This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/cdderivedmesh.c

3409 lines
101 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2006 Blender Foundation.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): Ben Batt <benbatt@gmail.com>
*
* ***** END GPL LICENSE BLOCK *****
*
* Implementation of CDDerivedMesh.
*
* BKE_cdderivedmesh.h contains the function prototypes for this file.
*
*/
/** \file blender/blenkernel/intern/cdderivedmesh.c
* \ingroup bke
*/
#include "GL/glew.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_edgehash.h"
#include "BLI_utildefines.h"
#include "BLI_stackdefines.h"
#include "BKE_pbvh.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_mesh_mapping.h"
#include "BKE_paint.h"
#include "BKE_editmesh.h"
#include "BKE_curve.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_curve_types.h" /* for Curve */
#include "MEM_guardedalloc.h"
#include "GPU_buffers.h"
#include "GPU_draw.h"
#include "GPU_extensions.h"
#include "GPU_material.h"
#include <string.h>
#include <limits.h>
#include <math.h>
extern GLubyte stipple_quarttone[128]; /* glutil.c, bad level data */
typedef struct {
DerivedMesh dm;
/* these point to data in the DerivedMesh custom data layers,
* they are only here for efficiency and convenience **/
MVert *mvert;
MEdge *medge;
MFace *mface;
MLoop *mloop;
MPoly *mpoly;
/* Cached */
struct PBVH *pbvh;
bool pbvh_draw;
/* Mesh connectivity */
MeshElemMap *pmap;
int *pmap_mem;
} CDDerivedMesh;
/**************** DerivedMesh interface functions ****************/
static int cdDM_getNumVerts(DerivedMesh *dm)
{
return dm->numVertData;
}
static int cdDM_getNumEdges(DerivedMesh *dm)
{
return dm->numEdgeData;
}
static int cdDM_getNumTessFaces(DerivedMesh *dm)
{
/* uncomment and add a breakpoint on the printf()
* to help debug tessfaces issues since BMESH merge. */
#if 0
if (dm->numTessFaceData == 0 && dm->numPolyData != 0) {
printf("%s: has no faces!, call DM_ensure_tessface() if you need them\n");
}
#endif
return dm->numTessFaceData;
}
static int cdDM_getNumLoops(DerivedMesh *dm)
{
return dm->numLoopData;
}
static int cdDM_getNumPolys(DerivedMesh *dm)
{
return dm->numPolyData;
}
static void cdDM_getVert(DerivedMesh *dm, int index, MVert *r_vert)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
*r_vert = cddm->mvert[index];
}
static void cdDM_getEdge(DerivedMesh *dm, int index, MEdge *r_edge)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
*r_edge = cddm->medge[index];
}
static void cdDM_getTessFace(DerivedMesh *dm, int index, MFace *r_face)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
*r_face = cddm->mface[index];
}
static void cdDM_copyVertArray(DerivedMesh *dm, MVert *r_vert)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
memcpy(r_vert, cddm->mvert, sizeof(*r_vert) * dm->numVertData);
}
static void cdDM_copyEdgeArray(DerivedMesh *dm, MEdge *r_edge)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
memcpy(r_edge, cddm->medge, sizeof(*r_edge) * dm->numEdgeData);
}
static void cdDM_copyTessFaceArray(DerivedMesh *dm, MFace *r_face)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
memcpy(r_face, cddm->mface, sizeof(*r_face) * dm->numTessFaceData);
}
static void cdDM_copyLoopArray(DerivedMesh *dm, MLoop *r_loop)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
memcpy(r_loop, cddm->mloop, sizeof(*r_loop) * dm->numLoopData);
}
static void cdDM_copyPolyArray(DerivedMesh *dm, MPoly *r_poly)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
memcpy(r_poly, cddm->mpoly, sizeof(*r_poly) * dm->numPolyData);
}
static void cdDM_getMinMax(DerivedMesh *dm, float r_min[3], float r_max[3])
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
int i;
if (dm->numVertData) {
for (i = 0; i < dm->numVertData; i++) {
minmax_v3v3_v3(r_min, r_max, cddm->mvert[i].co);
}
}
else {
zero_v3(r_min);
zero_v3(r_max);
}
}
static void cdDM_getVertCo(DerivedMesh *dm, int index, float r_co[3])
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
copy_v3_v3(r_co, cddm->mvert[index].co);
}
static void cdDM_getVertCos(DerivedMesh *dm, float (*r_cos)[3])
{
MVert *mv = CDDM_get_verts(dm);
int i;
for (i = 0; i < dm->numVertData; i++, mv++)
copy_v3_v3(r_cos[i], mv->co);
}
static void cdDM_getVertNo(DerivedMesh *dm, int index, float r_no[3])
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
normal_short_to_float_v3(r_no, cddm->mvert[index].no);
}
static const MeshElemMap *cdDM_getPolyMap(Object *ob, DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
if (!cddm->pmap && ob->type == OB_MESH) {
Mesh *me = ob->data;
BKE_mesh_vert_poly_map_create(&cddm->pmap, &cddm->pmap_mem,
me->mpoly, me->mloop,
me->totvert, me->totpoly, me->totloop);
}
return cddm->pmap;
}
static bool check_sculpt_object_deformed(Object *object, bool for_construction)
{
bool deformed = false;
/* Active modifiers means extra deformation, which can't be handled correct
* on birth of PBVH and sculpt "layer" levels, so use PBVH only for internal brush
* stuff and show final DerivedMesh so user would see actual object shape.
*/
deformed |= object->sculpt->modifiers_active;
if (for_construction) {
deformed |= object->sculpt->kb != NULL;
}
else {
/* As in case with modifiers, we can't synchronize deformation made against
* PBVH and non-locked keyblock, so also use PBVH only for brushes and
* final DM to give final result to user.
*/
deformed |= object->sculpt->kb && (object->shapeflag & OB_SHAPE_LOCK) == 0;
}
return deformed;
}
static bool can_pbvh_draw(Object *ob, DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
Mesh *me = ob->data;
bool deformed = check_sculpt_object_deformed(ob, false);
if (deformed) {
return false;
}
return cddm->mvert == me->mvert || ob->sculpt->kb;
}
static PBVH *cdDM_getPBVH(Object *ob, DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
if (!ob) {
cddm->pbvh = NULL;
return NULL;
}
if (!ob->sculpt)
return NULL;
if (ob->sculpt->pbvh) {
cddm->pbvh = ob->sculpt->pbvh;
cddm->pbvh_draw = can_pbvh_draw(ob, dm);
}
/* Sculpting on a BMesh (dynamic-topology) gets a special PBVH */
if (!cddm->pbvh && ob->sculpt->bm) {
cddm->pbvh = BKE_pbvh_new();
cddm->pbvh_draw = true;
BKE_pbvh_build_bmesh(cddm->pbvh, ob->sculpt->bm,
ob->sculpt->bm_smooth_shading,
ob->sculpt->bm_log, ob->sculpt->cd_vert_node_offset,
ob->sculpt->cd_face_node_offset);
pbvh_show_diffuse_color_set(cddm->pbvh, ob->sculpt->show_diffuse_color);
}
/* always build pbvh from original mesh, and only use it for drawing if
* this derivedmesh is just original mesh. it's the multires subsurf dm
* that this is actually for, to support a pbvh on a modified mesh */
if (!cddm->pbvh && ob->type == OB_MESH) {
Mesh *me = ob->data;
bool deformed;
cddm->pbvh = BKE_pbvh_new();
cddm->pbvh_draw = can_pbvh_draw(ob, dm);
BKE_mesh_tessface_ensure(me);
BKE_pbvh_build_mesh(cddm->pbvh, me->mface, me->mvert,
me->totface, me->totvert, &me->vdata);
pbvh_show_diffuse_color_set(cddm->pbvh, ob->sculpt->show_diffuse_color);
deformed = check_sculpt_object_deformed(ob, true);
if (deformed && ob->derivedDeform) {
DerivedMesh *deformdm = ob->derivedDeform;
float (*vertCos)[3];
int totvert;
totvert = deformdm->getNumVerts(deformdm);
vertCos = MEM_mallocN(totvert * sizeof(float[3]), "cdDM_getPBVH vertCos");
deformdm->getVertCos(deformdm, vertCos);
BKE_pbvh_apply_vertCos(cddm->pbvh, vertCos);
MEM_freeN(vertCos);
}
}
return cddm->pbvh;
}
/* update vertex normals so that drawing smooth faces works during sculpt
* TODO: proper fix is to support the pbvh in all drawing modes */
static void cdDM_update_normals_from_pbvh(DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
float (*face_nors)[3];
if (!cddm->pbvh || !cddm->pbvh_draw || !dm->numTessFaceData)
return;
face_nors = CustomData_get_layer(&dm->faceData, CD_NORMAL);
BKE_pbvh_update(cddm->pbvh, PBVH_UpdateNormals, face_nors);
}
static void cdDM_drawVerts(DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
MVert *mv = cddm->mvert;
int i;
if (GPU_buffer_legacy(dm)) {
glBegin(GL_POINTS);
for (i = 0; i < dm->numVertData; i++, mv++)
glVertex3fv(mv->co);
glEnd();
}
else { /* use OpenGL VBOs or Vertex Arrays instead for better, faster rendering */
GPU_vertex_setup(dm);
if (!GPU_buffer_legacy(dm)) {
if (dm->drawObject->tot_triangle_point)
glDrawArrays(GL_POINTS, 0, dm->drawObject->tot_triangle_point);
else
glDrawArrays(GL_POINTS, 0, dm->drawObject->tot_loose_point);
}
GPU_buffer_unbind();
}
}
static void cdDM_drawUVEdges(DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
MFace *mf = cddm->mface;
MTFace *tf = DM_get_tessface_data_layer(dm, CD_MTFACE);
int i;
if (mf) {
if (GPU_buffer_legacy(dm)) {
glBegin(GL_LINES);
for (i = 0; i < dm->numTessFaceData; i++, mf++, tf++) {
if (!(mf->flag & ME_HIDE)) {
glVertex2fv(tf->uv[0]);
glVertex2fv(tf->uv[1]);
glVertex2fv(tf->uv[1]);
glVertex2fv(tf->uv[2]);
if (!mf->v4) {
glVertex2fv(tf->uv[2]);
glVertex2fv(tf->uv[0]);
}
else {
glVertex2fv(tf->uv[2]);
glVertex2fv(tf->uv[3]);
glVertex2fv(tf->uv[3]);
glVertex2fv(tf->uv[0]);
}
}
}
glEnd();
}
else {
int prevstart = 0;
int prevdraw = 1;
int draw = 1;
int curpos = 0;
GPU_uvedge_setup(dm);
if (!GPU_buffer_legacy(dm)) {
for (i = 0; i < dm->numTessFaceData; i++, mf++) {
if (!(mf->flag & ME_HIDE)) {
draw = 1;
}
else {
draw = 0;
}
if (prevdraw != draw) {
if (prevdraw > 0 && (curpos - prevstart) > 0) {
glDrawArrays(GL_LINES, prevstart, curpos - prevstart);
}
prevstart = curpos;
}
if (mf->v4) {
curpos += 8;
}
else {
curpos += 6;
}
prevdraw = draw;
}
if (prevdraw > 0 && (curpos - prevstart) > 0) {
glDrawArrays(GL_LINES, prevstart, curpos - prevstart);
}
}
GPU_buffer_unbind();
}
}
}
static void cdDM_drawEdges(DerivedMesh *dm, bool drawLooseEdges, bool drawAllEdges)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
MVert *mvert = cddm->mvert;
MEdge *medge = cddm->medge;
int i;
if (cddm->pbvh && cddm->pbvh_draw &&
BKE_pbvh_type(cddm->pbvh) == PBVH_BMESH)
{
BKE_pbvh_draw(cddm->pbvh, NULL, NULL, NULL, true);
return;
}
if (GPU_buffer_legacy(dm)) {
DEBUG_VBO("Using legacy code. cdDM_drawEdges\n");
glBegin(GL_LINES);
for (i = 0; i < dm->numEdgeData; i++, medge++) {
if ((drawAllEdges || (medge->flag & ME_EDGEDRAW)) &&
(drawLooseEdges || !(medge->flag & ME_LOOSEEDGE)))
{
glVertex3fv(mvert[medge->v1].co);
glVertex3fv(mvert[medge->v2].co);
}
}
glEnd();
}
else { /* use OpenGL VBOs or Vertex Arrays instead for better, faster rendering */
int prevstart = 0;
int prevdraw = 1;
bool draw = true;
GPU_edge_setup(dm);
if (!GPU_buffer_legacy(dm)) {
for (i = 0; i < dm->numEdgeData; i++, medge++) {
if ((drawAllEdges || (medge->flag & ME_EDGEDRAW)) &&
(drawLooseEdges || !(medge->flag & ME_LOOSEEDGE)))
