1314 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1314 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/*
 | 
						|
 * $Id$
 | 
						|
 * ***** BEGIN GPL LICENSE BLOCK *****
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | 
						|
 *
 | 
						|
 * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | 
						|
 * All rights reserved.
 | 
						|
 *
 | 
						|
 * 
 | 
						|
 * Contributor(s): Willian P. Germano & Joseph Gilbert, Ken Hughes
 | 
						|
 *
 | 
						|
 * ***** END GPL LICENSE BLOCK *****
 | 
						|
 */
 | 
						|
 | 
						|
#include "Mathutils.h"
 | 
						|
 | 
						|
#include "BLI_blenlib.h"
 | 
						|
#include "BKE_utildefines.h"
 | 
						|
#include "BLI_arithb.h"
 | 
						|
#include "gen_utils.h"
 | 
						|
 | 
						|
 | 
						|
/*-------------------------DOC STRINGS ---------------------------*/
 | 
						|
char Vector_Zero_doc[] = "() - set all values in the vector to 0";
 | 
						|
char Vector_Normalize_doc[] = "() - normalize the vector";
 | 
						|
char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
 | 
						|
char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
 | 
						|
char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
 | 
						|
char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
 | 
						|
char Vector_toPoint_doc[] = "() - create a new Point Object from this vector";
 | 
						|
char Vector_ToTrackQuat_doc[] = "(track, up) - extract a quaternion from the vector and the track and up axis";
 | 
						|
char Vector_reflect_doc[] = "(mirror) - return a vector reflected on the mirror normal";
 | 
						|
char Vector_copy_doc[] = "() - return a copy of the vector";
 | 
						|
/*-----------------------METHOD DEFINITIONS ----------------------*/
 | 
						|
struct PyMethodDef Vector_methods[] = {
 | 
						|
	{"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
 | 
						|
	{"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc},
 | 
						|
	{"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc},
 | 
						|
	{"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
 | 
						|
	{"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
 | 
						|
	{"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
 | 
						|
	{"toPoint", (PyCFunction) Vector_toPoint, METH_NOARGS, Vector_toPoint_doc},
 | 
						|
	{"toTrackQuat", ( PyCFunction ) Vector_ToTrackQuat, METH_VARARGS, Vector_ToTrackQuat_doc},
 | 
						|
	{"reflect", ( PyCFunction ) Vector_reflect, METH_O, Vector_reflect_doc},
 | 
						|
	{"copy", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc},
 | 
						|
	{"__copy__", (PyCFunction) Vector_copy, METH_NOARGS, Vector_copy_doc},
 | 
						|
	{NULL, NULL, 0, NULL}
 | 
						|
};
 | 
						|
 | 
						|
/*-----------------------------METHODS----------------------------
 | 
						|
  --------------------------Vector.toPoint()----------------------
 | 
						|
  create a new point object to represent this vector */
 | 
						|
PyObject *Vector_toPoint(VectorObject * self)
 | 
						|
{
 | 
						|
	float coord[3];
 | 
						|
	int i;
 | 
						|
 | 
						|
	if(self->size < 2 || self->size > 3) {
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
			"Vector.toPoint(): inappropriate vector size - expects 2d or 3d vector\n");
 | 
						|
	} 
 | 
						|
	for(i = 0; i < self->size; i++){
 | 
						|
		coord[i] = self->vec[i];
 | 
						|
	}
 | 
						|
	
 | 
						|
	return newPointObject(coord, self->size, Py_NEW);
 | 
						|
}
 | 
						|
/*----------------------------Vector.zero() ----------------------
 | 
						|
  set the vector data to 0,0,0 */
 | 
						|
PyObject *Vector_Zero(VectorObject * self)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for(i = 0; i < self->size; i++) {
 | 
						|
		self->vec[i] = 0.0f;
 | 
						|
	}
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
/*----------------------------Vector.normalize() -----------------
 | 
						|
  normalize the vector data to a unit vector */
 | 
						|
PyObject *Vector_Normalize(VectorObject * self)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	float norm = 0.0f;
 | 
						|
 | 
						|
	for(i = 0; i < self->size; i++) {
 | 
						|
		norm += self->vec[i] * self->vec[i];
 | 
						|
	}
 | 
						|
	norm = (float) sqrt(norm);
 | 
						|
	for(i = 0; i < self->size; i++) {
 | 
						|
		self->vec[i] /= norm;
 | 
						|
	}
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*----------------------------Vector.resize2D() ------------------
 | 
						|
  resize the vector to x,y */
 | 
						|
PyObject *Vector_Resize2D(VectorObject * self)
 | 
						|
{
 | 
						|
	if(self->wrapped==Py_WRAP)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | 
						|
			"vector.resize2d(): cannot resize wrapped data - only python vectors\n");
 | 
						|
 | 
						|
	self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 2));
 | 
						|
	if(self->vec == NULL)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | 
						|
			"vector.resize2d(): problem allocating pointer space\n\n");
 | 
						|
	
 | 
						|
	self->size = 2;
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
/*----------------------------Vector.resize3D() ------------------
 | 
						|
  resize the vector to x,y,z */
 | 
						|
PyObject *Vector_Resize3D(VectorObject * self)
 | 
						|
{
 | 
						|
	if (self->wrapped==Py_WRAP)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | 
						|
			"vector.resize3d(): cannot resize wrapped data - only python vectors\n");
 | 
						|
 | 
						|
	self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 3));
 | 
						|
	if(self->vec == NULL)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | 
						|
			"vector.resize3d(): problem allocating pointer space\n\n");
 | 
						|
	
 | 
						|
	if(self->size == 2)
 | 
						|
		self->vec[2] = 0.0f;
 | 
						|
	
 | 
						|
	self->size = 3;
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
/*----------------------------Vector.resize4D() ------------------
 | 
						|
  resize the vector to x,y,z,w */
 | 
						|
PyObject *Vector_Resize4D(VectorObject * self)
 | 
						|
{
 | 
						|
	if(self->wrapped==Py_WRAP)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | 
						|
			"vector.resize4d(): cannot resize wrapped data - only python vectors\n");
 | 
						|
 | 
						|
	self->vec = PyMem_Realloc(self->vec, (sizeof(float) * 4));
 | 
						|
	if(self->vec == NULL)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | 
						|
			"vector.resize4d(): problem allocating pointer space\n\n");
 | 
						|
	
