for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
 | 
						|
			mul_v2_m3v3(eve->xy, mat_2d, eve->co);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		poly = 1;
 | 
						|
 | 
						|
		for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
 | 
						|
			mul_v2_m3v3(eve->xy, mat_2d, eve->co);
 | 
						|
			eve->poly_nr = 0;
 | 
						|
		}
 | 
						|
 | 
						|
		for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
 | 
						|
			eed->poly_nr = 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* STEP 2: remove loose edges and strings of edges */
 | 
						|
	if (flag & BLI_SCANFILL_CALC_LOOSE) {
 | 
						|
		unsigned int toggle = 0;
 | 
						|
		for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
 | 
						|
			if (eed->v1->edge_tot++ > 250) break;
 | 
						|
			if (eed->v2->edge_tot++ > 250) break;
 | 
						|
		}
 | 
						|
		if (eed) {
 | 
						|
			/* otherwise it's impossible to be sure you can clear vertices */
 | 
						|
#ifdef DEBUG
 | 
						|
			printf("No vertices with 250 edges allowed!\n");
 | 
						|
#endif
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
 | 
						|
		/* does it only for vertices with (->edge_tot == 1) */
 | 
						|
		testvertexnearedge(sf_ctx);
 | 
						|
 | 
						|
		ok = true;
 | 
						|
		while (ok) {
 | 
						|
			ok = false;
 | 
						|
 | 
						|
			toggle++;
 | 
						|
			for (eed = (toggle & 1) ? sf_ctx->filledgebase.first : sf_ctx->filledgebase.last;
 | 
						|
			     eed;
 | 
						|
			     eed = eed_next)
 | 
						|
			{
 | 
						|
				eed_next = (toggle & 1) ? eed->next : eed->prev;
 | 
						|
				if (eed->v1->edge_tot == 1) {
 | 
						|
					eed->v2->edge_tot--;
 | 
						|
					BLI_remlink(&sf_ctx->fillvertbase, eed->v1);
 | 
						|
					BLI_remlink(&sf_ctx->filledgebase, eed);
 | 
						|
					ok = true;
 | 
						|
				}
 | 
						|
				else if (eed->v2->edge_tot == 1) {
 | 
						|
					eed->v1->edge_tot--;
 | 
						|
					BLI_remlink(&sf_ctx->fillvertbase, eed->v2);
 | 
						|
					BLI_remlink(&sf_ctx->filledgebase, eed);
 | 
						|
					ok = true;
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
		if (BLI_listbase_is_empty(&sf_ctx->filledgebase)) {
 | 
						|
			/* printf("All edges removed\n"); */
 | 
						|
			return 0;
 | 
						|
		}
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* skip checks for loose edges */
 | 
						|
		for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
 | 
						|
			eed->v1->edge_tot++;
 | 
						|
			eed->v2->edge_tot++;
 | 
						|
		}
 | 
						|
#ifdef DEBUG
 | 
						|
		/* ensure we're right! */
 | 
						|
		for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
 | 
						|
			BLI_assert(eed->v1->edge_tot != 1);
 | 
						|
			BLI_assert(eed->v2->edge_tot != 1);
 | 
						|
		}
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
 | 
						|
	/* CURRENT STATUS:
 | 
						|
	 * - eve->f        :1 = available in edges
 | 
						|
	 * - eve->poly_nr  :polynumber
 | 
						|
	 * - eve->edge_tot :amount of edges connected to vertex
 | 
						|
	 * - eve->tmp.v    :store! original vertex number
 | 
						|
	 * 
 | 
						|
	 * - eed->f        :1 = boundary edge (optionally set by caller)
 | 
						|
	 * - eed->poly_nr  :poly number
 | 
						|
	 */
 | 
						|
 | 
						|
 | 
						|
	/* STEP 3: MAKE POLYFILL STRUCT */
 | 
						|
	pflist = MEM_mallocN(sizeof(*pflist) * (size_t)poly, "edgefill");
 | 
						|
	pf = pflist;
 | 
						|
	for (a = 0; a < poly; a++) {
 | 
						|
		pf->edges = pf->verts = 0;
 | 
						|
		pf->min_xy[0] = pf->min_xy[1] =  1.0e20f;
 | 
						|
		pf->max_xy[0] = pf->max_xy[1] = -1.0e20f;
 | 
						|
		pf->f = 0;
 | 
						|
		pf->nr = a;
 | 
						|
		pf++;
 | 
						|
	}
 | 
						|
	for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
 | 
						|
		pflist[eed->poly_nr].edges++;
 | 
						|
	}
 | 
						|
 | 
						|
	for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
 | 
						|
		pflist[eve->poly_nr].verts++;
 | 
						|
		min_xy_p = pflist[eve->poly_nr].min_xy;
 | 
						|
		max_xy_p = pflist[eve->poly_nr].max_xy;
 | 
						|
 | 
						|
		min_xy_p[0] = (min_xy_p[0]) < (eve->xy[0]) ? (min_xy_p[0]) : (eve->xy[0]);
 | 
						|
		min_xy_p[1] = (min_xy_p[1]) < (eve->xy[1]) ? (min_xy_p[1]) : (eve->xy[1]);
 | 
						|
		max_xy_p[0] = (max_xy_p[0]) > (eve->xy[0]) ? (max_xy_p[0]) : (eve->xy[0]);
 | 
						|
		max_xy_p[1] = (max_xy_p[1]) > (eve->xy[1]) ? (max_xy_p[1]) : (eve->xy[1]);
 | 
						|
		if (eve->edge_tot > 2) pflist[eve->poly_nr].f = 1;
 | 
						|
	}
 | 
						|
 | 
						|
	/* STEP 4: FIND HOLES OR BOUNDS, JOIN THEM
 | 
						|
	 *  ( bounds just to divide it in pieces for optimization, 
 | 
						|
	 *    the edgefill itself has good auto-hole detection)
 | 
						|
	 * WATCH IT: ONLY WORKS WITH SORTED POLYS!!! */
 | 
						|
	