{
draw = true;
}
else {
draw = false;
}
if (prevdraw != draw) {
if (prevdraw > 0 && (i - prevstart) > 0) {
GPU_buffer_draw_elements(dm->drawObject->edges, GL_LINES, prevstart * 2, (i - prevstart) * 2);
}
prevstart = i;
}
prevdraw = draw;
}
if (prevdraw > 0 && (i - prevstart) > 0) {
GPU_buffer_draw_elements(dm->drawObject->edges, GL_LINES, prevstart * 2, (i - prevstart) * 2);
}
}
GPU_buffer_unbind();
}
}
static void cdDM_drawLooseEdges(DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
MVert *mvert = cddm->mvert;
MEdge *medge = cddm->medge;
int i;
if (GPU_buffer_legacy(dm)) {
DEBUG_VBO("Using legacy code. cdDM_drawLooseEdges\n");
glBegin(GL_LINES);
for (i = 0; i < dm->numEdgeData; i++, medge++) {
if (medge->flag & ME_LOOSEEDGE) {
glVertex3fv(mvert[medge->v1].co);
glVertex3fv(mvert[medge->v2].co);
}
}
glEnd();
}
else { /* use OpenGL VBOs or Vertex Arrays instead for better, faster rendering */
int prevstart = 0;
int prevdraw = 1;
int draw = 1;
GPU_edge_setup(dm);
if (!GPU_buffer_legacy(dm)) {
for (i = 0; i < dm->numEdgeData; i++, medge++) {
if (medge->flag & ME_LOOSEEDGE) {
draw = 1;
}
else {
draw = 0;
}
if (prevdraw != draw) {
if (prevdraw > 0 && (i - prevstart) > 0) {
GPU_buffer_draw_elements(dm->drawObject->edges, GL_LINES, prevstart * 2, (i - prevstart) * 2);
}
prevstart = i;
}
prevdraw = draw;
}
if (prevdraw > 0 && (i - prevstart) > 0) {
GPU_buffer_draw_elements(dm->drawObject->edges, GL_LINES, prevstart * 2, (i - prevstart) * 2);
}
}
GPU_buffer_unbind();
}
}
static void cdDM_drawFacesSolid(DerivedMesh *dm,
float (*partial_redraw_planes)[4],
bool UNUSED(fast), DMSetMaterial setMaterial)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
MVert *mvert = cddm->mvert;
MFace *mface = cddm->mface;
const float *nors = dm->getTessFaceDataArray(dm, CD_NORMAL);
const short (*lnors)[4][3] = dm->getTessFaceDataArray(dm, CD_TESSLOOPNORMAL);
int a, glmode = -1, shademodel = -1, matnr = -1, drawCurrentMat = 1;
if (cddm->pbvh && cddm->pbvh_draw) {
if (dm->numTessFaceData) {
float (*face_nors)[3] = CustomData_get_layer(&dm->faceData, CD_NORMAL);
BKE_pbvh_draw(cddm->pbvh, partial_redraw_planes, face_nors,
setMaterial, false);
glShadeModel(GL_FLAT);
}
return;
}
if (GPU_buffer_legacy(dm)) {
DEBUG_VBO("Using legacy code. cdDM_drawFacesSolid\n");
glBegin(glmode = GL_QUADS);
for (a = 0; a < dm->numTessFaceData; a++, mface++) {
int new_glmode, new_matnr, new_shademodel;
new_glmode = mface->v4 ? GL_QUADS : GL_TRIANGLES;
new_matnr = mface->mat_nr + 1;
new_shademodel = (lnors || (mface->flag & ME_SMOOTH)) ? GL_SMOOTH : GL_FLAT;
if ((new_glmode != glmode) || (new_shademodel != shademodel) ||
(setMaterial && (new_matnr != matnr)))
{
glEnd();
if (setMaterial) {
drawCurrentMat = setMaterial(matnr = new_matnr, NULL);
}
glShadeModel(shademodel = new_shademodel);
glBegin(glmode = new_glmode);
}
if (drawCurrentMat) {
if (lnors) {
glNormal3sv((const GLshort *)lnors[0][0]);
glVertex3fv(mvert[mface->v1].co);
glNormal3sv((const GLshort *)lnors[0][1]);
glVertex3fv(mvert[mface->v2].co);
glNormal3sv((const GLshort *)lnors[0][2]);
glVertex3fv(mvert[mface->v3].co);
if (mface->v4) {
glNormal3sv((const GLshort *)lnors[0][3]);
glVertex3fv(mvert[mface->v4].co);
}
}
else if (shademodel == GL_FLAT) {
if (nors) {
glNormal3fv(nors);
}
else {
/* TODO make this better (cache facenormals as layer?) */
float nor[3];
if (mface->v4) {
normal_quad_v3(nor, mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co, mvert[mface->v4].co);
}
else {
normal_tri_v3(nor, mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co);
}
glNormal3fv(nor);
}
glVertex3fv(mvert[mface->v1].co);
glVertex3fv(mvert[mface->v2].co);
glVertex3fv(mvert[mface->v3].co);
if (mface->v4) {
glVertex3fv(mvert[mface->v4].co);
}
}
else { /* shademodel == GL_SMOOTH */
glNormal3sv(mvert[mface->v1].no);
glVertex3fv(mvert[mface->v1].co);
glNormal3sv(mvert[mface->v2].no);
glVertex3fv(mvert[mface->v2].co);
glNormal3sv(mvert[mface->v3].no);
glVertex3fv(mvert[mface->v3].co);
if (mface->v4) {
glNormal3sv(mvert[mface->v4].no);
glVertex3fv(mvert[mface->v4].co);
}
}
}
if (nors)
nors += 3;
if (lnors)
lnors++;
}
glEnd();
}
else { /* use OpenGL VBOs or Vertex Arrays instead for better, faster rendering */
GPU_vertex_setup(dm);
GPU_normal_setup(dm);
if (!GPU_buffer_legacy(dm)) {
glShadeModel(GL_SMOOTH);
for (a = 0; a < dm->drawObject->totmaterial; a++) {
if (!setMaterial || setMaterial(dm->drawObject->materials[a].mat_nr + 1, NULL)) {
glDrawArrays(GL_TRIANGLES, dm->drawObject->materials[a].start,
dm->drawObject->materials[a].totpoint);
}
}
}
GPU_buffer_unbind();
}
glShadeModel(GL_FLAT);
}
static void cdDM_drawFacesTex_common(DerivedMesh *dm,
DMSetDrawOptionsTex drawParams,
DMSetDrawOptions drawParamsMapped,
DMCompareDrawOptions compareDrawOptions,
void *userData, DMDrawFlag uvflag)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
MVert *mv = cddm->mvert;
const MFace *mf = DM_get_tessface_data_layer(dm, CD_MFACE);
const float *nors = dm->getTessFaceDataArray(dm, CD_NORMAL);
const short (*lnors)[4][3] = dm->getTessFaceDataArray(dm, CD_TESSLOOPNORMAL);
MTFace *tf = DM_get_tessface_data_layer(dm, CD_MTFACE);
MCol *mcol;
int i, orig;
int colType, startFace = 0;
bool use_tface = (uvflag & DM_DRAW_USE_ACTIVE_UV) != 0;
/* double lookup */
const int *index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
const int *index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX);
if (index_mf_to_mpoly == NULL) {
index_mp_to_orig = NULL;
}
/* TODO: not entirely correct, but currently dynamic topology will
* destroy UVs anyway, so textured display wouldn't work anyway
*
* this will do more like solid view with lights set up for
* textured view, but object itself will be displayed gray
* (the same as it'll display without UV maps in textured view)
*/
if (cddm->pbvh && cddm->pbvh_draw && BKE_pbvh_type(cddm->pbvh) == PBVH_BMESH) {
if (dm->numTessFaceData) {
GPU_set_tpage(NULL, false, false);
BKE_pbvh_draw(cddm->pbvh, NULL, NULL, NULL, false);
}
return;
}
colType = CD_TEXTURE_MCOL;
mcol = dm->getTessFaceDataArray(dm, colType);
if (!mcol) {
colType = CD_PREVIEW_MCOL;
mcol = dm->getTessFaceDataArray(dm, colType);
}
if (!mcol) {
colType = CD_MCOL;
mcol = dm->getTessFaceDataArray(dm, colType);
}
cdDM_update_normals_from_pbvh(dm);
if (GPU_buffer_legacy(dm)) {
int mat_nr_cache = -1;
MTFace *tf_base = DM_get_tessface_data_layer(dm, CD_MTFACE);
MTFace *tf_stencil_base = NULL;
MTFace *tf_stencil = NULL;
if (uvflag & DM_DRAW_USE_TEXPAINT_UV) {
int stencil = CustomData_get_stencil_layer(&dm->faceData, CD_MTFACE);
tf_stencil_base = CustomData_get_layer_n(&dm->faceData, CD_MTFACE, stencil);
}
DEBUG_VBO("Using legacy code. cdDM_drawFacesTex_common\n");
for (i = 0; i < dm->numTessFaceData; i++, mf++) {
MVert *mvert;
DMDrawOption draw_option;
unsigned char *cp = NULL;
if (uvflag & DM_DRAW_USE_TEXPAINT_UV) {
if (mf->mat_nr != mat_nr_cache) {
tf_base = DM_paint_uvlayer_active_get(dm, mf->mat_nr);
mat_nr_cache = mf->mat_nr;
}
}
tf = tf_base ? tf_base + i : NULL;
tf_stencil = tf_stencil_base ? tf_stencil_base + i : NULL;
if (drawParams) {
draw_option = drawParams(use_tface ? tf : NULL, (mcol != NULL), mf->mat_nr);
}
else {
if (index_mf_to_mpoly) {
orig = DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, i);
if (orig == ORIGINDEX_NONE) {
/* XXX, this is not really correct
* it will draw the previous faces context for this one when we don't know its settings.
* but better then skipping it altogether. - campbell */
draw_option = DM_DRAW_OPTION_NORMAL;
}
else if (drawParamsMapped) {
draw_option = drawParamsMapped(userData, orig);
}
else {
if (nors) {
nors += 3;
}
continue;
}
}
else if (drawParamsMapped) {
draw_option = drawParamsMapped(userData, i);
}
else {
if (nors) {
nors += 3;
}
continue;
}
}
if (draw_option != DM_DRAW_OPTION_SKIP) {
if (draw_option != DM_DRAW_OPTION_NO_MCOL && mcol)
cp = (unsigned char *) &mcol[i * 4];
if (!(lnors || (mf->flag & ME_SMOOTH))) {
if (nors) {
glNormal3fv(nors);
}
else {
float nor[3];
if (mf->v4) {
normal_quad_v3(nor, mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, mv[mf->v4].co);
}
else {
normal_tri_v3(nor, mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co);
}
glNormal3fv(nor);
}
}
glBegin(mf->v4 ? GL_QUADS : GL_TRIANGLES);
if (tf) glTexCoord2fv(tf->uv[0]);
if (tf_stencil) glMultiTexCoord2fv(GL_TEXTURE2, tf->uv[0]);
if (cp) glColor3ub(cp[3], cp[2], cp[1]);
mvert = &mv[mf->v1];
if (lnors) glNormal3sv((const GLshort *)lnors[0][0]);
else if (mf->flag & ME_SMOOTH) glNormal3sv(mvert->no);
glVertex3fv(mvert->co);
if (tf) glTexCoord2fv(tf->uv[1]);
if (tf_stencil) glMultiTexCoord2fv(GL_TEXTURE2, tf->uv[1]);
if (cp) glColor3ub(cp[7], cp[6], cp[5]);
mvert = &mv[mf->v2];
if (lnors) glNormal3sv((const GLshort *)lnors[0][1]);
else if (mf->flag & ME_SMOOTH) glNormal3sv(mvert->no);
glVertex3fv(mvert->co);
if (tf) glTexCoord2fv(tf->uv[2]);
if (tf_stencil) glMultiTexCoord2fv(GL_TEXTURE2, tf->uv[2]);
if (cp) glColor3ub(cp[11], cp[10], cp[9]);
mvert = &mv[mf->v3];
if (lnors) glNormal3sv((const GLshort *)lnors[0][2]);
else if (mf->flag & ME_SMOOTH) glNormal3sv(mvert->no);
glVertex3fv(mvert->co);
if (mf->v4) {
if (tf) glTexCoord2fv(tf->uv[3]);
if (tf_stencil) glMultiTexCoord2fv(GL_TEXTURE2, tf->uv[3]);
if (cp) glColor3ub(cp[15], cp[14], cp[13]);
mvert = &mv[mf->v4];
if (lnors) glNormal3sv((const GLshort *)lnors[0][3]);
else if (mf->flag & ME_SMOOTH) glNormal3sv(mvert->no);
glVertex3fv(mvert->co);
}
glEnd();
}
if (nors)
nors += 3;
if (lnors)
lnors++;
}
}
else { /* use OpenGL VBOs or Vertex Arrays instead for better, faster rendering */
GPU_vertex_setup(dm);
GPU_normal_setup(dm);
if (uvflag & DM_DRAW_USE_TEXPAINT_UV)
GPU_texpaint_uv_setup(dm);
else
GPU_uv_setup(dm);
if (mcol) {
GPU_color_setup(dm, colType);
}
if (!GPU_buffer_legacy(dm)) {
int tottri = dm->drawObject->tot_triangle_point / 3;
int next_actualFace = dm->drawObject->triangle_to_mface[0];
glShadeModel(GL_SMOOTH);
/* lastFlag = 0; */ /* UNUSED */
for (i = 0; i < tottri; i++) {
int actualFace = next_actualFace;
DMDrawOption draw_option = DM_DRAW_OPTION_NORMAL;
int flush = 0;
if (i != tottri - 1)
next_actualFace = dm->drawObject->triangle_to_mface[i + 1];
if (drawParams) {
draw_option = drawParams(use_tface && tf ? &tf[actualFace] : NULL, (mcol != NULL), mf[actualFace].mat_nr);
}
else {
if (index_mf_to_mpoly) {
orig = DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, actualFace);
if (orig == ORIGINDEX_NONE) {
/* XXX, this is not really correct
* it will draw the previous faces context for this one when we don't know its settings.