 | 
						|
	if(self->size == 2){
 | 
						|
		self->vec[2] = 0.0f;
 | 
						|
		self->vec[3] = 1.0f;
 | 
						|
	}else if(self->size == 3){
 | 
						|
		self->vec[3] = 1.0f;
 | 
						|
	}
 | 
						|
	self->size = 4;
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
/*----------------------------Vector.toTrackQuat(track, up) ----------------------
 | 
						|
  extract a quaternion from the vector and the track and up axis */
 | 
						|
PyObject *Vector_ToTrackQuat( VectorObject * self, PyObject * args )
 | 
						|
{
 | 
						|
	float vec[3], quat[4];
 | 
						|
	char *strack, *sup;
 | 
						|
	short track = 2, up = 1;
 | 
						|
 | 
						|
	if( !PyArg_ParseTuple ( args, "|ss", &strack, &sup ) ) {
 | 
						|
		return EXPP_ReturnPyObjError( PyExc_TypeError, 
 | 
						|
			"expected optional two strings\n" );
 | 
						|
	}
 | 
						|
	if (self->size != 3) {
 | 
						|
		return EXPP_ReturnPyObjError( PyExc_TypeError, "only for 3D vectors\n" );
 | 
						|
	}
 | 
						|
 | 
						|
	if (strack) {
 | 
						|
		if (strlen(strack) == 2) {
 | 
						|
			if (strack[0] == '-') {
 | 
						|
				switch(strack[1]) {
 | 
						|
					case 'X':
 | 
						|
					case 'x':
 | 
						|
						track = 3;
 | 
						|
						break;
 | 
						|
					case 'Y':
 | 
						|
					case 'y':
 | 
						|
						track = 4;
 | 
						|
						break;
 | 
						|
					case 'z':
 | 
						|
					case 'Z':
 | 
						|
						track = 5;
 | 
						|
						break;
 | 
						|
					default:
 | 
						|
						return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
										  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | 
						|
				}
 | 
						|
			}
 | 
						|
			else {
 | 
						|
				return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
								  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else if (strlen(strack) == 1) {
 | 
						|
			switch(strack[0]) {
 | 
						|
			case '-':
 | 
						|
			case 'X':
 | 
						|
			case 'x':
 | 
						|
				track = 0;
 | 
						|
				break;
 | 
						|
			case 'Y':
 | 
						|
			case 'y':
 | 
						|
				track = 1;
 | 
						|
				break;
 | 
						|
			case 'z':
 | 
						|
			case 'Z':
 | 
						|
				track = 2;
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
								  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
							  "only X, -X, Y, -Y, Z or -Z for track axis\n" );
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (sup) {
 | 
						|
		if (strlen(sup) == 1) {
 | 
						|
			switch(*sup) {
 | 
						|
			case 'X':
 | 
						|
			case 'x':
 | 
						|
				up = 0;
 | 
						|
				break;
 | 
						|
			case 'Y':
 | 
						|
			case 'y':
 | 
						|
				up = 1;
 | 
						|
				break;
 | 
						|
			case 'z':
 | 
						|
			case 'Z':
 | 
						|
				up = 2;
 | 
						|
				break;
 | 
						|
			default:
 | 
						|
				return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
								  "only X, Y or Z for up axis\n" );
 | 
						|
			}
 | 
						|
		}
 | 
						|
		else {
 | 
						|
			return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
							  "only X, Y or Z for up axis\n" );
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	if (track == up) {
 | 
						|
			return EXPP_ReturnPyObjError( PyExc_ValueError,
 | 
						|
						      "Can't have the same axis for track and up\n" );
 | 
						|
	}
 | 
						|
 | 
						|
	/*
 | 
						|
		flip vector around, since vectoquat expect a vector from target to tracking object 
 | 
						|
		and the python function expects the inverse (a vector to the target).
 | 
						|
	*/
 | 
						|
	vec[0] = -self->vec[0];
 | 
						|
	vec[1] = -self->vec[1];
 | 
						|
	vec[2] = -self->vec[2];
 | 
						|
 | 
						|
	vectoquat(vec, track, up, quat);
 | 
						|
 | 
						|
	return newQuaternionObject(quat, Py_NEW);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------Vector.reflect(mirror) ----------------------
 | 
						|
  return a reflected vector on the mirror normal
 | 
						|
  ((2 * DotVecs(vec, mirror)) * mirror) - vec
 | 
						|
  using arithb.c would be nice here */
 | 
						|
PyObject *Vector_reflect( VectorObject * self, PyObject * value )
 | 
						|
{
 | 
						|
	VectorObject *mirrvec;
 | 
						|
	float mirror[3];
 | 
						|
	float vec[3];
 | 
						|
	float reflect[4] = {0.0f, 0.0f, 0.0f, 0.0f};
 | 
						|
	float dot2;
 | 
						|
	
 | 
						|
	/* for normalizing */
 | 
						|
	int i;
 | 
						|
	float norm = 0.0f;
 | 
						|
	
 | 
						|
	if (!VectorObject_Check(value)) 
 | 
						|
		return EXPP_ReturnPyObjError( PyExc_TypeError, "expected a vector argument" );
 | 
						|
	
 | 
						|
	mirrvec = (VectorObject *)value;
 | 
						|
	
 | 
						|
	mirror[0] = mirrvec->vec[0];
 | 
						|
	mirror[1] = mirrvec->vec[1];
 | 
						|
	if (mirrvec->size > 2)	mirror[2] = mirrvec->vec[2];
 | 
						|
	else					mirror[2] = 0.0;
 | 
						|
	
 | 
						|
	/* normalize, whos idea was it not to use arithb.c? :-/ */
 | 
						|
	for(i = 0; i < 3; i++) {
 | 
						|
		norm += mirror[i] * mirror[i];
 | 
						|
	}
 | 
						|
	norm = (float) sqrt(norm);
 | 
						|
	for(i = 0; i < 3; i++) {
 | 
						|
		mirror[i] /= norm;
 | 
						|
	}
 | 
						|
	/* done */
 | 
						|
	
 | 
						|
	vec[0] = self->vec[0];
 | 
						|
	vec[1] = self->vec[1];
 | 
						|
	if (self->size > 2)		vec[2] = self->vec[2];
 | 
						|
	else					vec[2] = 0.0;
 | 
						|
	
 | 
						|
	dot2 = 2 * vec[0]*mirror[0]+vec[1]*mirror[1]+vec[2]*mirror[2];
 | 
						|
	
 | 
						|
	reflect[0] = (dot2 * mirror[0]) - vec[0];
 | 
						|
	reflect[1] = (dot2 * mirror[1]) - vec[1];
 | 
						|
	reflect[2] = (dot2 * mirror[2]) - vec[2];
 | 
						|
	
 | 
						|
	return newVectorObject(reflect, self->size, Py_NEW);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------Vector.copy() --------------------------------------
 | 
						|
  return a copy of the vector */
 | 
						|
PyObject *Vector_copy(VectorObject * self)
 | 
						|
{
 | 
						|
	return newVectorObject(self->vec, self->size, Py_NEW);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------dealloc()(internal) ----------------
 | 
						|
  free the py_object */
 | 
						|
static void Vector_dealloc(VectorObject * self)
 | 
						|
{
 | 
						|
	/* only free non wrapped */
 | 
						|
	if(self->wrapped != Py_WRAP){
 | 
						|
		PyMem_Free(self->vec);
 | 
						|
	}
 | 
						|
	PyObject_DEL(self);
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------print object (internal)-------------
 | 
						|
  print the object to screen */
 | 
						|
static PyObject *Vector_repr(VectorObject * self)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	char buffer[48], str[1024];
 | 
						|
 | 
						|
	BLI_strncpy(str,"[",1024);
 | 
						|
	for(i = 0; i < self->size; i++){
 | 
						|
		if(i < (self->size - 1)){
 | 
						|
			sprintf(buffer, "%.6f, ", self->vec[i]);
 | 
						|
			strcat(str,buffer);
 | 
						|
		}else{
 | 
						|
			sprintf(buffer, "%.6f", self->vec[i]);
 | 
						|
			strcat(str,buffer);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	strcat(str, "](vector)");
 | 
						|
 | 
						|
	return PyString_FromString(str);
 | 
						|
}
 | 
						|
/*---------------------SEQUENCE PROTOCOLS------------------------
 | 
						|
  ----------------------------len(object)------------------------
 | 
						|
  sequence length*/
 | 
						|
static int Vector_len(VectorObject * self)
 | 
						|
{
 | 
						|
	return self->size;
 | 
						|
}
 | 
						|
/*----------------------------object[]---------------------------
 | 
						|
  sequence accessor (get)*/
 | 
						|
static PyObject *Vector_item(VectorObject * self, int i)
 | 
						|
{
 | 
						|
	if(i < 0 || i >= self->size)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_IndexError,
 | 
						|
		"vector[index]: out of range\n");
 | 
						|
 | 
						|
	return PyFloat_FromDouble(self->vec[i]);
 | 
						|
 | 
						|
}
 | 
						|
/*----------------------------object[]-------------------------
 | 
						|
  sequence accessor (set)*/
 | 
						|
static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
 | 
						|
{
 | 
						|
	