 | 
						|
	if (poly > 1) {
 | 
						|
		unsigned short *polycache, *pc;
 | 
						|
 | 
						|
		/* so, sort first */
 | 
						|
		qsort(pflist, (size_t)poly, sizeof(PolyFill), vergpoly);
 | 
						|
 | 
						|
#if 0
 | 
						|
		pf = pflist;
 | 
						|
		for (a = 0; a < poly; a++) {
 | 
						|
			printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
 | 
						|
			PRINT2(f, f, pf->min[0], pf->min[1]);
 | 
						|
			pf++;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
		polycache = pc = MEM_callocN(sizeof(*polycache) * (size_t)poly, "polycache");
 | 
						|
		pf = pflist;
 | 
						|
		for (a = 0; a < poly; a++, pf++) {
 | 
						|
			for (c = (unsigned short)(a + 1); c < poly; c++) {
 | 
						|
				
 | 
						|
				/* if 'a' inside 'c': join (bbox too)
 | 
						|
				 * Careful: 'a' can also be inside another poly.
 | 
						|
				 */
 | 
						|
				if (boundisect(pf, pflist + c)) {
 | 
						|
					*pc = c;
 | 
						|
					pc++;
 | 
						|
				}
 | 
						|
				/* only for optimize! */
 | 
						|
				/* else if (pf->max_xy[0] < (pflist+c)->min[cox]) break; */
 | 
						|
				
 | 
						|
			}
 | 
						|
			while (pc != polycache) {
 | 
						|
				pc--;
 | 
						|
				mergepolysSimp(sf_ctx, pf, pflist + *pc);
 | 
						|
			}
 | 
						|
		}
 | 
						|
		MEM_freeN(polycache);
 | 
						|
	}
 | 
						|
 | 
						|
#if 0
 | 
						|
	printf("after merge\n");
 | 
						|
	pf = pflist;
 | 
						|
	for (a = 0; a < poly; a++) {
 | 
						|
		printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
 | 
						|
		pf++;
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	/* STEP 5: MAKE TRIANGLES */
 | 
						|
 | 
						|
	tempve.first = sf_ctx->fillvertbase.first;
 | 
						|
	tempve.last = sf_ctx->fillvertbase.last;
 | 
						|
	temped.first = sf_ctx->filledgebase.first;
 | 
						|
	temped.last = sf_ctx->filledgebase.last;
 | 
						|
	BLI_listbase_clear(&sf_ctx->fillvertbase);
 | 
						|
	BLI_listbase_clear(&sf_ctx->filledgebase);
 | 
						|
 | 
						|
	pf = pflist;
 | 
						|
	for (a = 0; a < poly; a++) {
 | 
						|
		if (pf->edges > 1) {
 | 
						|
			splitlist(sf_ctx, &tempve, &temped, pf->nr);
 | 
						|
			totfaces += scanfill(sf_ctx, pf, flag);
 | 
						|
		}
 | 
						|
		pf++;
 | 
						|
	}
 | 
						|
	BLI_movelisttolist(&sf_ctx->fillvertbase, &tempve);
 | 
						|
	BLI_movelisttolist(&sf_ctx->filledgebase, &temped);
 | 
						|
 | 
						|
	/* FREE */
 | 
						|
 | 
						|
	MEM_freeN(pflist);
 | 
						|
 | 
						|
	return totfaces;
 | 
						|
}
 | 
						|
 | 
						|
unsigned int BLI_scanfill_calc(ScanFillContext *sf_ctx, const int flag)
 | 
						|
{
 | 
						|
	return BLI_scanfill_calc_ex(sf_ctx, flag, NULL);
 | 
						|
}
 |