* but better then skipping it altogether. - campbell */
draw_option = DM_DRAW_OPTION_NORMAL;
}
else if (drawParamsMapped) {
draw_option = drawParamsMapped(userData, orig);
}
}
else if (drawParamsMapped) {
draw_option = drawParamsMapped(userData, actualFace);
}
}
/* flush buffer if current triangle isn't drawable or it's last triangle */
flush = (draw_option == DM_DRAW_OPTION_SKIP) || (i == tottri - 1);
if (!flush && compareDrawOptions) {
/* also compare draw options and flush buffer if they're different
* need for face selection highlight in edit mode */
flush |= compareDrawOptions(userData, actualFace, next_actualFace) == 0;
}
if (flush) {
int first = startFace * 3;
/* Add one to the length if we're drawing at the end of the array */
int count = (i - startFace + (draw_option != DM_DRAW_OPTION_SKIP ? 1 : 0)) * 3;
if (count) {
if (mcol && draw_option != DM_DRAW_OPTION_NO_MCOL)
GPU_color_switch(1);
else
GPU_color_switch(0);
glDrawArrays(GL_TRIANGLES, first, count);
}
startFace = i + 1;
}
}
}
GPU_buffer_unbind();
glShadeModel(GL_FLAT);
}
}
static void cdDM_drawFacesTex(DerivedMesh *dm,
DMSetDrawOptionsTex setDrawOptions,
DMCompareDrawOptions compareDrawOptions,
void *userData, DMDrawFlag uvflag)
{
cdDM_drawFacesTex_common(dm, setDrawOptions, NULL, compareDrawOptions, userData, uvflag);
}
static void cdDM_drawMappedFaces(DerivedMesh *dm,
DMSetDrawOptions setDrawOptions,
DMSetMaterial setMaterial,
DMCompareDrawOptions compareDrawOptions,
void *userData, DMDrawFlag flag)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
MVert *mv = cddm->mvert;
MFace *mf = cddm->mface;
MCol *mcol;
const float *nors = DM_get_tessface_data_layer(dm, CD_NORMAL);
const short (*lnors)[4][3] = dm->getTessFaceDataArray(dm, CD_TESSLOOPNORMAL);
int colType, useColors = flag & DM_DRAW_USE_COLORS;
int i, orig;
/* double lookup */
const int *index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
const int *index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX);
if (index_mf_to_mpoly == NULL) {
index_mp_to_orig = NULL;
}
colType = CD_ID_MCOL;
mcol = DM_get_tessface_data_layer(dm, colType);
if (!mcol) {
colType = CD_PREVIEW_MCOL;
mcol = DM_get_tessface_data_layer(dm, colType);
}
if (!mcol) {
colType = CD_MCOL;
mcol = DM_get_tessface_data_layer(dm, colType);
}
cdDM_update_normals_from_pbvh(dm);
/* back-buffer always uses legacy since VBO's would need the
* color array temporarily overwritten for drawing, then reset. */
if (GPU_buffer_legacy(dm) || G.f & G_BACKBUFSEL) {
DEBUG_VBO("Using legacy code. cdDM_drawMappedFaces\n");
for (i = 0; i < dm->numTessFaceData; i++, mf++) {
int drawSmooth = ((flag & DM_DRAW_ALWAYS_SMOOTH) || lnors) ? 1 : (mf->flag & ME_SMOOTH);
DMDrawOption draw_option = DM_DRAW_OPTION_NORMAL;
orig = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, i) : i;
if (orig == ORIGINDEX_NONE)
draw_option = setMaterial(mf->mat_nr + 1, NULL);
else if (setDrawOptions != NULL)
draw_option = setDrawOptions(userData, orig);
if (draw_option != DM_DRAW_OPTION_SKIP) {
unsigned char *cp = NULL;
if (draw_option == DM_DRAW_OPTION_STIPPLE) {
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple(stipple_quarttone);
}
if (useColors && mcol)
cp = (unsigned char *)&mcol[i * 4];
/* no need to set shading mode to flat because
* normals are already used to change shading */
glShadeModel(GL_SMOOTH);
glBegin(mf->v4 ? GL_QUADS : GL_TRIANGLES);
if (lnors) {
if (cp) glColor3ub(cp[3], cp[2], cp[1]);
glNormal3sv((const GLshort *)lnors[0][0]);
glVertex3fv(mv[mf->v1].co);
if (cp) glColor3ub(cp[7], cp[6], cp[5]);
glNormal3sv((const GLshort *)lnors[0][1]);
glVertex3fv(mv[mf->v2].co);
if (cp) glColor3ub(cp[11], cp[10], cp[9]);
glNormal3sv((const GLshort *)lnors[0][2]);
glVertex3fv(mv[mf->v3].co);
if (mf->v4) {
if (cp) glColor3ub(cp[15], cp[14], cp[13]);
glNormal3sv((const GLshort *)lnors[0][3]);
glVertex3fv(mv[mf->v4].co);
}
}
else if (!drawSmooth) {
if (nors) {
glNormal3fv(nors);
}
else {
float nor[3];
if (mf->v4) {
normal_quad_v3(nor, mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co, mv[mf->v4].co);
}
else {
normal_tri_v3(nor, mv[mf->v1].co, mv[mf->v2].co, mv[mf->v3].co);
}
glNormal3fv(nor);
}
if (cp) glColor3ub(cp[3], cp[2], cp[1]);
glVertex3fv(mv[mf->v1].co);
if (cp) glColor3ub(cp[7], cp[6], cp[5]);
glVertex3fv(mv[mf->v2].co);
if (cp) glColor3ub(cp[11], cp[10], cp[9]);
glVertex3fv(mv[mf->v3].co);
if (mf->v4) {
if (cp) glColor3ub(cp[15], cp[14], cp[13]);
glVertex3fv(mv[mf->v4].co);
}
}
else {
if (cp) glColor3ub(cp[3], cp[2], cp[1]);
glNormal3sv(mv[mf->v1].no);
glVertex3fv(mv[mf->v1].co);
if (cp) glColor3ub(cp[7], cp[6], cp[5]);
glNormal3sv(mv[mf->v2].no);
glVertex3fv(mv[mf->v2].co);
if (cp) glColor3ub(cp[11], cp[10], cp[9]);
glNormal3sv(mv[mf->v3].no);
glVertex3fv(mv[mf->v3].co);
if (mf->v4) {
if (cp) glColor3ub(cp[15], cp[14], cp[13]);
glNormal3sv(mv[mf->v4].no);
glVertex3fv(mv[mf->v4].co);
}
}
glEnd();
if (draw_option == DM_DRAW_OPTION_STIPPLE)
glDisable(GL_POLYGON_STIPPLE);
}
if (nors)
nors += 3;
if (lnors)
lnors++;
}
}
else { /* use OpenGL VBOs or Vertex Arrays instead for better, faster rendering */
int prevstart = 0;
GPU_vertex_setup(dm);
GPU_normal_setup(dm);
if (useColors && mcol) {
GPU_color_setup(dm, colType);
}
if (!GPU_buffer_legacy(dm)) {
int tottri = dm->drawObject->tot_triangle_point / 3;
glShadeModel(GL_SMOOTH);
if (tottri == 0) {
/* avoid buffer problems in following code */
}
if (setDrawOptions == NULL) {
/* just draw the entire face array */
glDrawArrays(GL_TRIANGLES, 0, (tottri) * 3);
}
else {
/* we need to check if the next material changes */
int next_actualFace = dm->drawObject->triangle_to_mface[0];
for (i = 0; i < tottri; i++) {
//int actualFace = dm->drawObject->triangle_to_mface[i];
int actualFace = next_actualFace;
MFace *mface = mf + actualFace;
/*int drawSmooth = (flag & DM_DRAW_ALWAYS_SMOOTH) ? 1 : (mface->flag & ME_SMOOTH);*/ /* UNUSED */
DMDrawOption draw_option = DM_DRAW_OPTION_NORMAL;
int flush = 0;
if (i != tottri - 1)
next_actualFace = dm->drawObject->triangle_to_mface[i + 1];
orig = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, actualFace) : actualFace;
if (orig == ORIGINDEX_NONE)
draw_option = setMaterial(mface->mat_nr + 1, NULL);
else if (setDrawOptions != NULL)
draw_option = setDrawOptions(userData, orig);
if (draw_option == DM_DRAW_OPTION_STIPPLE) {
glEnable(GL_POLYGON_STIPPLE);
glPolygonStipple(stipple_quarttone);
}
/* Goal is to draw as long of a contiguous triangle
* array as possible, so draw when we hit either an
* invisible triangle or at the end of the array */
/* flush buffer if current triangle isn't drawable or it's last triangle... */
flush = (ELEM(draw_option, DM_DRAW_OPTION_SKIP, DM_DRAW_OPTION_STIPPLE)) || (i == tottri - 1);
/* ... or when material setting is dissferent */
flush |= mf[actualFace].mat_nr != mf[next_actualFace].mat_nr;
if (!flush && compareDrawOptions) {
flush |= compareDrawOptions(userData, actualFace, next_actualFace) == 0;
}
if (flush) {
int first = prevstart * 3;
/* Add one to the length if we're drawing at the end of the array */
int count = (i - prevstart + (draw_option != DM_DRAW_OPTION_SKIP ? 1 : 0)) * 3;
if (count)
glDrawArrays(GL_TRIANGLES, first, count);
prevstart = i + 1;
if (draw_option == DM_DRAW_OPTION_STIPPLE)
glDisable(GL_POLYGON_STIPPLE);
}
}
}
glShadeModel(GL_FLAT);
}
GPU_buffer_unbind();
}
}
static void cdDM_drawMappedFacesTex(DerivedMesh *dm,
DMSetDrawOptions setDrawOptions,
DMCompareDrawOptions compareDrawOptions,
void *userData, DMDrawFlag flag)
{
cdDM_drawFacesTex_common(dm, NULL, setDrawOptions, compareDrawOptions, userData, flag);
}
static void cddm_draw_attrib_vertex(DMVertexAttribs *attribs, const MVert *mvert, int a, int index, int vert,
const short (*lnor)[3], const bool smoothnormal)
{
const float zero[4] = {0.0f, 0.0f, 0.0f, 0.0f};
int b;
/* orco texture coordinates */
if (attribs->totorco) {
/*const*/ float (*array)[3] = attribs->orco.array;
const float *orco = (array) ? array[index] : zero;
if (attribs->orco.gl_texco)
glTexCoord3fv(orco);
else
glVertexAttrib3fvARB(attribs->orco.gl_index, orco);
}
/* uv texture coordinates */
for (b = 0; b < attribs->tottface; b++) {
const float *uv;
if (attribs->tface[b].array) {
MTFace *tf = &attribs->tface[b].array[a];
uv = tf->uv[vert];
}
else {
uv = zero;
}
if (attribs->tface[b].gl_texco)
glTexCoord2fv(uv);
else
glVertexAttrib2fvARB(attribs->tface[b].gl_index, uv);
}
/* vertex colors */
for (b = 0; b < attribs->totmcol; b++) {
GLubyte col[4];
if (attribs->mcol[b].array) {
MCol *cp = &attribs->mcol[b].array[a * 4 + vert];
col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a;
}
else {
col[0] = 0; col[1] = 0; col[2] = 0; col[3] = 0;
}
glVertexAttrib4ubvARB(attribs->mcol[b].gl_index, col);
}
/* tangent for normal mapping */
if (attribs->tottang) {
/*const*/ float (*array)[4] = attribs->tang.array;
const float *tang = (array) ? array[a * 4 + vert] : zero;
glVertexAttrib4fvARB(attribs->tang.gl_index, tang);
}
/* vertex normal */
if (lnor) {
glNormal3sv((const GLshort *)lnor);
}
else if (smoothnormal) {
glNormal3sv(mvert[index].no);
}
/* vertex coordinate */
glVertex3fv(mvert[index].co);
}
static void cdDM_drawMappedFacesGLSL(DerivedMesh *dm,
DMSetMaterial setMaterial,
DMSetDrawOptions setDrawOptions,
void *userData)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
GPUVertexAttribs gattribs;
DMVertexAttribs attribs;
const MVert *mvert = cddm->mvert;
const MFace *mface = cddm->mface;
/* MTFace *tf = dm->getTessFaceDataArray(dm, CD_MTFACE); */ /* UNUSED */
const float (*nors)[3] = dm->getTessFaceDataArray(dm, CD_NORMAL);
const short (*lnors)[4][3] = dm->getTessFaceDataArray(dm, CD_TESSLOOPNORMAL);
int a, b, matnr, new_matnr;
bool do_draw;
int orig;
/* double lookup */
const int *index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
const int *index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX);
if (index_mf_to_mpoly == NULL) {
index_mp_to_orig = NULL;
}
/* TODO: same as for solid draw, not entirely correct, but works fine for now,
* will skip using textures (dyntopo currently destroys UV anyway) and
* works fine for matcap
*/
if (cddm->pbvh && cddm->pbvh_draw && BKE_pbvh_type(cddm->pbvh) == PBVH_BMESH) {
if (dm->numTessFaceData) {
setMaterial(1, &gattribs);
BKE_pbvh_draw(cddm->pbvh, NULL, NULL, NULL, false);
}
return;
}
cdDM_update_normals_from_pbvh(dm);
matnr = -1;
do_draw = false;
glShadeModel(GL_SMOOTH);
if (GPU_buffer_legacy(dm) || setDrawOptions != NULL) {
DEBUG_VBO("Using legacy code. cdDM_drawMappedFacesGLSL\n");
memset(&attribs, 0, sizeof(attribs));
glBegin(GL_QUADS);
for (a = 0; a < dm->numTessFaceData; a++, mface++) {
const bool smoothnormal = lnors || (mface->flag & ME_SMOOTH);
const short (*ln1)[3] = NULL, (*ln2)[3] = NULL, (*ln3)[3] = NULL, (*ln4)[3] = NULL;
new_matnr = mface->mat_nr + 1;
if (new_matnr != matnr) {
glEnd();
do_draw = setMaterial(matnr = new_matnr, &gattribs);
if (do_draw)
DM_vertex_attributes_from_gpu(dm, &gattribs, &attribs);
glBegin(GL_QUADS);
}
if (!do_draw) {
continue;
}
else if (setDrawOptions) {
orig = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a) : a;
if (orig == ORIGINDEX_NONE) {
/* since the material is set by setMaterial(), faces with no
* origin can be assumed to be generated by a modifier */
/* continue */
}
else if (setDrawOptions(userData, orig) == DM_DRAW_OPTION_SKIP)
continue;
}
if (!smoothnormal) {
if (nors) {
glNormal3fv(nors[a]);
}
else {
/* TODO ideally a normal layer should always be available */
float nor[3];
if (mface->v4) {
normal_quad_v3(nor, mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co, mvert[mface->v4].co);
}
else {
normal_tri_v3(nor, mvert[mface->v1].co, mvert[mface->v2].co, mvert[mface->v3].co);
}
glNormal3fv(nor);
}
}
else if (lnors) {
ln1 = &lnors[a][0];
ln2 = &lnors[a][1];
ln3 = &lnors[a][2];
ln4 = &lnors[a][3];
}
cddm_draw_attrib_vertex(&attribs, mvert, a, mface->v1, 0, ln1, smoothnormal);
cddm_draw_attrib_vertex(&attribs, mvert, a, mface->v2, 1, ln2, smoothnormal);
cddm_draw_attrib_vertex(&attribs, mvert, a, mface->v3, 2, ln3, smoothnormal);
if (mface->v4)
cddm_draw_attrib_vertex(&attribs, mvert, a, mface->v4, 3, ln4, smoothnormal);
else
cddm_draw_attrib_vertex(&attribs, mvert, a, mface->v3, 2, ln3, smoothnormal);
}
glEnd();
}
else {
GPUBuffer *buffer = NULL;
const char *varray = NULL;
int numdata = 0, elementsize = 0, offset;
int start = 0, numfaces = 0 /* , prevdraw = 0 */ /* UNUSED */, curface = 0;
int i;
const MFace *mf = mface;
GPUAttrib datatypes[GPU_MAX_ATTRIB]; /* TODO, messing up when switching materials many times - [#21056]*/
memset(&attribs, 0, sizeof(attribs));
GPU_vertex_setup(dm);
GPU_normal_setup(dm);
if (!GPU_buffer_legacy(dm)) {
for (i = 0; i < dm->drawObject->tot_triangle_point / 3; i++) {
a = dm->drawObject->triangle_to_mface[i];
mface = mf + a;
new_matnr = mface->mat_nr + 1;
if (new_matnr != matnr) {
numfaces = curface - start;
if (numfaces > 0) {
if (do_draw) {
if (numdata != 0) {
GPU_buffer_unlock(buffer);
GPU_interleaved_attrib_setup(buffer, datatypes, numdata);
}
glDrawArrays(GL_TRIANGLES, start * 3, numfaces * 3);
if (numdata != 0) {
GPU_buffer_free(buffer);
buffer = NULL;
}
}
}
numdata = 0;
start = curface;
/* prevdraw = do_draw; */ /* UNUSED */
do_draw = setMaterial(matnr = new_matnr, &gattribs);
if (do_draw) {
DM_vertex_attributes_from_gpu(dm, &gattribs, &attribs);
if (attribs.totorco && attribs.orco.array) {
datatypes[numdata].index = attribs.orco.gl_index;
datatypes[numdata].size = 3;
datatypes[numdata].type = GL_FLOAT;
numdata++;
}
for (b = 0; b < attribs.tottface; b++) {
if (attribs.tface[b].array) {
datatypes[numdata].index = attribs.tface[b].gl_index;
datatypes[numdata].size = 2;
datatypes[numdata].type = GL_FLOAT;
numdata++;
}
}
for (b = 0; b < attribs.totmcol; b++) {
if (attribs.mcol[b].array) {
datatypes[numdata].index = attribs.mcol[b].gl_index;
datatypes[numdata].size = 4;
datatypes[numdata].type = GL_UNSIGNED_BYTE;
numdata++;
}
}
if (attribs.tottang && attribs.tang.array) {
datatypes[numdata].index = attribs.tang.gl_index;
datatypes[numdata].size = 4;
datatypes[numdata].type = GL_FLOAT;
numdata++;
}
if (numdata != 0) {
elementsize = GPU_attrib_element_size(datatypes, numdata);
buffer = GPU_buffer_alloc(elementsize * dm->drawObject->tot_triangle_point);
if (buffer == NULL) {
GPU_buffer_unbind();
dm->drawObject->legacy = 1;
return;
}
varray = GPU_buffer_lock_stream(buffer);
if (varray == NULL) {
GPU_buffer_unbind();
GPU_buffer_free(buffer);
dm->drawObject->legacy = 1;
return;
}
}
else {
/* if the buffer was set, don't use it again.