 | 
						|
	if(!(PyNumber_Check(ob))) { /* parsed item not a number */
 | 
						|
		return EXPP_ReturnIntError(PyExc_TypeError, 
 | 
						|
			"vector[index] = x: index argument not a number\n");
 | 
						|
	}
 | 
						|
 | 
						|
	if(i < 0 || i >= self->size){
 | 
						|
		return EXPP_ReturnIntError(PyExc_IndexError,
 | 
						|
			"vector[index] = x: assignment index out of range\n");
 | 
						|
	}
 | 
						|
	self->vec[i] = (float)PyFloat_AsDouble(ob);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/*----------------------------object[z:y]------------------------
 | 
						|
  sequence slice (get) */
 | 
						|
static PyObject *Vector_slice(VectorObject * self, int begin, int end)
 | 
						|
{
 | 
						|
	PyObject *list = NULL;
 | 
						|
	int count;
 | 
						|
 | 
						|
	CLAMP(begin, 0, self->size);
 | 
						|
	if (end<0) end= self->size+end+1;
 | 
						|
	CLAMP(end, 0, self->size);
 | 
						|
	begin = MIN2(begin,end);
 | 
						|
 | 
						|
	list = PyList_New(end - begin);
 | 
						|
	for(count = begin; count < end; count++) {
 | 
						|
		PyList_SetItem(list, count - begin,
 | 
						|
				PyFloat_FromDouble(self->vec[count]));
 | 
						|
	}
 | 
						|
 | 
						|
	return list;
 | 
						|
}
 | 
						|
/*----------------------------object[z:y]------------------------
 | 
						|
  sequence slice (set) */
 | 
						|
static int Vector_ass_slice(VectorObject * self, int begin, int end,
 | 
						|
			     PyObject * seq)
 | 
						|
{
 | 
						|
	int i, y, size = 0;
 | 
						|
	float vec[4];
 | 
						|
	PyObject *v;
 | 
						|
 | 
						|
	CLAMP(begin, 0, self->size);
 | 
						|
	if (end<0) end= self->size+end+1;
 | 
						|
	CLAMP(end, 0, self->size);
 | 
						|
	begin = MIN2(begin,end);
 | 
						|
 | 
						|
	size = PySequence_Length(seq);
 | 
						|
	if(size != (end - begin)){
 | 
						|
		return EXPP_ReturnIntError(PyExc_TypeError,
 | 
						|
			"vector[begin:end] = []: size mismatch in slice assignment\n");
 | 
						|
	}
 | 
						|
 | 
						|
	for (i = 0; i < size; i++) {
 | 
						|
		v = PySequence_GetItem(seq, i);
 | 
						|
		if (v == NULL) { /* Failed to read sequence */
 | 
						|
			return EXPP_ReturnIntError(PyExc_RuntimeError, 
 | 
						|
				"vector[begin:end] = []: unable to read sequence\n");
 | 
						|
		}
 | 
						|
		
 | 
						|
		if(!PyNumber_Check(v)) { /* parsed item not a number */
 | 
						|
			Py_DECREF(v);
 | 
						|
			return EXPP_ReturnIntError(PyExc_TypeError, 
 | 
						|
				"vector[begin:end] = []: sequence argument not a number\n");
 | 
						|
		}
 | 
						|
 | 
						|
		vec[i] = (float)PyFloat_AsDouble(v);
 | 
						|
		Py_DECREF(v);
 | 
						|
	}
 | 
						|
	/*parsed well - now set in vector*/
 | 
						|
	for(y = 0; y < size; y++){
 | 
						|
		self->vec[begin + y] = vec[y];
 | 
						|
	}
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
/*------------------------NUMERIC PROTOCOLS----------------------
 | 
						|
  ------------------------obj + obj------------------------------
 | 
						|
  addition*/
 | 
						|
static PyObject *Vector_add(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	float vec[4];
 | 
						|
 | 
						|
	VectorObject *vec1 = NULL, *vec2 = NULL;
 | 
						|
	
 | 
						|
	if VectorObject_Check(v1)
 | 
						|
		vec1= (VectorObject *)v1;
 | 
						|
	
 | 
						|
	if VectorObject_Check(v2)
 | 
						|
		vec2= (VectorObject *)v2;
 | 
						|
	
 | 
						|
	/* make sure v1 is always the vector */
 | 
						|
	if (vec1 && vec2 ) {
 | 
						|
		/*VECTOR + VECTOR*/
 | 
						|
		if(vec1->size != vec2->size)
 | 
						|
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
			"Vector addition: vectors must have the same dimensions for this operation\n");
 | 
						|
		
 | 
						|
		for(i = 0; i < vec1->size; i++) {
 | 
						|
			vec[i] = vec1->vec[i] +	vec2->vec[i];
 | 
						|
		}
 | 
						|
		return newVectorObject(vec, vec1->size, Py_NEW);
 | 
						|
	}
 | 
						|
	
 | 
						|
	if(PointObject_Check(v2)){  /*VECTOR + POINT*/
 | 
						|
		/*Point translation*/
 | 
						|
		PointObject *pt = (PointObject*)v2;
 | 
						|
		
 | 
						|
		if(pt->size == vec1->size){
 | 
						|
			for(i = 0; i < vec1->size; i++){
 | 
						|
				vec[i] = vec1->vec[i] + pt->coord[i];
 | 
						|
			}
 | 
						|
		}else{
 | 
						|
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
				"Vector addition: arguments are the wrong size....\n");
 | 
						|
		}
 | 
						|
		return newPointObject(vec, vec1->size, Py_NEW);
 | 
						|
	}
 | 
						|
	
 | 
						|
	return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
		"Vector addition: arguments not valid for this operation....\n");
 | 
						|
}
 | 
						|
 | 
						|
/*  ------------------------obj += obj------------------------------
 | 
						|
  addition in place */
 | 
						|
static PyObject *Vector_iadd(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
 | 
						|
	VectorObject *vec1 = NULL, *vec2 = NULL;
 | 
						|
	
 | 
						|
	if VectorObject_Check(v1)
 | 
						|
		vec1= (VectorObject *)v1;
 | 
						|
	
 | 
						|
	if VectorObject_Check(v2)
 | 
						|
		vec2= (VectorObject *)v2;
 | 
						|
	
 | 
						|
	/* make sure v1 is always the vector */
 | 
						|
	if (vec1 && vec2 ) {
 | 
						|
		/*VECTOR + VECTOR*/
 | 
						|
		if(vec1->size != vec2->size)
 | 
						|
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
			"Vector addition: vectors must have the same dimensions for this operation\n");
 | 
						|
		