* prevdraw was assumed true but didnt run so set to false - [#21036] */
/* prevdraw = 0; */ /* UNUSED */
buffer = NULL;
}
}
}
if (do_draw && numdata != 0) {
offset = 0;
if (attribs.totorco && attribs.orco.array) {
copy_v3_v3((float *)&varray[elementsize * curface * 3], (float *)attribs.orco.array[mface->v1]);
copy_v3_v3((float *)&varray[elementsize * curface * 3 + elementsize], (float *)attribs.orco.array[mface->v2]);
copy_v3_v3((float *)&varray[elementsize * curface * 3 + elementsize * 2], (float *)attribs.orco.array[mface->v3]);
offset += sizeof(float) * 3;
}
for (b = 0; b < attribs.tottface; b++) {
if (attribs.tface[b].array) {
MTFace *tf = &attribs.tface[b].array[a];
copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset], tf->uv[0]);
copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset + elementsize], tf->uv[1]);
copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset + elementsize * 2], tf->uv[2]);
offset += sizeof(float) * 2;
}
}
for (b = 0; b < attribs.totmcol; b++) {
if (attribs.mcol[b].array) {
MCol *cp = &attribs.mcol[b].array[a * 4 + 0];
GLubyte col[4];
col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a;
copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset], (char *)col);
cp = &attribs.mcol[b].array[a * 4 + 1];
col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a;
copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset + elementsize], (char *)col);
cp = &attribs.mcol[b].array[a * 4 + 2];
col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a;
copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset + elementsize * 2], (char *)col);
offset += sizeof(unsigned char) * 4;
}
}
if (attribs.tottang && attribs.tang.array) {
const float *tang = attribs.tang.array[a * 4 + 0];
copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset], tang);
tang = attribs.tang.array[a * 4 + 1];
copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset + elementsize], tang);
tang = attribs.tang.array[a * 4 + 2];
copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset + elementsize * 2], tang);
offset += sizeof(float) * 4;
}
(void)offset;
}
curface++;
if (mface->v4) {
if (do_draw && numdata != 0) {
offset = 0;
if (attribs.totorco && attribs.orco.array) {
copy_v3_v3((float *)&varray[elementsize * curface * 3], (float *)attribs.orco.array[mface->v3]);
copy_v3_v3((float *)&varray[elementsize * curface * 3 + elementsize], (float *)attribs.orco.array[mface->v4]);
copy_v3_v3((float *)&varray[elementsize * curface * 3 + elementsize * 2], (float *)attribs.orco.array[mface->v1]);
offset += sizeof(float) * 3;
}
for (b = 0; b < attribs.tottface; b++) {
if (attribs.tface[b].array) {
MTFace *tf = &attribs.tface[b].array[a];
copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset], tf->uv[2]);
copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset + elementsize], tf->uv[3]);
copy_v2_v2((float *)&varray[elementsize * curface * 3 + offset + elementsize * 2], tf->uv[0]);
offset += sizeof(float) * 2;
}
}
for (b = 0; b < attribs.totmcol; b++) {
if (attribs.mcol[b].array) {
MCol *cp = &attribs.mcol[b].array[a * 4 + 2];
GLubyte col[4];
col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a;
copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset], (char *)col);
cp = &attribs.mcol[b].array[a * 4 + 3];
col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a;
copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset + elementsize], (char *)col);
cp = &attribs.mcol[b].array[a * 4 + 0];
col[0] = cp->b; col[1] = cp->g; col[2] = cp->r; col[3] = cp->a;
copy_v4_v4_char((char *)&varray[elementsize * curface * 3 + offset + elementsize * 2], (char *)col);
offset += sizeof(unsigned char) * 4;
}
}
if (attribs.tottang && attribs.tang.array) {
const float *tang = attribs.tang.array[a * 4 + 2];
copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset], tang);
tang = attribs.tang.array[a * 4 + 3];
copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset + elementsize], tang);
tang = attribs.tang.array[a * 4 + 0];
copy_v4_v4((float *)&varray[elementsize * curface * 3 + offset + elementsize * 2], tang);
offset += sizeof(float) * 4;
}
(void)offset;
}
curface++;
i++;
}
}
numfaces = curface - start;
if (numfaces > 0) {
if (do_draw) {
if (numdata != 0) {
GPU_buffer_unlock(buffer);
GPU_interleaved_attrib_setup(buffer, datatypes, numdata);
}
glDrawArrays(GL_TRIANGLES, start * 3, (curface - start) * 3);
}
}
GPU_buffer_unbind();
}
GPU_buffer_free(buffer);
}
glShadeModel(GL_FLAT);
}
static void cdDM_drawFacesGLSL(DerivedMesh *dm, DMSetMaterial setMaterial)
{
dm->drawMappedFacesGLSL(dm, setMaterial, NULL, NULL);
}
static void cdDM_drawMappedFacesMat(DerivedMesh *dm,
void (*setMaterial)(void *userData, int matnr, void *attribs),
bool (*setFace)(void *userData, int index), void *userData)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
GPUVertexAttribs gattribs;
DMVertexAttribs attribs;
MVert *mvert = cddm->mvert;
MFace *mf = cddm->mface;
const float (*nors)[3] = dm->getTessFaceDataArray(dm, CD_NORMAL);
const short (*lnors)[4][3] = dm->getTessFaceDataArray(dm, CD_TESSLOOPNORMAL);
int a, matnr, new_matnr;
int orig;
/* double lookup */
const int *index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
const int *index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX);
if (index_mf_to_mpoly == NULL) {
index_mp_to_orig = NULL;
}
/* TODO: same as for solid draw, not entirely correct, but works fine for now,
* will skip using textures (dyntopo currently destroys UV anyway) and
* works fine for matcap
*/
if (cddm->pbvh && cddm->pbvh_draw && BKE_pbvh_type(cddm->pbvh) == PBVH_BMESH) {
if (dm->numTessFaceData) {
setMaterial(userData, 1, &gattribs);
BKE_pbvh_draw(cddm->pbvh, NULL, NULL, NULL, false);
}
return;
}
cdDM_update_normals_from_pbvh(dm);
matnr = -1;
glShadeModel(GL_SMOOTH);
memset(&attribs, 0, sizeof(attribs));
glBegin(GL_QUADS);
for (a = 0; a < dm->numTessFaceData; a++, mf++) {
const bool smoothnormal = lnors || (mf->flag & ME_SMOOTH);
const short (*ln1)[3] = NULL, (*ln2)[3] = NULL, (*ln3)[3] = NULL, (*ln4)[3] = NULL;
/* material */
new_matnr = mf->mat_nr + 1;
if (new_matnr != matnr) {
glEnd();
setMaterial(userData, matnr = new_matnr, &gattribs);
DM_vertex_attributes_from_gpu(dm, &gattribs, &attribs);
glBegin(GL_QUADS);
}
/* skipping faces */
if (setFace) {
orig = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a) : a;
if (orig != ORIGINDEX_NONE && !setFace(userData, orig))
continue;
}
/* smooth normal */
if (!smoothnormal) {
if (nors) {
glNormal3fv(nors[a]);
}
else {
/* TODO ideally a normal layer should always be available */
float nor[3];
if (mf->v4)
normal_quad_v3(nor, mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co, mvert[mf->v4].co);
else
normal_tri_v3(nor, mvert[mf->v1].co, mvert[mf->v2].co, mvert[mf->v3].co);
glNormal3fv(nor);
}
}
else if (lnors) {
ln1 = &lnors[a][0];
ln2 = &lnors[a][1];
ln3 = &lnors[a][2];
ln4 = &lnors[a][3];
}
/* vertices */
cddm_draw_attrib_vertex(&attribs, mvert, a, mf->v1, 0, ln1, smoothnormal);
cddm_draw_attrib_vertex(&attribs, mvert, a, mf->v2, 1, ln2, smoothnormal);
cddm_draw_attrib_vertex(&attribs, mvert, a, mf->v3, 2, ln3, smoothnormal);
if (mf->v4)
cddm_draw_attrib_vertex(&attribs, mvert, a, mf->v4, 3, ln4, smoothnormal);
else
cddm_draw_attrib_vertex(&attribs, mvert, a, mf->v3, 2, ln3, smoothnormal);
}
glEnd();
glShadeModel(GL_FLAT);
}
static void cdDM_drawMappedEdges(DerivedMesh *dm, DMSetDrawOptions setDrawOptions, void *userData)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
MVert *vert = cddm->mvert;
MEdge *edge = cddm->medge;
int i, orig, *index = DM_get_edge_data_layer(dm, CD_ORIGINDEX);
glBegin(GL_LINES);
for (i = 0; i < dm->numEdgeData; i++, edge++) {
if (index) {
orig = *index++;
if (setDrawOptions && orig == ORIGINDEX_NONE) continue;
}
else
orig = i;
if (!setDrawOptions || (setDrawOptions(userData, orig) != DM_DRAW_OPTION_SKIP)) {
glVertex3fv(vert[edge->v1].co);
glVertex3fv(vert[edge->v2].co);
}
}
glEnd();
}
static void cdDM_foreachMappedVert(
DerivedMesh *dm,
void (*func)(void *userData, int index, const float co[3], const float no_f[3], const short no_s[3]),
void *userData,
DMForeachFlag flag)
{
MVert *mv = CDDM_get_verts(dm);
const int *index = DM_get_vert_data_layer(dm, CD_ORIGINDEX);
int i;
if (index) {
for (i = 0; i < dm->numVertData; i++, mv++) {
const short *no = (flag & DM_FOREACH_USE_NORMAL) ? mv->no : NULL;
const int orig = *index++;
if (orig == ORIGINDEX_NONE) continue;
func(userData, orig, mv->co, NULL, no);
}
}
else {
for (i = 0; i < dm->numVertData; i++, mv++) {
const short *no = (flag & DM_FOREACH_USE_NORMAL) ? mv->no : NULL;
func(userData, i, mv->co, NULL, no);
}
}
}
static void cdDM_foreachMappedEdge(
DerivedMesh *dm,
void (*func)(void *userData, int index, const float v0co[3], const float v1co[3]),
void *userData)
{
CDDerivedMesh *cddm = (CDDerivedMesh *) dm;
MVert *mv = cddm->mvert;
MEdge *med = cddm->medge;
int i, orig, *index = DM_get_edge_data_layer(dm, CD_ORIGINDEX);
for (i = 0; i < dm->numEdgeData; i++, med++) {
if (index) {
orig = *index++;
if (orig == ORIGINDEX_NONE) continue;
func(userData, orig, mv[med->v1].co, mv[med->v2].co);
}
else
func(userData, i, mv[med->v1].co, mv[med->v2].co);
}
}
static void cdDM_foreachMappedLoop(
DerivedMesh *dm,
void (*func)(void *userData, int vertex_index, int face_index, const float co[3], const float no[3]),
void *userData,
DMForeachFlag flag)
{
/* We can't use dm->getLoopDataLayout(dm) here, we want to always access dm->loopData, EditDerivedBMesh would
* return loop data from bmesh itself. */
const float (*lnors)[3] = (flag & DM_FOREACH_USE_NORMAL) ? DM_get_loop_data_layer(dm, CD_NORMAL) : NULL;
const MVert *mv = CDDM_get_verts(dm);
const MLoop *ml = CDDM_get_loops(dm);
const MPoly *mp = CDDM_get_polys(dm);
const int *v_index = DM_get_vert_data_layer(dm, CD_ORIGINDEX);
const int *f_index = DM_get_poly_data_layer(dm, CD_ORIGINDEX);
int p_idx, i;
for (p_idx = 0; p_idx < dm->numPolyData; ++p_idx, ++mp) {
for (i = 0; i < mp->totloop; ++i, ++ml) {
const int v_idx = v_index ? v_index[ml->v] : ml->v;
const int f_idx = f_index ? f_index[p_idx] : p_idx;
const float *no = lnors ? *lnors++ : NULL;
if (!ELEM(ORIGINDEX_NONE, v_idx, f_idx)) {
func(userData, v_idx, f_idx, mv[ml->v].co, no);
}
}
}
}
static void cdDM_foreachMappedFaceCenter(
DerivedMesh *dm,
void (*func)(void *userData, int index, const float cent[3], const float no[3]),
void *userData,
DMForeachFlag flag)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
MVert *mvert = cddm->mvert;
MPoly *mp;
MLoop *ml;
int i, orig, *index;
index = CustomData_get_layer(&dm->polyData, CD_ORIGINDEX);
mp = cddm->mpoly;
for (i = 0; i < dm->numPolyData; i++, mp++) {
float cent[3];
float *no, _no[3];
if (index) {
orig = *index++;
if (orig == ORIGINDEX_NONE) continue;
}
else {
orig = i;
}
ml = &cddm->mloop[mp->loopstart];
BKE_mesh_calc_poly_center(mp, ml, mvert, cent);
if (flag & DM_FOREACH_USE_NORMAL) {
BKE_mesh_calc_poly_normal(mp, ml, mvert, (no = _no));
}
else {
no = NULL;
}
func(userData, orig, cent, no);
}
}
void CDDM_recalc_tessellation_ex(DerivedMesh *dm, const bool do_face_nor_cpy)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
dm->numTessFaceData = BKE_mesh_recalc_tessellation(&dm->faceData, &dm->loopData, &dm->polyData,
cddm->mvert,
dm->numTessFaceData, dm->numLoopData, dm->numPolyData,
do_face_nor_cpy);
cddm->mface = CustomData_get_layer(&dm->faceData, CD_MFACE);
/* Tessellation recreated faceData, and the active layer indices need to get re-propagated