 | 
						|
		for(i = 0; i < vec1->size; i++) {
 | 
						|
			vec1->vec[i] +=	vec2->vec[i];
 | 
						|
		}
 | 
						|
		Py_INCREF( v1 );
 | 
						|
		return v1;
 | 
						|
	}
 | 
						|
	
 | 
						|
	if(PointObject_Check(v2)){  /*VECTOR + POINT*/
 | 
						|
		/*Point translation*/
 | 
						|
		PointObject *pt = (PointObject*)v2;
 | 
						|
		
 | 
						|
		if(pt->size == vec1->size){
 | 
						|
			for(i = 0; i < vec1->size; i++){
 | 
						|
				vec1->vec[i] += pt->coord[i];
 | 
						|
			}
 | 
						|
		}else{
 | 
						|
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
				"Vector addition: arguments are the wrong size....\n");
 | 
						|
		}
 | 
						|
		Py_INCREF( v1 );
 | 
						|
		return v1;
 | 
						|
	}
 | 
						|
	
 | 
						|
	return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
		"Vector addition: arguments not valid for this operation....\n");
 | 
						|
}
 | 
						|
 | 
						|
/*------------------------obj - obj------------------------------
 | 
						|
  subtraction*/
 | 
						|
static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	float vec[4];
 | 
						|
	VectorObject *vec1 = NULL, *vec2 = NULL;
 | 
						|
 | 
						|
	if (!VectorObject_Check(v1) || !VectorObject_Check(v2))
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
			"Vector subtraction: arguments not valid for this operation....\n");
 | 
						|
	
 | 
						|
	vec1 = (VectorObject*)v1;
 | 
						|
	vec2 = (VectorObject*)v2;
 | 
						|
	
 | 
						|
	if(vec1->size != vec2->size)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
		"Vector subtraction: vectors must have the same dimensions for this operation\n");
 | 
						|
	
 | 
						|
	for(i = 0; i < vec1->size; i++) {
 | 
						|
		vec[i] = vec1->vec[i] -	vec2->vec[i];
 | 
						|
	}
 | 
						|
 | 
						|
	return newVectorObject(vec, vec1->size, Py_NEW);
 | 
						|
}
 | 
						|
 | 
						|
/*------------------------obj -= obj------------------------------
 | 
						|
  subtraction*/
 | 
						|
static PyObject *Vector_isub(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	int i, size;
 | 
						|
	VectorObject *vec1 = NULL, *vec2 = NULL;
 | 
						|
 | 
						|
	if (!VectorObject_Check(v1) || !VectorObject_Check(v2))
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
			"Vector subtraction: arguments not valid for this operation....\n");
 | 
						|
	
 | 
						|
	vec1 = (VectorObject*)v1;
 | 
						|
	vec2 = (VectorObject*)v2;
 | 
						|
	
 | 
						|
	if(vec1->size != vec2->size)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
		"Vector subtraction: vectors must have the same dimensions for this operation\n");
 | 
						|
 | 
						|
	size = vec1->size;
 | 
						|
	for(i = 0; i < vec1->size; i++) {
 | 
						|
		vec1->vec[i] = vec1->vec[i] -	vec2->vec[i];
 | 
						|
	}
 | 
						|
 | 
						|
	Py_INCREF( v1 );
 | 
						|
	return v1;
 | 
						|
}
 | 
						|
 | 
						|
/*------------------------obj * obj------------------------------
 | 
						|
  mulplication*/
 | 
						|
static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	VectorObject *vec1 = NULL, *vec2 = NULL;
 | 
						|
	
 | 
						|
	if VectorObject_Check(v1)
 | 
						|
		vec1= (VectorObject *)v1;
 | 
						|
	
 | 
						|
	if VectorObject_Check(v2)
 | 
						|
		vec2= (VectorObject *)v2;
 | 
						|
	
 | 
						|
	/* make sure v1 is always the vector */
 | 
						|
	if (vec1 && vec2 ) {
 | 
						|
		int i;
 | 
						|
		double dot = 0.0f;
 | 
						|
		
 | 
						|
		if(vec1->size != vec2->size)
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
			"Vector multiplication: vectors must have the same dimensions for this operation\n");
 | 
						|
		
 | 
						|
		/*dot product*/
 | 
						|
		for(i = 0; i < vec1->size; i++) {
 | 
						|
			dot += vec1->vec[i] * vec2->vec[i];
 | 
						|
		}
 | 
						|
		return PyFloat_FromDouble(dot);
 | 
						|
	}
 | 
						|
	
 | 
						|
	/*swap so vec1 is always the vector */
 | 
						|
	if (vec2) {
 | 
						|
		vec1= vec2;
 | 
						|
		v2= v1;
 | 
						|
	}
 | 
						|
	
 | 
						|
	if (PyNumber_Check(v2)) {
 | 
						|
		/* VEC * NUM */
 | 
						|
		int i;
 | 
						|
		float vec[4];
 | 
						|
		float scalar = (float)PyFloat_AsDouble( v2 );
 | 
						|
		
 | 
						|
		for(i = 0; i < vec1->size; i++) {
 | 
						|
			vec[i] = vec1->vec[i] *	scalar;
 | 
						|
		}
 | 
						|
		return newVectorObject(vec, vec1->size, Py_NEW);
 | 
						|
		
 | 
						|
	} else if (MatrixObject_Check(v2)) {
 | 
						|
		/* VEC * MATRIX */
 | 
						|
		if (v1==v2) /* mat*vec, we have swapped the order */
 | 
						|
			return column_vector_multiplication((MatrixObject*)v2, vec1);
 | 
						|
		else /* vec*mat */
 | 
						|
			return row_vector_multiplication(vec1, (MatrixObject*)v2);
 | 
						|
	} else if (QuaternionObject_Check(v2)) {
 | 
						|
		QuaternionObject *quat = (QuaternionObject*)v2;
 | 
						|
		if(vec1->size != 3)
 | 
						|
			return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
				"Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
 | 
						|
		
 | 
						|
		return quat_rotation((PyObject*)vec1, (PyObject*)quat);
 | 
						|
	}
 | 
						|
	
 | 
						|
	return EXPP_ReturnPyObjError(PyExc_TypeError,
 | 
						|
		"Vector multiplication: arguments not acceptable for this operation\n");
 | 
						|
}
 | 
						|
 | 
						|
/*------------------------obj *= obj------------------------------
 | 
						|
  in place mulplication */
 | 
						|
static PyObject *Vector_imul(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	VectorObject *vec = (VectorObject *)v1;
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	/* only support vec*=float and vec*=mat
 | 
						|
	   vec*=vec result is a float so that wont work */
 | 
						|
	if (PyNumber_Check(v2)) {
 | 
						|
		/* VEC * NUM */
 | 
						|
		float scalar = (float)PyFloat_AsDouble( v2 );
 | 
						|
		
 | 
						|
		for(i = 0; i < vec->size; i++) {
 | 
						|
			vec->vec[i] *=	scalar;
 | 
						|
		}
 | 
						|
		
 | 
						|
		Py_INCREF( v1 );
 | 
						|
		return v1;
 | 
						|
		
 | 
						|
	} else if (MatrixObject_Check(v2)) {
 | 
						|
		float vecCopy[4];
 | 
						|
		int x,y, size = vec->size;
 | 
						|
		MatrixObject *mat= (MatrixObject*)v2;
 | 
						|
		
 | 
						|
		if(mat->colSize != size){
 | 
						|
			if(mat->rowSize == 4 && vec->size != 3){
 | 
						|
				return EXPP_ReturnPyObjError(PyExc_AttributeError, 
 | 
						|
					"vector * matrix: matrix column size and the vector size must be the same");
 | 
						|
			} else {
 | 
						|
				vecCopy[3] = 1.0f;
 | 
						|
			}
 | 
						|
		}
 | 
						|
		
 | 
						|
		for(i = 0; i < size; i++){
 | 
						|
			vecCopy[i] = vec->vec[i];
 | 
						|
		}
 | 
						|
		
 | 
						|
		size = MIN2(size, mat->colSize);
 | 
						|
		
 | 
						|
		/*muliplication*/
 | 
						|
		for(x = 0, i = 0; x < size; x++, i++) {
 | 
						|
			double dot = 0.0f;
 | 
						|
			for(y = 0; y < mat->rowSize; y++) {
 | 
						|
				dot += mat->matrix[y][x] * vecCopy[y];
 | 
						|
			}
 | 
						|
			vec->vec[i] = (float)dot;
 | 
						|
		}
 | 
						|
		Py_INCREF( v1 );
 | 
						|
		return v1;
 | 
						|
	}
 | 
						|
	return EXPP_ReturnPyObjError(PyExc_TypeError,
 | 
						|
		"Vector multiplication: arguments not acceptable for this operation\n");
 | 
						|
}
 | 
						|
 | 
						|
/*------------------------obj / obj------------------------------
 | 
						|
  divide*/
 | 
						|
static PyObject *Vector_div(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	int i, size;
 | 
						|
	float vec[4], scalar;
 | 
						|
	VectorObject *vec1 = NULL;
 | 
						|
	
 | 
						|
	if(!VectorObject_Check(v1)) /* not a vector */
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
			"Vector division: Vector must be divided by a float\n");
 | 
						|
	
 | 
						|
	vec1 = (VectorObject*)v1; /* vector */
 | 
						|
	
 | 
						|
	if(!PyNumber_Check(v2)) /* parsed item not a number */
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
			"Vector division: Vector must be divided by a float\n");
 | 
						|
 | 
						|
	scalar = (float)PyFloat_AsDouble(v2);
 | 
						|
	
 | 
						|
	if(scalar==0.0) /* not a vector */
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_ZeroDivisionError, 
 | 
						|
			"Vector division: divide by zero error.\n");
 | 
						|
	
 | 
						|
	size = vec1->size;
 | 
						|
	for(i = 0; i < size; i++) {
 | 
						|
		vec[i] = vec1->vec[i] /	scalar;
 | 
						|
	}
 | 
						|
	return newVectorObject(vec, size, Py_NEW);
 | 
						|
}
 | 
						|
 | 
						|
/*------------------------obj / obj------------------------------
 | 
						|
  divide*/
 | 
						|
static PyObject *Vector_idiv(PyObject * v1, PyObject * v2)
 | 
						|
{
 | 
						|
	int i, size;
 | 
						|
	float scalar;
 | 
						|
	VectorObject *vec1 = NULL;
 | 
						|
	
 | 
						|
	/*if(!VectorObject_Check(v1))
 | 
						|
		return EXPP_ReturnIntError(PyExc_TypeError, 
 | 
						|
			"Vector division: Vector must be divided by a float\n");*/
 | 
						|
	
 | 
						|
	vec1 = (VectorObject*)v1; /* vector */
 | 
						|
	
 | 
						|
	if(!PyNumber_Check(v2)) /* parsed item not a number */
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | 
						|
			"Vector division: Vector must be divided by a float\n");
 | 
						|
 | 
						|
	scalar = (float)PyFloat_AsDouble(v2);
 | 
						|
	
 | 
						|
	if(scalar==0.0) /* not a vector */
 | 
						|
		return EXPP_ReturnPyObjError(PyExc_ZeroDivisionError, 
 | 
						|
			"Vector division: divide by zero error.\n");
 | 
						|
	
 | 
						|
	size = vec1->size;
 | 
						|
	for(i = 0; i < size; i++) {
 | 
						|
		vec1->vec[i] /=	scalar;
 | 
						|
	}
 | 
						|
	Py_INCREF( v1 );
 | 
						|
	return v1;
 | 
						|
}
 | 
						|
 | 
						|
/*-------------------------- -obj -------------------------------
 | 
						|
  returns the negative of this object*/
 | 
						|
static PyObject *Vector_neg(VectorObject *self)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	float vec[4];
 | 
						|
	for(i = 0; i < self->size; i++){
 | 
						|
		vec[i] = -self->vec[i];
 | 
						|
	}
 | 
						|
 | 
						|
	return newVectorObject(vec, self->size, Py_NEW);
 | 
						|
}
 | 
						|
/*------------------------coerce(obj, obj)-----------------------
 | 
						|
  coercion of unknown types to type VectorObject for numeric protocols
 | 
						|
  Coercion() is called whenever a math operation has 2 operands that
 | 
						|
 it doesn't understand how to evaluate. 2+Matrix for example. We want to 
 | 
						|
 evaluate some of these operations like: (vector * 2), however, for math
 | 
						|
 to proceed, the unknown operand must be cast to a type that python math will
 | 
						|
 understand. (e.g. in the case above case, 2 must be cast to a vector and 
 | 
						|
 then call vector.multiply(vector, scalar_cast_as_vector)*/
 | 
						|
 | 
						|
 | 
						|
static int Vector_coerce(PyObject ** v1, PyObject ** v2)
 | 
						|
{
 | 
						|
	/* Just incref, each functon must raise errors for bad types */
 | 
						|
	Py_INCREF (*v1);
 | 
						|
	Py_INCREF (*v2);
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*------------------------tp_doc*/
 | 
						|
static char VectorObject_doc[] = "This is a wrapper for vector objects.";
 | 
						|
/*------------------------vec_magnitude_nosqrt (internal) - for comparing only */
 | 
						|
static double vec_magnitude_nosqrt(float *data, int size)
 | 
						|
{
 | 
						|
	double dot = 0.0f;
 | 
						|
	int i;
 | 
						|
 | 
						|
	for(i=0; i<size; i++){
 | 
						|
		dot += data[i];
 | 
						|
	}
 | 
						|
	/*return (double)sqrt(dot);*/
 | 
						|
	/* warning, line above removed because we are not using the length,
 | 
						|
	   rather the comparing the sizes and for this we do not need the sqrt
 | 
						|
	   for the actual length, the dot must be sqrt'd */
 | 
						|
	return (double)dot;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*------------------------tp_richcmpr
 | 
						|
  returns -1 execption, 0 false, 1 true */
 | 
						|
PyObject* Vector_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
 | 
						|
{
 | 
						|
	VectorObject *vecA = NULL, *vecB = NULL;
 | 
						|
	int result = 0;
 | 
						|
	float epsilon = .000001f;
 | 
						|
	double lenA,lenB;
 | 
						|
 | 
						|
	if (!VectorObject_Check(objectA) || !VectorObject_Check(objectB)){
 | 
						|
		if (comparison_type == Py_NE){
 | 
						|
			return EXPP_incr_ret(Py_True); 
 | 
						|
		}else{
 | 
						|
			return EXPP_incr_ret(Py_False);
 | 
						|
		}
 | 
						|
	}
 | 
						|
	vecA = (VectorObject*)objectA;
 | 
						|
	vecB = (VectorObject*)objectB;
 | 
						|
 | 
						|
	if (vecA->size != vecB->size){
 | 
						|
		if (comparison_type == Py_NE){
 | 
						|
			return EXPP_incr_ret(Py_True); 
 | 
						|
		}else{
 | 
						|
			return EXPP_incr_ret(Py_False);
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	switch (comparison_type){
 | 
						|
		case Py_LT:
 | 
						|
			lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
 | 
						|
			lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
 | 
						|
			if( lenA < lenB ){
 | 
						|
				result = 1;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case Py_LE:
 | 
						|
			lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
 | 
						|
			lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
 | 
						|
			if( lenA < lenB ){
 | 
						|
				result = 1;
 | 
						|
			}else{
 | 
						|
				result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case Py_EQ:
 | 
						|
			result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1);
 | 
						|
			break;
 | 
						|
		case Py_NE:
 | 
						|
			result = EXPP_VectorsAreEqual(vecA->vec, vecB->vec, vecA->size, 1);
 | 
						|
			if (result == 0){
 | 
						|
				result = 1;
 | 
						|
			}else{
 | 
						|
				result = 0;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case Py_GT:
 | 
						|
			lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
 | 
						|
			lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
 | 
						|
			if( lenA > lenB ){
 | 
						|
				result = 1;
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		case Py_GE:
 | 
						|
			lenA = vec_magnitude_nosqrt(vecA->vec, vecA->size);
 | 
						|
			lenB = vec_magnitude_nosqrt(vecB->vec, vecB->size);
 | 
						|
			if( lenA > lenB ){
 | 
						|
				result = 1;
 | 
						|
			}else{
 | 
						|
				result = (((lenA + epsilon) > lenB) && ((lenA - epsilon) < lenB));
 | 
						|
			}
 | 
						|
			break;
 | 
						|
		default:
 | 
						|
			printf("The result of the comparison could not be evaluated");
 | 
						|
			break;
 | 
						|
	}
 | 
						|
	if (result == 1){
 | 
						|
		return EXPP_incr_ret(Py_True);
 | 
						|
	}else{
 | 
						|
		return EXPP_incr_ret(Py_False);
 | 
						|
	}
 | 
						|
}
 | 
						|
/*-----------------PROTCOL DECLARATIONS--------------------------*/
 | 
						|
static PySequenceMethods Vector_SeqMethods = {
 | 
						|
	(inquiry) Vector_len,						/* sq_length */
 | 
						|
	(binaryfunc) 0,								/* sq_concat */
 | 
						|
	(intargfunc) 0,								/* sq_repeat */
 | 
						|
	(intargfunc) Vector_item,					/* sq_item */
 | 
						|
	(intintargfunc) Vector_slice,				/* sq_slice */
 | 
						|
	(intobjargproc) Vector_ass_item,			/* sq_ass_item */
 | 
						|
	(intintobjargproc) Vector_ass_slice,		/* sq_ass_slice */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/* For numbers without flag bit Py_TPFLAGS_CHECKTYPES set, all
 | 
						|
   arguments are guaranteed to be of the object's type (modulo
 | 
						|
   coercion hacks -- i.e. if the type's coercion function
 | 
						|
   returns other types, then these are allowed as well).  Numbers that
 | 
						|
   have the Py_TPFLAGS_CHECKTYPES flag bit set should check *both*
 | 
						|
   arguments for proper type and implement the necessary conversions
 | 
						|
   in the slot functions themselves. */
 | 
						|
 