* from loops and polys to faces */
CustomData_bmesh_update_active_layers(&dm->faceData, &dm->polyData, &dm->loopData);
}
void CDDM_recalc_tessellation(DerivedMesh *dm)
{
CDDM_recalc_tessellation_ex(dm, true);
}
static void cdDM_free_internal(CDDerivedMesh *cddm)
{
if (cddm->pmap) MEM_freeN(cddm->pmap);
if (cddm->pmap_mem) MEM_freeN(cddm->pmap_mem);
}
static void cdDM_release(DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
if (DM_release(dm)) {
cdDM_free_internal(cddm);
MEM_freeN(cddm);
}
}
/**************** CDDM interface functions ****************/
static CDDerivedMesh *cdDM_create(const char *desc)
{
CDDerivedMesh *cddm;
DerivedMesh *dm;
cddm = MEM_callocN(sizeof(*cddm), desc);
dm = &cddm->dm;
dm->getMinMax = cdDM_getMinMax;
dm->getNumVerts = cdDM_getNumVerts;
dm->getNumEdges = cdDM_getNumEdges;
dm->getNumTessFaces = cdDM_getNumTessFaces;
dm->getNumLoops = cdDM_getNumLoops;
dm->getNumPolys = cdDM_getNumPolys;
dm->getVert = cdDM_getVert;
dm->getEdge = cdDM_getEdge;
dm->getTessFace = cdDM_getTessFace;
dm->copyVertArray = cdDM_copyVertArray;
dm->copyEdgeArray = cdDM_copyEdgeArray;
dm->copyTessFaceArray = cdDM_copyTessFaceArray;
dm->copyLoopArray = cdDM_copyLoopArray;
dm->copyPolyArray = cdDM_copyPolyArray;
dm->getVertData = DM_get_vert_data;
dm->getEdgeData = DM_get_edge_data;
dm->getTessFaceData = DM_get_tessface_data;
dm->getVertDataArray = DM_get_vert_data_layer;
dm->getEdgeDataArray = DM_get_edge_data_layer;
dm->getTessFaceDataArray = DM_get_tessface_data_layer;
dm->calcNormals = CDDM_calc_normals;
dm->calcLoopNormals = CDDM_calc_loop_normals;
dm->recalcTessellation = CDDM_recalc_tessellation;
dm->getVertCos = cdDM_getVertCos;
dm->getVertCo = cdDM_getVertCo;
dm->getVertNo = cdDM_getVertNo;
dm->getPBVH = cdDM_getPBVH;
dm->getPolyMap = cdDM_getPolyMap;
dm->drawVerts = cdDM_drawVerts;
dm->drawUVEdges = cdDM_drawUVEdges;
dm->drawEdges = cdDM_drawEdges;
dm->drawLooseEdges = cdDM_drawLooseEdges;
dm->drawMappedEdges = cdDM_drawMappedEdges;
dm->drawFacesSolid = cdDM_drawFacesSolid;
dm->drawFacesTex = cdDM_drawFacesTex;
dm->drawFacesGLSL = cdDM_drawFacesGLSL;
dm->drawMappedFaces = cdDM_drawMappedFaces;
dm->drawMappedFacesTex = cdDM_drawMappedFacesTex;
dm->drawMappedFacesGLSL = cdDM_drawMappedFacesGLSL;
dm->drawMappedFacesMat = cdDM_drawMappedFacesMat;
dm->foreachMappedVert = cdDM_foreachMappedVert;
dm->foreachMappedEdge = cdDM_foreachMappedEdge;
dm->foreachMappedLoop = cdDM_foreachMappedLoop;
dm->foreachMappedFaceCenter = cdDM_foreachMappedFaceCenter;
dm->release = cdDM_release;
return cddm;
}
DerivedMesh *CDDM_new(int numVerts, int numEdges, int numTessFaces, int numLoops, int numPolys)
{
CDDerivedMesh *cddm = cdDM_create("CDDM_new dm");
DerivedMesh *dm = &cddm->dm;
DM_init(dm, DM_TYPE_CDDM, numVerts, numEdges, numTessFaces, numLoops, numPolys);
CustomData_add_layer(&dm->vertData, CD_ORIGINDEX, CD_CALLOC, NULL, numVerts);
CustomData_add_layer(&dm->edgeData, CD_ORIGINDEX, CD_CALLOC, NULL, numEdges);
CustomData_add_layer(&dm->faceData, CD_ORIGINDEX, CD_CALLOC, NULL, numTessFaces);
CustomData_add_layer(&dm->polyData, CD_ORIGINDEX, CD_CALLOC, NULL, numPolys);
CustomData_add_layer(&dm->vertData, CD_MVERT, CD_CALLOC, NULL, numVerts);
CustomData_add_layer(&dm->edgeData, CD_MEDGE, CD_CALLOC, NULL, numEdges);
CustomData_add_layer(&dm->faceData, CD_MFACE, CD_CALLOC, NULL, numTessFaces);
CustomData_add_layer(&dm->loopData, CD_MLOOP, CD_CALLOC, NULL, numLoops);
CustomData_add_layer(&dm->polyData, CD_MPOLY, CD_CALLOC, NULL, numPolys);
cddm->mvert = CustomData_get_layer(&dm->vertData, CD_MVERT);
cddm->medge = CustomData_get_layer(&dm->edgeData, CD_MEDGE);
cddm->mface = CustomData_get_layer(&dm->faceData, CD_MFACE);
cddm->mloop = CustomData_get_layer(&dm->loopData, CD_MLOOP);
cddm->mpoly = CustomData_get_layer(&dm->polyData, CD_MPOLY);
return dm;
}
DerivedMesh *CDDM_from_mesh(Mesh *mesh)
{
CDDerivedMesh *cddm = cdDM_create(__func__);
DerivedMesh *dm = &cddm->dm;
CustomDataMask mask = CD_MASK_MESH & (~CD_MASK_MDISPS);
int alloctype;
/* this does a referenced copy, with an exception for fluidsim */
DM_init(dm, DM_TYPE_CDDM, mesh->totvert, mesh->totedge, mesh->totface,
mesh->totloop, mesh->totpoly);
dm->deformedOnly = 1;
dm->cd_flag = mesh->cd_flag;
alloctype = CD_REFERENCE;
CustomData_merge(&mesh->vdata, &dm->vertData, mask, alloctype,
mesh->totvert);
CustomData_merge(&mesh->edata, &dm->edgeData, mask, alloctype,
mesh->totedge);
CustomData_merge(&mesh->fdata, &dm->faceData, mask | CD_MASK_ORIGINDEX, alloctype,
mesh->totface);
CustomData_merge(&mesh->ldata, &dm->loopData, mask, alloctype,
mesh->totloop);
CustomData_merge(&mesh->pdata, &dm->polyData, mask, alloctype,
mesh->totpoly);
cddm->mvert = CustomData_get_layer(&dm->vertData, CD_MVERT);
cddm->medge = CustomData_get_layer(&dm->edgeData, CD_MEDGE);
cddm->mloop = CustomData_get_layer(&dm->loopData, CD_MLOOP);
cddm->mpoly = CustomData_get_layer(&dm->polyData, CD_MPOLY);
cddm->mface = CustomData_get_layer(&dm->faceData, CD_MFACE);
/* commented since even when CD_ORIGINDEX was first added this line fails
* on the default cube, (after editmode toggle too) - campbell */
#if 0
BLI_assert(CustomData_has_layer(&cddm->dm.faceData, CD_ORIGINDEX));
#endif
return dm;
}
DerivedMesh *CDDM_from_curve(Object *ob)
{
ListBase disp = {NULL, NULL};
if (ob->curve_cache) {
disp = ob->curve_cache->disp;
}
return CDDM_from_curve_displist(ob, &disp);
}
DerivedMesh *CDDM_from_curve_displist(Object *ob, ListBase *dispbase)
{
Curve *cu = (Curve *) ob->data;
DerivedMesh *dm;
CDDerivedMesh *cddm;
MVert *allvert;
MEdge *alledge;
MLoop *allloop;
MPoly *allpoly;
MLoopUV *alluv = NULL;
int totvert, totedge, totloop, totpoly;
bool use_orco_uv = (cu->flag & CU_UV_ORCO) != 0;
if (BKE_mesh_nurbs_displist_to_mdata(ob, dispbase, &allvert, &totvert, &alledge,
&totedge, &allloop, &allpoly, (use_orco_uv) ? &alluv : NULL,
&totloop, &totpoly) != 0)
{
/* Error initializing mdata. This often happens when curve is empty */
return CDDM_new(0, 0, 0, 0, 0);
}
dm = CDDM_new(totvert, totedge, 0, totloop, totpoly);
dm->deformedOnly = 1;
dm->dirty |= DM_DIRTY_NORMALS;
cddm = (CDDerivedMesh *)dm;
memcpy(cddm->mvert, allvert, totvert * sizeof(MVert));
memcpy(cddm->medge, alledge, totedge * sizeof(MEdge));
memcpy(cddm->mloop, allloop, totloop * sizeof(MLoop));
memcpy(cddm->mpoly, allpoly, totpoly * sizeof(MPoly));
if (alluv) {
const char *uvname = "Orco";
CustomData_add_layer_named(&cddm->dm.polyData, CD_MTEXPOLY, CD_DEFAULT, NULL, totpoly, uvname);
CustomData_add_layer_named(&cddm->dm.loopData, CD_MLOOPUV, CD_ASSIGN, alluv, totloop, uvname);
}
MEM_freeN(allvert);
MEM_freeN(alledge);
MEM_freeN(allloop);
MEM_freeN(allpoly);
return dm;
}
static void loops_to_customdata_corners(BMesh *bm, CustomData *facedata,
int cdindex, const BMLoop *l3[3],
int numCol, int numTex)
{
const BMLoop *l;
BMFace *f = l3[0]->f;
MTFace *texface;
MTexPoly *texpoly;
MCol *mcol;
MLoopCol *mloopcol;
MLoopUV *mloopuv;
int i, j, hasPCol = CustomData_has_layer(&bm->ldata, CD_PREVIEW_MLOOPCOL);
for (i = 0; i < numTex; i++) {
texface = CustomData_get_n(facedata, CD_MTFACE, cdindex, i);
texpoly = CustomData_bmesh_get_n(&bm->pdata, f->head.data, CD_MTEXPOLY, i);
ME_MTEXFACE_CPY(texface, texpoly);
for (j = 0; j < 3; j++) {
l = l3[j];
mloopuv = CustomData_bmesh_get_n(&bm->ldata, l->head.data, CD_MLOOPUV, i);
copy_v2_v2(texface->uv[j], mloopuv->uv);
}
}
for (i = 0; i < numCol; i++) {
mcol = CustomData_get_n(facedata, CD_MCOL, cdindex, i);
for (j = 0; j < 3; j++) {
l = l3[j];
mloopcol = CustomData_bmesh_get_n(&bm->ldata, l->head.data, CD_MLOOPCOL, i);
MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]);
}
}
if (hasPCol) {
mcol = CustomData_get(facedata, cdindex, CD_PREVIEW_MCOL);
for (j = 0; j < 3; j++) {
l = l3[j];
mloopcol = CustomData_bmesh_get(&bm->ldata, l->head.data, CD_PREVIEW_MLOOPCOL);
MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]);
}
}
}
/* used for both editbmesh and bmesh */
static DerivedMesh *cddm_from_bmesh_ex(struct BMesh *bm, const bool use_mdisps,
/* EditBMesh vars for use_tessface */
const bool use_tessface,
const int em_tottri, const BMLoop *(*em_looptris)[3]
)
{
DerivedMesh *dm = CDDM_new(bm->totvert,
bm->totedge,
use_tessface ? em_tottri : 0,
bm->totloop,
bm->totface);
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
BMIter iter;
BMVert *eve;
BMEdge *eed;
BMFace *efa;
MVert *mvert = cddm->mvert;
MEdge *medge = cddm->medge;
MFace *mface = cddm->mface;
MLoop *mloop = cddm->mloop;
MPoly *mpoly = cddm->mpoly;
int numCol = CustomData_number_of_layers(&bm->ldata, CD_MLOOPCOL);
int numTex = CustomData_number_of_layers(&bm->pdata, CD_MTEXPOLY);
int *index, add_orig;
CustomDataMask mask;
unsigned int i, j;
const int cd_vert_bweight_offset = CustomData_get_offset(&bm->vdata, CD_BWEIGHT);
const int cd_edge_bweight_offset = CustomData_get_offset(&bm->edata, CD_BWEIGHT);
const int cd_edge_crease_offset = CustomData_get_offset(&bm->edata, CD_CREASE);
dm->deformedOnly = 1;
/* don't add origindex layer if one already exists */
add_orig = !CustomData_has_layer(&bm->pdata, CD_ORIGINDEX);
mask = use_mdisps ? CD_MASK_DERIVEDMESH | CD_MASK_MDISPS : CD_MASK_DERIVEDMESH;
/* don't process shapekeys, we only feed them through the modifier stack as needed,
* e.g. for applying modifiers or the like*/
mask &= ~CD_MASK_SHAPEKEY;
CustomData_merge(&bm->vdata, &dm->vertData, mask,
CD_CALLOC, dm->numVertData);
CustomData_merge(&bm->edata, &dm->edgeData, mask,
CD_CALLOC, dm->numEdgeData);
CustomData_merge(&bm->ldata, &dm->loopData, mask,
CD_CALLOC, dm->numLoopData);
CustomData_merge(&bm->pdata, &dm->polyData, mask,
CD_CALLOC, dm->numPolyData);
/* add tessellation mface layers */
if (use_tessface) {
CustomData_from_bmeshpoly(&dm->faceData, &dm->polyData, &dm->loopData, em_tottri);
}
index = dm->getVertDataArray(dm, CD_ORIGINDEX);
BM_ITER_MESH_INDEX (eve, &iter, bm, BM_VERTS_OF_MESH, i) {
MVert *mv = &mvert[i];
copy_v3_v3(mv->co, eve->co);
BM_elem_index_set(eve, i); /* set_inline */
normal_float_to_short_v3(mv->no, eve->no);
mv->flag = BM_vert_flag_to_mflag(eve);
if (cd_vert_bweight_offset != -1) mv->bweight = BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eve, cd_vert_bweight_offset);
if (add_orig) *index++ = i;
CustomData_from_bmesh_block(&bm->vdata, &dm->vertData, eve->head.data, i);
}
bm->elem_index_dirty &= ~BM_VERT;
index = dm->getEdgeDataArray(dm, CD_ORIGINDEX);
BM_ITER_MESH_INDEX (eed, &iter, bm, BM_EDGES_OF_MESH, i) {
MEdge *med = &medge[i];
BM_elem_index_set(eed, i); /* set_inline */
med->v1 = BM_elem_index_get(eed->v1);
med->v2 = BM_elem_index_get(eed->v2);
med->flag = BM_edge_flag_to_mflag(eed);
/* handle this differently to editmode switching,
* only enable draw for single user edges rather then calculating angle */
if ((med->flag & ME_EDGEDRAW) == 0) {
if (eed->l && eed->l == eed->l->radial_next) {
med->flag |= ME_EDGEDRAW;
}
}
if (cd_edge_crease_offset != -1) med->crease = BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eed, cd_edge_crease_offset);
if (cd_edge_bweight_offset != -1) med->bweight = BM_ELEM_CD_GET_FLOAT_AS_UCHAR(eed, cd_edge_bweight_offset);
CustomData_from_bmesh_block(&bm->edata, &dm->edgeData, eed->head.data, i);
if (add_orig) *index++ = i;
}
bm->elem_index_dirty &= ~BM_EDGE;
/* avoid this where possiblem, takes extra memory */
if (use_tessface) {
BM_mesh_elem_index_ensure(bm, BM_FACE);
index = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
for (i = 0; i < dm->numTessFaceData; i++) {