 | 
						|
static PyNumberMethods Vector_NumMethods = {
 | 
						|
	(binaryfunc) Vector_add,					/* __add__ */
 | 
						|
	(binaryfunc) Vector_sub,					/* __sub__ */
 | 
						|
	(binaryfunc) Vector_mul,					/* __mul__ */
 | 
						|
	(binaryfunc) Vector_div,					/* __div__ */
 | 
						|
	(binaryfunc) NULL,							/* __mod__ */
 | 
						|
	(binaryfunc) NULL,							/* __divmod__ */
 | 
						|
	(ternaryfunc) NULL,							/* __pow__ */
 | 
						|
	(unaryfunc) Vector_neg,						/* __neg__ */
 | 
						|
	(unaryfunc) NULL,							/* __pos__ */
 | 
						|
	(unaryfunc) NULL,							/* __abs__ */
 | 
						|
	(inquiry) NULL,								/* __nonzero__ */
 | 
						|
	(unaryfunc) NULL,							/* __invert__ */
 | 
						|
	(binaryfunc) NULL,							/* __lshift__ */
 | 
						|
	(binaryfunc) NULL,							/* __rshift__ */
 | 
						|
	(binaryfunc) NULL,							/* __and__ */
 | 
						|
	(binaryfunc) NULL,							/* __xor__ */
 | 
						|
	(binaryfunc) NULL,							/* __or__ */
 | 
						|
	(coercion)  Vector_coerce,					/* __coerce__ */
 | 
						|
	(unaryfunc) NULL,							/* __int__ */
 | 
						|
	(unaryfunc) NULL,							/* __long__ */
 | 
						|
	(unaryfunc) NULL,							/* __float__ */
 | 
						|
	(unaryfunc) NULL,							/* __oct__ */
 | 
						|
	(unaryfunc) NULL,							/* __hex__ */
 | 
						|
	
 | 
						|
	/* Added in release 2.0 */
 | 
						|
	(binaryfunc) Vector_iadd,					/*__iadd__*/
 | 
						|
	(binaryfunc) Vector_isub,					/*__isub__*/
 | 
						|
	(binaryfunc) Vector_imul,					/*__imul__*/
 | 
						|
	(binaryfunc) Vector_idiv,					/*__idiv__*/
 | 
						|
	(binaryfunc) NULL,							/*__imod__*/
 | 
						|
	(ternaryfunc) NULL,							/*__ipow__*/
 | 
						|
	(binaryfunc) NULL,							/*__ilshift__*/
 | 
						|
	(binaryfunc) NULL,							/*__irshift__*/
 | 
						|
	(binaryfunc) NULL,							/*__iand__*/
 | 
						|
	(binaryfunc) NULL,							/*__ixor__*/
 | 
						|
	(binaryfunc) NULL,							/*__ior__*/
 | 
						|
 
 | 
						|
	/* Added in release 2.2 */
 | 
						|
	/* The following require the Py_TPFLAGS_HAVE_CLASS flag */
 | 
						|
	(binaryfunc) NULL,							/*__floordiv__  __rfloordiv__*/
 | 
						|
	(binaryfunc) NULL,							/*__truediv__ __rfloordiv__*/
 | 
						|
	(binaryfunc) NULL,							/*__ifloordiv__*/
 | 
						|
	(binaryfunc) NULL,							/*__itruediv__*/
 | 
						|
};
 | 
						|
/*------------------PY_OBECT DEFINITION--------------------------*/
 | 
						|
 | 
						|
/*
 | 
						|
 * vector axis, vector.x/y/z/w
 | 
						|
 */
 | 
						|
	
 | 
						|
static PyObject *Vector_getAxis( VectorObject * self, void *type )
 | 
						|
{
 | 
						|
	switch( (long)type ) {
 | 
						|
    case 'X':	/* these are backwards, but that how it works */
 | 
						|
		return PyFloat_FromDouble(self->vec[0]);
 | 
						|
    case 'Y':
 | 
						|
		return PyFloat_FromDouble(self->vec[1]);
 | 
						|
    case 'Z':	/* these are backwards, but that how it works */
 | 
						|
		if(self->size < 3)
 | 
						|
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
				"vector.z: error, cannot get this axis for a 2D vector\n");
 | 
						|
		else
 | 
						|
			return PyFloat_FromDouble(self->vec[2]);
 | 
						|
    case 'W':
 | 
						|
		if(self->size < 4)
 | 
						|
			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | 
						|
				"vector.w: error, cannot get this axis for a 3D vector\n");
 | 
						|
	
 | 
						|
		return PyFloat_FromDouble(self->vec[3]);
 | 
						|
	default:
 | 
						|
		{
 | 
						|
			char errstr[1024];
 | 
						|
			sprintf( errstr, "undefined type '%d' in Vector_getAxis",
 | 
						|
					(int)((long)type & 0xff));
 | 
						|
			return EXPP_ReturnPyObjError( PyExc_RuntimeError, errstr );
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
static int Vector_setAxis( VectorObject * self, PyObject * value, void * type )
 | 
						|
{
 | 
						|
	float param;
 | 
						|
	
 | 
						|
	if (!PyNumber_Check(value))
 | 
						|
		return EXPP_ReturnIntError( PyExc_TypeError,
 | 
						|
			"expected a number for the vector axis" );
 | 
						|
	
 | 
						|
	param= (float)PyFloat_AsDouble( value );
 | 
						|
	
 | 
						|
	switch( (long)type ) {
 | 
						|
    case 'X':	/* these are backwards, but that how it works */
 | 
						|
		self->vec[0]= param;
 | 
						|
		break;
 | 
						|
    case 'Y':
 | 
						|
		self->vec[1]= param;
 | 
						|
		break;
 | 
						|
    case 'Z':	/* these are backwards, but that how it works */
 | 
						|
		if(self->size < 3)
 | 
						|
			return EXPP_ReturnIntError(PyExc_AttributeError,
 | 
						|
				"vector.z: error, cannot get this axis for a 2D vector\n");
 | 
						|
		self->vec[2]= param;
 | 
						|
		break;
 | 
						|
    case 'W':
 | 
						|
		if(self->size < 4)
 | 
						|
			return EXPP_ReturnIntError(PyExc_AttributeError,
 | 
						|
				"vector.w: error, cannot get this axis for a 3D vector\n");
 | 
						|
	
 | 
						|
		self->vec[3]= param;
 | 
						|
		break;
 | 
						|
	default:
 | 
						|
		{
 | 
						|
			char errstr[1024];
 | 
						|
			sprintf( errstr, "undefined type '%d' in Vector_setAxis",
 | 
						|
					(int)((long)type & 0xff));
 | 
						|
			return EXPP_ReturnIntError( PyExc_RuntimeError, errstr );
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
/* vector.length */
 | 
						|
static PyObject *Vector_getLength( VectorObject * self, void *type )
 | 
						|
{
 | 
						|
	double dot = 0.0f;
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	for(i = 0; i < self->size; i++){
 | 
						|
		dot += (self->vec[i] * self->vec[i]);
 | 
						|
	}
 | 
						|
	return PyFloat_FromDouble(sqrt(dot));
 | 
						|
}
 | 
						|
 | 
						|
static int Vector_setLength( VectorObject * self, PyObject * value )
 | 
						|
{
 | 
						|
	double dot = 0.0f, param;
 | 
						|
	int i;
 | 
						|
	
 | 
						|
	if (!PyNumber_Check(value))
 | 
						|
		return EXPP_ReturnIntError( PyExc_TypeError,
 | 
						|
			"expected a number for the vector axis" );
 | 
						|
	
 | 
						|
	param= PyFloat_AsDouble( value );
 | 
						|
	
 | 
						|
	if (param < 0)
 | 
						|
		return EXPP_ReturnIntError( PyExc_TypeError,
 | 
						|
			"cannot set a vectors length to a negative value" );
 | 
						|
	
 | 
						|
	if (param==0) {
 | 
						|
		for(i = 0; i < self->size; i++){
 | 
						|
			self->vec[i]= 0;
 | 
						|
		}
 | 
						|
		return 0;
 | 
						|
	}
 | 
						|
	
 | 
						|
	for(i = 0; i < self->size; i++){
 | 
						|
		dot += (self->vec[i] * self->vec[i]);
 | 
						|
	}
 | 
						|
 | 
						|
	if (!dot) /* cant sqrt zero */
 | 
						|
		return 0;
 | 
						|
	
 | 
						|
	dot = sqrt(dot);
 | 
						|
	
 | 
						|
	if (dot==param)
 | 
						|
		return 0;
 | 
						|
	
 | 
						|
	dot= dot/param;
 | 
						|
	
 | 
						|
	for(i = 0; i < self->size; i++){
 | 
						|
		self->vec[i]= self->vec[i] / (float)dot;
 | 
						|
	}
 | 
						|
	