MFace *mf = &mface[i];
const BMLoop **l = em_looptris[i];
efa = l[0]->f;
mf->v1 = BM_elem_index_get(l[0]->v);
mf->v2 = BM_elem_index_get(l[1]->v);
mf->v3 = BM_elem_index_get(l[2]->v);
mf->v4 = 0;
mf->mat_nr = efa->mat_nr;
mf->flag = BM_face_flag_to_mflag(efa);
/* map mfaces to polygons in the same cddm intentionally */
*index++ = BM_elem_index_get(efa);
loops_to_customdata_corners(bm, &dm->faceData, i, l, numCol, numTex);
test_index_face(mf, &dm->faceData, i, 3);
}
}
index = CustomData_get_layer(&dm->polyData, CD_ORIGINDEX);
j = 0;
BM_ITER_MESH_INDEX (efa, &iter, bm, BM_FACES_OF_MESH, i) {
BMLoop *l_iter;
BMLoop *l_first;
MPoly *mp = &mpoly[i];
BM_elem_index_set(efa, i); /* set_inline */
mp->totloop = efa->len;
mp->flag = BM_face_flag_to_mflag(efa);
mp->loopstart = j;
mp->mat_nr = efa->mat_nr;
l_iter = l_first = BM_FACE_FIRST_LOOP(efa);
do {
mloop->v = BM_elem_index_get(l_iter->v);
mloop->e = BM_elem_index_get(l_iter->e);
CustomData_from_bmesh_block(&bm->ldata, &dm->loopData, l_iter->head.data, j);
BM_elem_index_set(l_iter, j); /* set_inline */
j++;
mloop++;
} while ((l_iter = l_iter->next) != l_first);
CustomData_from_bmesh_block(&bm->pdata, &dm->polyData, efa->head.data, i);
if (add_orig) *index++ = i;
}
bm->elem_index_dirty &= ~(BM_FACE | BM_LOOP);
dm->cd_flag = BM_mesh_cd_flag_from_bmesh(bm);
return dm;
}
struct DerivedMesh *CDDM_from_bmesh(struct BMesh *bm, const bool use_mdisps)
{
return cddm_from_bmesh_ex(bm, use_mdisps, false,
/* these vars are for editmesh only */
0, NULL);
}
DerivedMesh *CDDM_from_editbmesh(BMEditMesh *em, const bool use_mdisps, const bool use_tessface)
{
return cddm_from_bmesh_ex(em->bm, use_mdisps,
/* editmesh */
use_tessface, em->tottri, (const BMLoop *(*)[3])em->looptris);
}
static DerivedMesh *cddm_copy_ex(DerivedMesh *source, int faces_from_tessfaces)
{
CDDerivedMesh *cddm = cdDM_create("CDDM_copy cddm");
DerivedMesh *dm = &cddm->dm;
int numVerts = source->numVertData;
int numEdges = source->numEdgeData;
int numTessFaces = source->numTessFaceData;
int numLoops = source->numLoopData;
int numPolys = source->numPolyData;
/* ensure these are created if they are made on demand */
source->getVertDataArray(source, CD_ORIGINDEX);
source->getEdgeDataArray(source, CD_ORIGINDEX);
source->getTessFaceDataArray(source, CD_ORIGINDEX);
source->getPolyDataArray(source, CD_ORIGINDEX);
/* this initializes dm, and copies all non mvert/medge/mface layers */
DM_from_template(dm, source, DM_TYPE_CDDM, numVerts, numEdges, numTessFaces,
numLoops, numPolys);
dm->deformedOnly = source->deformedOnly;
dm->cd_flag = source->cd_flag;
dm->dirty = source->dirty;
CustomData_copy_data(&source->vertData, &dm->vertData, 0, 0, numVerts);
CustomData_copy_data(&source->edgeData, &dm->edgeData, 0, 0, numEdges);
CustomData_copy_data(&source->faceData, &dm->faceData, 0, 0, numTessFaces);
/* now add mvert/medge/mface layers */
cddm->mvert = source->dupVertArray(source);
cddm->medge = source->dupEdgeArray(source);
cddm->mface = source->dupTessFaceArray(source);
CustomData_add_layer(&dm->vertData, CD_MVERT, CD_ASSIGN, cddm->mvert, numVerts);
CustomData_add_layer(&dm->edgeData, CD_MEDGE, CD_ASSIGN, cddm->medge, numEdges);
CustomData_add_layer(&dm->faceData, CD_MFACE, CD_ASSIGN, cddm->mface, numTessFaces);
if (!faces_from_tessfaces)
DM_DupPolys(source, dm);
else
CDDM_tessfaces_to_faces(dm);
cddm->mloop = CustomData_get_layer(&dm->loopData, CD_MLOOP);
cddm->mpoly = CustomData_get_layer(&dm->polyData, CD_MPOLY);
return dm;
}
DerivedMesh *CDDM_copy(DerivedMesh *source)
{
return cddm_copy_ex(source, 0);
}
DerivedMesh *CDDM_copy_from_tessface(DerivedMesh *source)
{
return cddm_copy_ex(source, 1);
}
/* note, the CD_ORIGINDEX layers are all 0, so if there is a direct
* relationship between mesh data this needs to be set by the caller. */
DerivedMesh *CDDM_from_template(DerivedMesh *source,
int numVerts, int numEdges, int numTessFaces,
int numLoops, int numPolys)
{
CDDerivedMesh *cddm = cdDM_create("CDDM_from_template dest");
DerivedMesh *dm = &cddm->dm;
/* ensure these are created if they are made on demand */
source->getVertDataArray(source, CD_ORIGINDEX);
source->getEdgeDataArray(source, CD_ORIGINDEX);
source->getTessFaceDataArray(source, CD_ORIGINDEX);
source->getPolyDataArray(source, CD_ORIGINDEX);
/* this does a copy of all non mvert/medge/mface layers */
DM_from_template(dm, source, DM_TYPE_CDDM, numVerts, numEdges, numTessFaces, numLoops, numPolys);
/* now add mvert/medge/mface layers */
CustomData_add_layer(&dm->vertData, CD_MVERT, CD_CALLOC, NULL, numVerts);
CustomData_add_layer(&dm->edgeData, CD_MEDGE, CD_CALLOC, NULL, numEdges);
CustomData_add_layer(&dm->faceData, CD_MFACE, CD_CALLOC, NULL, numTessFaces);
CustomData_add_layer(&dm->loopData, CD_MLOOP, CD_CALLOC, NULL, numLoops);
CustomData_add_layer(&dm->polyData, CD_MPOLY, CD_CALLOC, NULL, numPolys);
if (!CustomData_get_layer(&dm->vertData, CD_ORIGINDEX))
CustomData_add_layer(&dm->vertData, CD_ORIGINDEX, CD_CALLOC, NULL, numVerts);
if (!CustomData_get_layer(&dm->edgeData, CD_ORIGINDEX))
CustomData_add_layer(&dm->edgeData, CD_ORIGINDEX, CD_CALLOC, NULL, numEdges);
if (!CustomData_get_layer(&dm->faceData, CD_ORIGINDEX))
CustomData_add_layer(&dm->faceData, CD_ORIGINDEX, CD_CALLOC, NULL, numTessFaces);
cddm->mvert = CustomData_get_layer(&dm->vertData, CD_MVERT);
cddm->medge = CustomData_get_layer(&dm->edgeData, CD_MEDGE);
cddm->mface = CustomData_get_layer(&dm->faceData, CD_MFACE);
cddm->mloop = CustomData_get_layer(&dm->loopData, CD_MLOOP);
cddm->mpoly = CustomData_get_layer(&dm->polyData, CD_MPOLY);
return dm;
}
void CDDM_apply_vert_coords(DerivedMesh *dm, float (*vertCoords)[3])
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
MVert *vert;
int i;
/* this will just return the pointer if it wasn't a referenced layer */
vert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData);
cddm->mvert = vert;
for (i = 0; i < dm->numVertData; ++i, ++vert)
copy_v3_v3(vert->co, vertCoords[i]);
cddm->dm.dirty |= DM_DIRTY_NORMALS;
}
void CDDM_apply_vert_normals(DerivedMesh *dm, short (*vertNormals)[3])
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
MVert *vert;
int i;
/* this will just return the pointer if it wasn't a referenced layer */
vert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData);
cddm->mvert = vert;
for (i = 0; i < dm->numVertData; ++i, ++vert)
copy_v3_v3_short(vert->no, vertNormals[i]);
cddm->dm.dirty &= ~DM_DIRTY_NORMALS;
}
void CDDM_calc_normals_mapping_ex(DerivedMesh *dm, const bool only_face_normals)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
float (*face_nors)[3] = NULL;
if (dm->numVertData == 0) {
cddm->dm.dirty &= ~DM_DIRTY_NORMALS;
return;
}
/* now we skip calculating vertex normals for referenced layer,
* no need to duplicate verts.
* WATCH THIS, bmesh only change!,
* need to take care of the side effects here - campbell */
#if 0
/* we don't want to overwrite any referenced layers */
cddm->mvert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData);
#endif
if (dm->numTessFaceData == 0) {
/* No tessellation on this mesh yet, need to calculate one.
*
* Important not to update face normals from polys since it
* interferes with assigning the new normal layer in the following code.
*/
CDDM_recalc_tessellation_ex(dm, false);
}
else {
/* A tessellation already exists, it should always have a CD_ORIGINDEX */
BLI_assert(CustomData_has_layer(&dm->faceData, CD_ORIGINDEX));
CustomData_free_layers(&dm->faceData, CD_NORMAL, dm->numTessFaceData);
}
face_nors = MEM_mallocN(sizeof(*face_nors) * dm->numTessFaceData, "face_nors");
/* calculate face normals */
BKE_mesh_calc_normals_mapping_ex(cddm->mvert, dm->numVertData, CDDM_get_loops(dm), CDDM_get_polys(dm),
dm->numLoopData, dm->numPolyData, NULL, cddm->mface, dm->numTessFaceData,
CustomData_get_layer(&dm->faceData, CD_ORIGINDEX), face_nors,
only_face_normals);
CustomData_add_layer(&dm->faceData, CD_NORMAL, CD_ASSIGN, face_nors, dm->numTessFaceData);
cddm->dm.dirty &= ~DM_DIRTY_NORMALS;
}
void CDDM_calc_normals_mapping(DerivedMesh *dm)
{
/* use this to skip calculating normals on original vert's, this may need to be changed */
const bool only_face_normals = CustomData_is_referenced_layer(&dm->vertData, CD_MVERT);
CDDM_calc_normals_mapping_ex(dm, only_face_normals);
}
#if 0
/* bmesh note: this matches what we have in trunk */
void CDDM_calc_normals(DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
float (*poly_nors)[3];
if (dm->numVertData == 0) return;
/* we don't want to overwrite any referenced layers */
cddm->mvert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData);
/* fill in if it exists */
poly_nors = CustomData_get_layer(&dm->polyData, CD_NORMAL);
if (!poly_nors) {
poly_nors = CustomData_add_layer(&dm->polyData, CD_NORMAL, CD_CALLOC, NULL, dm->numPolyData);
}
BKE_mesh_calc_normals_poly(cddm->mvert, dm->numVertData, CDDM_get_loops(dm), CDDM_get_polys(dm),
dm->numLoopData, dm->numPolyData, poly_nors, false);
cddm->dm.dirty &= ~DM_DIRTY_NORMALS;
}
#else
/* poly normal layer is now only for final display */
void CDDM_calc_normals(DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
/* we don't want to overwrite any referenced layers */
cddm->mvert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData);
BKE_mesh_calc_normals_poly(cddm->mvert, dm->numVertData, CDDM_get_loops(dm), CDDM_get_polys(dm),
dm->numLoopData, dm->numPolyData, NULL, false);
cddm->dm.dirty &= ~DM_DIRTY_NORMALS;
}
#endif
void CDDM_calc_loop_normals(DerivedMesh *dm, const float split_angle)
{
MVert *mverts = dm->getVertArray(dm);
MEdge *medges = dm->getEdgeArray(dm);
MLoop *mloops = dm->getLoopArray(dm);
MPoly *mpolys = dm->getPolyArray(dm);
CustomData *ldata, *pdata;
float (*lnors)[3];
float (*pnors)[3];
const int numVerts = dm->getNumVerts(dm);
const int numEdges = dm->getNumEdges(dm);
const int numLoops = dm->getNumLoops(dm);
const int numPolys = dm->getNumPolys(dm);
ldata = dm->getLoopDataLayout(dm);
if (CustomData_has_layer(ldata, CD_NORMAL)) {
lnors = CustomData_get_layer(ldata, CD_NORMAL);
}
else {
lnors = CustomData_add_layer(ldata, CD_NORMAL, CD_CALLOC, NULL, numLoops);
}
/* Compute poly (always needed) and vert normals. */
/* Note we can't use DM_ensure_normals, since it won't keep computed poly nors... */
pdata = dm->getPolyDataLayout(dm);
pnors = CustomData_get_layer(pdata, CD_NORMAL);
if (!pnors) {
pnors = CustomData_add_layer(pdata, CD_NORMAL, CD_CALLOC, NULL, numPolys);
}
BKE_mesh_calc_normals_poly(mverts, numVerts, mloops, mpolys, numLoops, numPolys, pnors,
(dm->dirty & DM_DIRTY_NORMALS) ? false : true);
dm->dirty &= ~DM_DIRTY_NORMALS;
BKE_mesh_normals_loop_split(mverts, numVerts, medges, numEdges, mloops, lnors, numLoops,
mpolys, pnors, numPolys, split_angle);
}
void CDDM_calc_normals_tessface(DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
float (*face_nors)[3];
if (dm->numVertData == 0) return;
/* we don't want to overwrite any referenced layers */
cddm->mvert = CustomData_duplicate_referenced_layer(&dm->vertData, CD_MVERT, dm->numVertData);
/* fill in if it exists */
face_nors = CustomData_get_layer(&dm->faceData, CD_NORMAL);
if (!face_nors) {
face_nors = CustomData_add_layer(&dm->faceData, CD_NORMAL, CD_CALLOC, NULL, dm->numTessFaceData);
}
BKE_mesh_calc_normals_tessface(cddm->mvert, dm->numVertData,
cddm->mface, dm->numTessFaceData, face_nors);
cddm->dm.dirty &= ~DM_DIRTY_NORMALS;
}
#if 1
/**
* Poly compare with vtargetmap
* Function used by #CDDM_merge_verts.