 | 
						|
	return 0;
 | 
						|
}
 | 
						|
 | 
						|
static PyObject *Vector_getWrapped( VectorObject * self, void *type )
 | 
						|
{
 | 
						|
	if (self->wrapped == Py_WRAP)
 | 
						|
		Py_RETURN_TRUE;
 | 
						|
	else
 | 
						|
		Py_RETURN_FALSE;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*****************************************************************************/
 | 
						|
/* Python attributes get/set structure:                                      */
 | 
						|
/*****************************************************************************/
 | 
						|
static PyGetSetDef Vector_getseters[] = {
 | 
						|
	{"x",
 | 
						|
	 (getter)Vector_getAxis, (setter)Vector_setAxis,
 | 
						|
	 "Vector X axis",
 | 
						|
	 (void *)'X'},
 | 
						|
	{"y",
 | 
						|
	 (getter)Vector_getAxis, (setter)Vector_setAxis,
 | 
						|
	 "Vector Y axis",
 | 
						|
	 (void *)'Y'},
 | 
						|
	{"z",
 | 
						|
	 (getter)Vector_getAxis, (setter)Vector_setAxis,
 | 
						|
	 "Vector Z axis",
 | 
						|
	 (void *)'Z'},
 | 
						|
	{"w",
 | 
						|
	 (getter)Vector_getAxis, (setter)Vector_setAxis,
 | 
						|
	 "Vector Z axis",
 | 
						|
	 (void *)'W'},
 | 
						|
	{"length",
 | 
						|
	 (getter)Vector_getLength, (setter)Vector_setLength,
 | 
						|
	 "Vector Length",
 | 
						|
	 NULL},
 | 
						|
	{"magnitude",
 | 
						|
	 (getter)Vector_getLength, (setter)Vector_setLength,
 | 
						|
	 "Vector Length",
 | 
						|
	 NULL},
 | 
						|
	{"wrapped",
 | 
						|
	 (getter)Vector_getWrapped, (setter)NULL,
 | 
						|
	 "Vector Length",
 | 
						|
	 NULL},
 | 
						|
	{NULL,NULL,NULL,NULL,NULL}  /* Sentinel */
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
 | 
						|
/* Note
 | 
						|
 Py_TPFLAGS_CHECKTYPES allows us to avoid casting all types to Vector when coercing
 | 
						|
 but this means for eg that 
 | 
						|
 vec*mat and mat*vec both get sent to Vector_mul and it neesd to sort out the order
 | 
						|
*/
 | 
						|
 | 
						|
PyTypeObject vector_Type = {
 | 
						|
	PyObject_HEAD_INIT( NULL )  /* required py macro */
 | 
						|
	0,                          /* ob_size */
 | 
						|
	/*  For printing, in format "<module>.<name>" */
 | 
						|
	"Blender Vector",             /* char *tp_name; */
 | 
						|
	sizeof( VectorObject ),         /* int tp_basicsize; */
 | 
						|
	0,                          /* tp_itemsize;  For allocation */
 | 
						|
 | 
						|
	/* Methods to implement standard operations */
 | 
						|
 | 
						|
	( destructor ) Vector_dealloc,/* destructor tp_dealloc; */
 | 
						|
	NULL,                       /* printfunc tp_print; */
 | 
						|
	NULL,                       /* getattrfunc tp_getattr; */
 | 
						|
	NULL,                       /* setattrfunc tp_setattr; */
 | 
						|
	NULL,   /* cmpfunc tp_compare; */
 | 
						|
	( reprfunc ) Vector_repr,     /* reprfunc tp_repr; */
 | 
						|
 | 
						|
	/* Method suites for standard classes */
 | 
						|
 | 
						|
	&Vector_NumMethods,                       /* PyNumberMethods *tp_as_number; */
 | 
						|
	&Vector_SeqMethods,                       /* PySequenceMethods *tp_as_sequence; */
 | 
						|
	NULL,                       /* PyMappingMethods *tp_as_mapping; */
 | 
						|
 | 
						|
	/* More standard operations (here for binary compatibility) */
 | 
						|
 | 
						|
	NULL,                       /* hashfunc tp_hash; */
 | 
						|
	NULL,                       /* ternaryfunc tp_call; */
 | 
						|
	NULL,                       /* reprfunc tp_str; */
 | 
						|
	NULL,                       /* getattrofunc tp_getattro; */
 | 
						|
	NULL,                       /* setattrofunc tp_setattro; */
 | 
						|
 | 
						|
	/* Functions to access object as input/output buffer */
 | 
						|
	NULL,                       /* PyBufferProcs *tp_as_buffer; */
 | 
						|
 | 
						|
  /*** Flags to define presence of optional/expanded features ***/
 | 
						|
	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_CHECKTYPES,         /* long tp_flags; */
 | 
						|
 | 
						|
	VectorObject_doc,                       /*  char *tp_doc;  Documentation string */
 | 
						|
  /*** Assigned meaning in release 2.0 ***/
 | 
						|
	/* call function for all accessible objects */
 | 
						|
	NULL,                       /* traverseproc tp_traverse; */
 | 
						|
 | 
						|
	/* delete references to contained objects */
 | 
						|
	NULL,                       /* inquiry tp_clear; */
 | 
						|
 | 
						|
  /***  Assigned meaning in release 2.1 ***/
 | 
						|
  /*** rich comparisons ***/
 | 
						|
	(richcmpfunc)Vector_richcmpr,                       /* richcmpfunc tp_richcompare; */
 | 
						|
 | 
						|
  /***  weak reference enabler ***/
 | 
						|
	0,                          /* long tp_weaklistoffset; */
 | 
						|
 | 
						|
  /*** Added in release 2.2 ***/
 | 
						|
	/*   Iterators */
 | 
						|
	NULL,                       /* getiterfunc tp_iter; */
 | 
						|
	NULL,                       /* iternextfunc tp_iternext; */
 | 
						|
 | 
						|
  /*** Attribute descriptor and subclassing stuff ***/
 | 
						|
	Vector_methods,           /* struct PyMethodDef *tp_methods; */
 | 
						|
	NULL,                       /* struct PyMemberDef *tp_members; */
 | 
						|
	Vector_getseters,         /* struct PyGetSetDef *tp_getset; */
 | 
						|
	NULL,                       /* struct _typeobject *tp_base; */
 | 
						|
	NULL,                       /* PyObject *tp_dict; */
 | 
						|
	NULL,                       /* descrgetfunc tp_descr_get; */
 | 
						|
	NULL,                       /* descrsetfunc tp_descr_set; */
 | 
						|
	0,                          /* long tp_dictoffset; */
 | 
						|
	NULL,                       /* initproc tp_init; */
 | 
						|
	NULL,                       /* allocfunc tp_alloc; */
 | 
						|
	NULL,                       /* newfunc tp_new; */
 | 
						|
	/*  Low-level free-memory routine */
 | 
						|
	NULL,                       /* freefunc tp_free;  */
 | 
						|
	/* For PyObject_IS_GC */
 | 
						|
	NULL,                       /* inquiry tp_is_gc;  */
 | 
						|
	NULL,                       /* PyObject *tp_bases; */
 | 
						|
	/* method resolution order */
 | 
						|
	NULL,                       /* PyObject *tp_mro;  */
 | 
						|
	NULL,                       /* PyObject *tp_cache; */
 | 
						|
	NULL,                       /* PyObject *tp_subclasses; */
 | 
						|
	NULL,                       /* PyObject *tp_weaklist; */
 | 
						|
	NULL
 | 
						|
};
 | 
						|
 | 
						|
 | 
						|
/*------------------------newVectorObject (internal)-------------
 | 
						|
  creates a new vector object
 | 
						|
  pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | 
						|
 (i.e. it was allocated elsewhere by MEM_mallocN())
 | 
						|
  pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | 
						|
 (i.e. it must be created here with PyMEM_malloc())*/
 | 
						|
PyObject *newVectorObject(float *vec, int size, int type)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	VectorObject *self = PyObject_NEW(VectorObject, &vector_Type);
 | 
						|
	
 | 
						|
	if(size > 4 || size < 2)
 | 
						|
		return NULL;
 | 
						|
	self->size = size;
 | 
						|
 | 
						|
	if(type == Py_WRAP) {
 | 
						|
		self->vec = vec;
 | 
						|
		self->wrapped = Py_WRAP;
 | 
						|
	} else if (type == Py_NEW) {
 | 
						|
		self->vec = PyMem_Malloc(size * sizeof(float));
 | 
						|
		if(!vec) { /*new empty*/
 | 
						|
			for(i = 0; i < size; i++){
 | 
						|
				self->vec[i] = 0.0f;
 | 
						|
			}
 | 
						|
			if(size == 4)  /* do the homogenous thing */
 | 
						|
				self->vec[3] = 1.0f;
 | 
						|
		}else{
 | 
						|
			for(i = 0; i < size; i++){
 | 
						|
				self->vec[i] = vec[i];
 | 
						|
			}
 | 
						|
		}
 | 
						|
		self->wrapped = Py_NEW;
 | 
						|
	}else{ /*bad type*/
 | 
						|
		return NULL;
 | 
						|
	}
 | 
						|
	return (PyObject *) self;
 | 
						|
}
 | 
						|
 | 
						|
/*
 | 
						|
  #############################DEPRECATED################################
 | 
						|
  #######################################################################
 | 
						|
  ----------------------------Vector.negate() --------------------
 | 
						|
  set the vector to it's negative -x, -y, -z */
 | 
						|
PyObject *Vector_Negate(VectorObject * self)
 | 
						|
{
 | 
						|
	int i;
 | 
						|
	for(i = 0; i < self->size; i++) {
 | 
						|
		self->vec[i] = -(self->vec[i]);
 | 
						|
	}
 | 
						|
	/*printf("Vector.negate(): Deprecated: use -vector instead\n");*/
 | 
						|
	return EXPP_incr_ret((PyObject*)self);
 | 
						|
}
 | 
						|
/*###################################################################
 | 
						|
  ###########################DEPRECATED##############################*/
 | 
						|
 |