* The function compares poly_source after applying vtargetmap, with poly_target.
* The two polys are identical if they share the same vertices in the same order, or in reverse order,
* but starting position loopstart may be different.
* The function is called with direct_reverse=1 for same order (i.e. same normal),
* and may be called again with direct_reverse=-1 for reverse order.
* \return 1 if polys are identical, 0 if polys are different.
*/
static int cddm_poly_compare(MLoop *mloop_array, MPoly *mpoly_source, MPoly *mpoly_target, const int *vtargetmap, const int direct_reverse)
{
int vert_source, first_vert_source, vert_target;
int i_loop_source;
int i_loop_target, i_loop_target_start, i_loop_target_offset, i_loop_target_adjusted;
bool compare_completed = false;
bool same_loops = false;
MLoop *mloop_source, *mloop_target;
BLI_assert(direct_reverse == 1 || direct_reverse == -1);
i_loop_source = 0;
mloop_source = mloop_array + mpoly_source->loopstart;
vert_source = mloop_source->v;
if (vtargetmap[vert_source] != -1) {
vert_source = vtargetmap[vert_source];
}
else {
/* All source loop vertices should be mapped */
BLI_assert(false);
}
/* Find same vertex within mpoly_target's loops */
mloop_target = mloop_array + mpoly_target->loopstart;
for (i_loop_target = 0; i_loop_target < mpoly_target->totloop; i_loop_target++, mloop_target++) {
if (mloop_target->v == vert_source) {
break;
}
}
/* If same vertex not found, then polys cannot be equal */
if (i_loop_target >= mpoly_target->totloop) {
return false;
}
/* Now mloop_source and m_loop_target have one identical vertex */
/* mloop_source is at position 0, while m_loop_target has advanced to find identical vertex */
/* Go around the loop and check that all vertices match in same order */
/* Skipping source loops when consecutive source vertices are mapped to same target vertex */
i_loop_target_start = i_loop_target;
i_loop_target_offset = 0;
first_vert_source = vert_source;
compare_completed = false;
same_loops = false;
while (!compare_completed) {
vert_target = mloop_target->v;
/* First advance i_loop_source, until it points to different vertex, after mapping applied */
do {
i_loop_source++;
if (i_loop_source == mpoly_source->totloop) {
/* End of loops for source, must match end of loop for target. */
if (i_loop_target_offset == mpoly_target->totloop - 1) {
compare_completed = true;
same_loops = true;
break; /* Polys are identical */
}
else {
compare_completed = true;
same_loops = false;
break; /* Polys are different */
}
}
mloop_source++;
vert_source = mloop_source->v;
if (vtargetmap[vert_source] != -1) {
vert_source = vtargetmap[vert_source];
}
else {
/* All source loop vertices should be mapped */
BLI_assert(false);
}
} while (vert_source == vert_target);
if (compare_completed) {
break;
}
/* Now advance i_loop_target as well */
i_loop_target_offset++;
if (i_loop_target_offset == mpoly_target->totloop) {
/* End of loops for target only, that means no match */
/* except if all remaining source vertices are mapped to first target */
for (; i_loop_source < mpoly_source->totloop; i_loop_source++, mloop_source++) {
vert_source = vtargetmap[mloop_source->v];
if (vert_source != first_vert_source) {
compare_completed = true;
same_loops = false;
break;
}
}
if (!compare_completed) {
same_loops = true;
}
break;
}
/* Adjust i_loop_target for cycling around and for direct/reverse order defined by delta = +1 or -1 */
i_loop_target_adjusted = (i_loop_target_start + direct_reverse * i_loop_target_offset) % mpoly_target->totloop;
if (i_loop_target_adjusted < 0) {
i_loop_target_adjusted += mpoly_target->totloop;
}
mloop_target = mloop_array + mpoly_target->loopstart + i_loop_target_adjusted;
vert_target = mloop_target->v;
if (vert_target != vert_source) {
same_loops = false; /* Polys are different */
break;
}
}
return same_loops;
}
/* Utility stuff for using GHash with polys */
typedef struct PolyKey {
int poly_index; /* index of the MPoly within the derived mesh */
int totloops; /* number of loops in the poly */
unsigned int hash_sum; /* Sum of all vertices indices */
unsigned int hash_xor; /* Xor of all vertices indices */
} PolyKey;
static unsigned int poly_gset_hash_fn(const void *key)
{
const PolyKey *pk = key;
return pk->hash_sum;
}
static bool poly_gset_compare_fn(const void *k1, const void *k2)
{
const PolyKey *pk1 = k1;
const PolyKey *pk2 = k2;
if ((pk1->hash_sum == pk2->hash_sum) &&
(pk1->hash_xor == pk2->hash_xor) &&
(pk1->totloops == pk2->totloops))
{
/* Equality - note that this does not mean equality of polys */
return 0;
}
else {
return 1;
}
}
/**
* Merge Verts
*
* This frees dm, and returns a new one.
*
* \param vtargetmap The table that maps vertices to target vertices. a value of -1
* indicates a vertex is a target, and is to be kept.
* This array is aligned with 'dm->numVertData'
*
* \param tot_vtargetmap The number of non '-1' values in vtargetmap. (not the size)
*
* \param merge_mode enum with two modes.
* - #CDDM_MERGE_VERTS_DUMP_IF_MAPPED
* When called by the Mirror Modifier,
* In this mode it skips any faces that have all vertices merged (to avoid creating pairs
* of faces sharing the same set of vertices)
* - #CDDM_MERGE_VERTS_DUMP_IF_EQUAL
* When called by the Array Modifier,
* In this mode, faces where all vertices are merged are double-checked,
* to see whether all target vertices actually make up a poly already.
* Indeed it could be that all of a poly's vertices are merged,
* but merged to vertices that do not make up a single poly,
* in which case the original poly should not be dumped.
* Actually this later behavior could apply to the Mirror Modifier as well, but the additional checks are
* costly and not necessary in the case of mirror, because each vertex is only merged to its own mirror.
*
* \note #CDDM_recalc_tessellation has to run on the returned DM if you want to access tessfaces.
*/
DerivedMesh *CDDM_merge_verts(DerivedMesh *dm, const int *vtargetmap, const int tot_vtargetmap, const int merge_mode)
{
// #define USE_LOOPS
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
CDDerivedMesh *cddm2 = NULL;
const int totvert = dm->numVertData;
const int totedge = dm->numEdgeData;
const int totloop = dm->numLoopData;
const int totpoly = dm->numPolyData;
const int totvert_final = totvert - tot_vtargetmap;
MVert *mv, *mvert = MEM_mallocN(sizeof(*mvert) * totvert_final, __func__);
int *oldv = MEM_mallocN(sizeof(*oldv) * totvert_final, __func__);
int *newv = MEM_mallocN(sizeof(*newv) * totvert, __func__);
STACK_DECLARE(mvert);
STACK_DECLARE(oldv);
MEdge *med, *medge = MEM_mallocN(sizeof(*medge) * totedge, __func__);
int *olde = MEM_mallocN(sizeof(*olde) * totedge, __func__);
int *newe = MEM_mallocN(sizeof(*newe) * totedge, __func__);
STACK_DECLARE(medge);
STACK_DECLARE(olde);
MLoop *ml, *mloop = MEM_mallocN(sizeof(*mloop) * totloop, __func__);
int *oldl = MEM_mallocN(sizeof(*oldl) * totloop, __func__);
#ifdef USE_LOOPS
int newl = MEM_mallocN(sizeof(*newl) * totloop, __func__);
#endif
STACK_DECLARE(mloop);
STACK_DECLARE(oldl);
MPoly *mp, *mpoly = MEM_mallocN(sizeof(*medge) * totpoly, __func__);
int *oldp = MEM_mallocN(sizeof(*oldp) * totpoly, __func__);
STACK_DECLARE(mpoly);
STACK_DECLARE(oldp);
EdgeHash *ehash = BLI_edgehash_new_ex(__func__, totedge);
int i, j, c;
PolyKey *poly_keys;
GSet *poly_gset = NULL;
STACK_INIT(oldv, totvert_final);
STACK_INIT(olde, totedge);
STACK_INIT(oldl, totloop);
STACK_INIT(oldp, totpoly);
STACK_INIT(mvert, totvert_final);
STACK_INIT(medge, totedge);
STACK_INIT(mloop, totloop);
STACK_INIT(mpoly, totpoly);
/* fill newl with destination vertex indices */
mv = cddm->mvert;
c = 0;
for (i = 0; i < totvert; i++, mv++) {
if (vtargetmap[i] == -1) {
STACK_PUSH(oldv, i);
STACK_PUSH(mvert, *mv);
newv[i] = c++;
}
else {
/* dummy value */
newv[i] = 0;
}
}
/* now link target vertices to destination indices */
for (i = 0; i < totvert; i++) {
if (vtargetmap[i] != -1) {
newv[i] = newv[vtargetmap[i]];
}
}
/* Don't remap vertices in cddm->mloop, because we need to know the original
* indices in order to skip faces with all vertices merged.
* The "update loop indices..." section further down remaps vertices in mloop.
*/
/* now go through and fix edges and faces */
med = cddm->medge;
c = 0;
for (i = 0; i < totedge; i++, med++) {
const unsigned int v1 = (vtargetmap[med->v1] != -1) ? vtargetmap[med->v1] : med->v1;
const unsigned int v2 = (vtargetmap[med->v2] != -1) ? vtargetmap[med->v2] : med->v2;
if (LIKELY(v1 != v2)) {
void **eh_p = BLI_edgehash_lookup_p(ehash, v1, v2);
if (eh_p) {
newe[i] = GET_INT_FROM_POINTER(*eh_p);
}
else {
STACK_PUSH(olde, i);
STACK_PUSH(medge, *med);
newe[i] = c;
BLI_edgehash_insert(ehash, v1, v2, SET_INT_IN_POINTER(c));
c++;
}
}
else {
newe[i] = -1;
}
}
if (merge_mode == CDDM_MERGE_VERTS_DUMP_IF_EQUAL) {
/* In this mode, we need to determine, whenever a poly' vertices are all mapped */
/* if the targets already make up a poly, in which case the new poly is dropped */
/* This poly equality check is rather complex. We use a BLI_ghash to speed it up with a first level check */
PolyKey *mpgh;
poly_keys = MEM_mallocN(sizeof(PolyKey) * totpoly, __func__);
poly_gset = BLI_gset_new_ex(poly_gset_hash_fn, poly_gset_compare_fn, __func__, totpoly);
/* Duplicates allowed because our compare function is not pure equality */
BLI_gset_flag_set(poly_gset, GHASH_FLAG_ALLOW_DUPES);
mp = cddm->mpoly;
mpgh = poly_keys;
for (i = 0; i < totpoly; i++, mp++, mpgh++) {
mpgh->poly_index = i;
mpgh->totloops = mp->totloop;
ml = cddm->mloop + mp->loopstart;
mpgh->hash_sum = mpgh->hash_xor = 0;
for (j = 0; j < mp->totloop; j++, ml++) {
mpgh->hash_sum += ml->v;
mpgh->hash_xor ^= ml->v;
}
BLI_gset_insert(poly_gset, mpgh);
}
if (cddm->pmap) {
MEM_freeN(cddm->pmap);
MEM_freeN(cddm->pmap_mem);
}
/* Can we optimise by reusing an old pmap ? How do we know an old pmap is stale ? */
/* When called by MOD_array.c, the cddm has just been created, so it has no valid pmap. */
BKE_mesh_vert_poly_map_create(&cddm->pmap, &cddm->pmap_mem,
cddm->mpoly, cddm->mloop,
totvert, totpoly, totloop);
} /* done preparing for fast poly compare */
mp = cddm->mpoly;
for (i = 0; i < totpoly; i++, mp++) {
MPoly *mp_new;
ml = cddm->mloop + mp->loopstart;
/* check faces with all vertices merged */
{
bool all_vertices_merged = true;
for (j = 0; j < mp->totloop; j++, ml++) {
if (vtargetmap[ml->v] == -1) {
all_vertices_merged = false;
break;
}
}
if (UNLIKELY(all_vertices_merged)) {
if (merge_mode == CDDM_MERGE_VERTS_DUMP_IF_MAPPED) {
/* In this mode, all vertices merged is enough to dump face */
continue;
}
else if (merge_mode == CDDM_MERGE_VERTS_DUMP_IF_EQUAL) {
/* Additional condition for face dump: target vertices must make up an identical face */
/* The test has 2 steps: (1) first step is fast ghash lookup, but not failproof */
/* (2) second step is thorough but more costly poly compare */
int i_poly, v_target, v_prev;
bool found = false;
PolyKey pkey;
/* Use poly_gset for fast (although not 100% certain) identification of same poly */
/* First, make up a poly_summary structure */
ml = cddm->mloop + mp->loopstart;
pkey.hash_sum = pkey.hash_xor = 0;
pkey.totloops = 0;
v_prev = vtargetmap[(ml + mp->totloop -1)->v]; /* since it loops around, the prev of first is the last */
for (j = 0; j < mp->totloop; j++, ml++) {
v_target = vtargetmap[ml->v]; /* Cannot be -1, they are all mapped */
if (v_target == v_prev) {
/* consecutive vertices in loop map to the same target: discard */
/* but what about last to first ? */
continue;
}
pkey.hash_sum += v_target;
pkey.hash_xor ^= v_target;
pkey.totloops++;
v_prev = v_target;
}
if (BLI_gset_haskey(poly_gset, &pkey)) {
/* There might be a poly that matches this one.
* We could just leave it there and say there is, and do a "continue".
* ... but we are checking whether there is an exact poly match.
* It's not so costly in terms of CPU since it's very rare, just a lot of complex code.
*/
/* Consider current loop again */
ml = cddm->mloop + mp->loopstart;
/* Consider the target of the loop's first vert */
v_target = vtargetmap[ml->v];
/* Now see if v_target belongs to a poly that shares all vertices with source poly,
* in same order, or reverse order */
for (i_poly = 0; i_poly < cddm->pmap[v_target].count; i_poly++) {
MPoly *target_poly = cddm->mpoly + *(cddm->pmap[v_target].indices + i_poly);
if (cddm_poly_compare(cddm->mloop, mp, target_poly, vtargetmap, +1) ||
cddm_poly_compare(cddm->mloop, mp, target_poly, vtargetmap, -1))
{
found = true;
break;
}
}
if (found) {
/* Current poly's vertices are mapped to a poly that is strictly identical */
/* Current poly is dumped */
continue;
}
}
}
}
}
/* Here either the poly's vertices were not all merged
* or they were all merged, but targets do not make up an identical poly,
* the poly is retained.
*/
ml = cddm->mloop + mp->loopstart;
c = 0;
for (j = 0; j < mp->totloop; j++, ml++) {
unsigned int v1, v2;
med = cddm->medge + ml->e;
v1 = (vtargetmap[med->v1] != -1) ? vtargetmap[med->v1] : med->v1;
v2 = (vtargetmap[med->v2] != -1) ? vtargetmap[med->v2] : med->v2;
if (LIKELY(v1 != v2)) {
#ifdef USE_LOOPS
newl[j + mp->loopstart] = STACK_SIZE(mloop);
#endif
STACK_PUSH(oldl, j + mp->loopstart);
STACK_PUSH(mloop, *ml);
c++;
}
}
if (UNLIKELY(c == 0)) {
continue;
}
mp_new = STACK_PUSH_RET_PTR(mpoly);
*mp_new = *mp;
mp_new->totloop = c;
mp_new->loopstart = STACK_SIZE(mloop) - c;
STACK_PUSH(oldp, i);
} /* end of the loop that tests polys */
if (poly_gset) {
// printf("hash quality %.6f\n", BLI_gset_calc_quality(poly_gset));
BLI_gset_free(poly_gset, NULL);
MEM_freeN(poly_keys);
}
/*create new cddm*/
cddm2 = (CDDerivedMesh *) CDDM_from_template((DerivedMesh *)cddm, STACK_SIZE(mvert), STACK_SIZE(medge), 0, STACK_SIZE(mloop), STACK_SIZE(mpoly));
/*update edge indices and copy customdata*/
med = medge;
for (i = 0; i < cddm2->dm.numEdgeData; i++, med++) {
if (newv[med->v1] != -1)
med->v1 = newv[med->v1];
if (newv[med->v2] != -1)
med->v2 = newv[med->v2];
CustomData_copy_data(&dm->edgeData, &cddm2->dm.edgeData, olde[i], i, 1);
}
/*update loop indices and copy customdata*/
ml = mloop;
for (i = 0; i < cddm2->dm.numLoopData; i++, ml++) {
if (newe[ml->e] != -1)
ml->e = newe[ml->e];
if (newv[ml->v] != -1)
ml->v = newv[ml->v];
CustomData_copy_data(&dm->loopData, &cddm2->dm.loopData, oldl[i], i, 1);
}
/*copy vertex customdata*/
mv = mvert;
for (i = 0; i < cddm2->dm.numVertData; i++, mv++) {
CustomData_copy_data(&dm->vertData, &cddm2->dm.vertData, oldv[i], i, 1);
}
/*copy poly customdata*/
mp = mpoly;
for (i = 0; i < cddm2->dm.numPolyData; i++, mp++) {
CustomData_copy_data(&dm->polyData, &cddm2->dm.polyData, oldp[i], i, 1);
}
/*copy over data. CustomData_add_layer can do this, need to look it up.*/
memcpy(cddm2->mvert, mvert, sizeof(MVert) * STACK_SIZE(mvert));
memcpy(cddm2->medge, medge, sizeof(MEdge) * STACK_SIZE(medge));
memcpy(cddm2->mloop, mloop, sizeof(MLoop) * STACK_SIZE(mloop));
memcpy(cddm2->mpoly, mpoly, sizeof(MPoly) * STACK_SIZE(mpoly));
MEM_freeN(mvert);
MEM_freeN(medge);
MEM_freeN(mloop);
MEM_freeN(mpoly);
MEM_freeN(newv);
MEM_freeN(newe);
#ifdef USE_LOOPS
MEM_freeN(newl);
#endif
MEM_freeN(oldv);
MEM_freeN(olde);
MEM_freeN(oldl);
MEM_freeN(oldp);;
BLI_edgehash_free(ehash, NULL);
/*free old derivedmesh*/
dm->needsFree = 1;
dm->release(dm);
return (DerivedMesh *)cddm2;
}
#endif
void CDDM_calc_edges_tessface(DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
CustomData edgeData;
EdgeSetIterator *ehi;
MFace *mf = cddm->mface;
MEdge *med;
EdgeSet *eh;
int i, *index, numEdges, numFaces = dm->numTessFaceData;
eh = BLI_edgeset_new_ex(__func__, BLI_EDGEHASH_SIZE_GUESS_FROM_POLYS(numFaces));
for (i = 0; i < numFaces; i++, mf++) {
BLI_edgeset_add(eh, mf->v1, mf->v2);
BLI_edgeset_add(eh, mf->v2, mf->v3);
if (mf->v4) {
BLI_edgeset_add(eh, mf->v3, mf->v4);
BLI_edgeset_add(eh, mf->v4, mf->v1);
}
else {
BLI_edgeset_add(eh, mf->v3, mf->v1);
}
}
numEdges = BLI_edgeset_size(eh);
/* write new edges into a temporary CustomData */
CustomData_reset(&edgeData);
CustomData_add_layer(&edgeData, CD_MEDGE, CD_CALLOC, NULL, numEdges);
CustomData_add_layer(&edgeData, CD_ORIGINDEX, CD_CALLOC, NULL, numEdges);
med = CustomData_get_layer(&edgeData, CD_MEDGE);
index = CustomData_get_layer(&edgeData, CD_ORIGINDEX);
for (ehi = BLI_edgesetIterator_new(eh), i = 0;
BLI_edgesetIterator_isDone(ehi) == false;
BLI_edgesetIterator_step(ehi), i++, med++, index++)
{
BLI_edgesetIterator_getKey(ehi, &med->v1, &med->v2);
med->flag = ME_EDGEDRAW | ME_EDGERENDER;
*index = ORIGINDEX_NONE;
}
BLI_edgesetIterator_free(ehi);
/* free old CustomData and assign new one */
CustomData_free(&dm->edgeData, dm->numEdgeData);
dm->edgeData = edgeData;
dm->numEdgeData = numEdges;
cddm->medge = CustomData_get_layer(&dm->edgeData, CD_MEDGE);
BLI_edgeset_free(eh);
}
/* warning, this uses existing edges but CDDM_calc_edges_tessface() doesn't */
void CDDM_calc_edges(DerivedMesh *dm)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
CustomData edgeData;
EdgeHashIterator *ehi;
MPoly *mp = cddm->mpoly;
MLoop *ml;
MEdge *med, *origmed;
EdgeHash *eh;
unsigned int eh_reserve;
int v1, v2;
const int *eindex;
int i, j, *index;
const int numFaces = dm->numPolyData;
const int numLoops = dm->numLoopData;
int numEdges = dm->numEdgeData;
eindex = DM_get_edge_data_layer(dm, CD_ORIGINDEX);
med = cddm->medge;
eh_reserve = max_ii(med ? numEdges : 0, BLI_EDGEHASH_SIZE_GUESS_FROM_LOOPS(numLoops));
eh = BLI_edgehash_new_ex(__func__, eh_reserve);
if (med) {
for (i = 0; i < numEdges; i++, med++) {
BLI_edgehash_insert(eh, med->v1, med->v2, SET_INT_IN_POINTER(i + 1));
}
}
for (i = 0; i < numFaces; i++, mp++) {
ml = cddm->mloop + mp->loopstart;
for (j = 0; j < mp->totloop; j++, ml++) {
v1 = ml->v;
v2 = ME_POLY_LOOP_NEXT(cddm->mloop, mp, j)->v;
BLI_edgehash_reinsert(eh, v1, v2, NULL);
}
}
numEdges = BLI_edgehash_size(eh);
/* write new edges into a temporary CustomData */
CustomData_reset(&edgeData);
CustomData_add_layer(&edgeData, CD_MEDGE, CD_CALLOC, NULL, numEdges);
CustomData_add_layer(&edgeData, CD_ORIGINDEX, CD_CALLOC, NULL, numEdges);
origmed = cddm->medge;
med = CustomData_get_layer(&edgeData, CD_MEDGE);
index = CustomData_get_layer(&edgeData, CD_ORIGINDEX);
for (ehi = BLI_edgehashIterator_new(eh), i = 0;
BLI_edgehashIterator_isDone(ehi) == false;
BLI_edgehashIterator_step(ehi), ++i, ++med, ++index)
{
BLI_edgehashIterator_getKey(ehi, &med->v1, &med->v2);
j = GET_INT_FROM_POINTER(BLI_edgehashIterator_getValue(ehi));
if (j == 0) {
med->flag = ME_EDGEDRAW | ME_EDGERENDER;
*index = ORIGINDEX_NONE;
}
else {
med->flag = ME_EDGEDRAW | ME_EDGERENDER | origmed[j - 1].flag;
*index = eindex[j - 1];
}
BLI_edgehashIterator_setValue(ehi, SET_INT_IN_POINTER(i));
}
BLI_edgehashIterator_free(ehi);
/* free old CustomData and assign new one */
CustomData_free(&dm->edgeData, dm->numEdgeData);
dm->edgeData = edgeData;
dm->numEdgeData = numEdges;
cddm->medge = CustomData_get_layer(&dm->edgeData, CD_MEDGE);
mp = cddm->mpoly;
for (i = 0; i < numFaces; i++, mp++) {
ml = cddm->mloop + mp->loopstart;
for (j = 0; j < mp->totloop; j++, ml++) {
v1 = ml->v;
v2 = ME_POLY_LOOP_NEXT(cddm->mloop, mp, j)->v;
ml->e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(eh, v1, v2));
}
}
BLI_edgehash_free(eh, NULL);
}
void CDDM_lower_num_verts(DerivedMesh *dm, int numVerts)
{
BLI_assert(numVerts >= 0);
if (numVerts < dm->numVertData)
CustomData_free_elem(&dm->vertData, numVerts, dm->numVertData - numVerts);
dm->numVertData = numVerts;
}
void CDDM_lower_num_edges(DerivedMesh *dm, int numEdges)
{
BLI_assert(numEdges >= 0);
if (numEdges < dm->numEdgeData)
CustomData_free_elem(&dm->edgeData, numEdges, dm->numEdgeData - numEdges);
dm->numEdgeData = numEdges;
}
void CDDM_lower_num_tessfaces(DerivedMesh *dm, int numTessFaces)
{
BLI_assert(numTessFaces >= 0);
if (numTessFaces < dm->numTessFaceData)
CustomData_free_elem(&dm->faceData, numTessFaces, dm->numTessFaceData - numTessFaces);
dm->numTessFaceData = numTessFaces;
}
void CDDM_lower_num_loops(DerivedMesh *dm, int numLoops)
{
BLI_assert(numLoops >= 0);
if (numLoops < dm->numLoopData)
CustomData_free_elem(&dm->loopData, numLoops, dm->numLoopData - numLoops);
dm->numLoopData = numLoops;
}
void CDDM_lower_num_polys(DerivedMesh *dm, int numPolys)
{
BLI_assert(numPolys >= 0);
if (numPolys < dm->numPolyData)
CustomData_free_elem(&dm->polyData, numPolys, dm->numPolyData - numPolys);
dm->numPolyData = numPolys;
}
/* mesh element access functions */
MVert *CDDM_get_vert(DerivedMesh *dm, int index)
{
return &((CDDerivedMesh *)dm)->mvert[index];
}
MEdge *CDDM_get_edge(DerivedMesh *dm, int index)
{
return &((CDDerivedMesh *)dm)->medge[index];
}
MFace *CDDM_get_tessface(DerivedMesh *dm, int index)
{
return &((CDDerivedMesh *)dm)->mface[index];
}
MLoop *CDDM_get_loop(DerivedMesh *dm, int index)
{
return &((CDDerivedMesh *)dm)->mloop[index];
}
MPoly *CDDM_get_poly(DerivedMesh *dm, int index)
{
return &((CDDerivedMesh *)dm)->mpoly[index];
}
/* array access functions */
MVert *CDDM_get_verts(DerivedMesh *dm)
{
return ((CDDerivedMesh *)dm)->mvert;
}
MEdge *CDDM_get_edges(DerivedMesh *dm)
{
return ((CDDerivedMesh *)dm)->medge;
}
MFace *CDDM_get_tessfaces(DerivedMesh *dm)
{
return ((CDDerivedMesh *)dm)->mface;
}
MLoop *CDDM_get_loops(DerivedMesh *dm)
{
return ((CDDerivedMesh *)dm)->mloop;
}
MPoly *CDDM_get_polys(DerivedMesh *dm)
{
return ((CDDerivedMesh *)dm)->mpoly;
}
void CDDM_tessfaces_to_faces(DerivedMesh *dm)
{
/* converts mfaces to mpolys/mloops */
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
BKE_mesh_convert_mfaces_to_mpolys_ex(NULL, &cddm->dm.faceData, &cddm->dm.loopData, &cddm->dm.polyData,
cddm->dm.numEdgeData, cddm->dm.numTessFaceData,
cddm->dm.numLoopData, cddm->dm.numPolyData,
cddm->medge, cddm->mface,
&cddm->dm.numLoopData, &cddm->dm.numPolyData,
&cddm->mloop, &cddm->mpoly);
}
void CDDM_set_mvert(DerivedMesh *dm, MVert *mvert)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
if (!CustomData_has_layer(&dm->vertData, CD_MVERT))
CustomData_add_layer(&dm->vertData, CD_MVERT, CD_ASSIGN, mvert, dm->numVertData);
cddm->mvert = mvert;
}
void CDDM_set_medge(DerivedMesh *dm, MEdge *medge)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
if (!CustomData_has_layer(&dm->edgeData, CD_MEDGE))
CustomData_add_layer(&dm->edgeData, CD_MEDGE, CD_ASSIGN, medge, dm->numEdgeData);
cddm->medge = medge;
}
void CDDM_set_mface(DerivedMesh *dm, MFace *mface)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
if (!CustomData_has_layer(&dm->faceData, CD_MFACE))
CustomData_add_layer(&dm->faceData, CD_MFACE, CD_ASSIGN, mface, dm->numTessFaceData);
cddm->mface = mface;
}
void CDDM_set_mloop(DerivedMesh *dm, MLoop *mloop)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
if (!CustomData_has_layer(&dm->loopData, CD_MLOOP))
CustomData_add_layer(&dm->loopData, CD_MLOOP, CD_ASSIGN, mloop, dm->numLoopData);
cddm->mloop = mloop;
}
void CDDM_set_mpoly(DerivedMesh *dm, MPoly *mpoly)
{
CDDerivedMesh *cddm = (CDDerivedMesh *)dm;
if (!CustomData_has_layer(&dm->polyData, CD_MPOLY))
CustomData_add_layer(&dm->polyData, CD_MPOLY, CD_ASSIGN, mpoly, dm->numPolyData);
cddm->mpoly = mpoly;
}