This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/compositor/intern/COM_ExecutionGroup.cpp
Sergey Sharybin 6f36e1f872 Fix compilation error on Windows
The issue was caused by conflicting declaration of HKEY
happening in our WM code and somewhere deeper in atomic
operations headers hierarchy.
2015-06-12 17:32:09 +05:00

606 lines
20 KiB
C++

/*
* Copyright 2011, Blender Foundation.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor:
* Jeroen Bakker
* Monique Dewanchand
*/
#include <algorithm>
#include <math.h>
#include <sstream>
#include <stdlib.h>
#include "atomic_ops.h"
#include "COM_ExecutionGroup.h"
#include "COM_defines.h"
#include "COM_ExecutionSystem.h"
#include "COM_ReadBufferOperation.h"
#include "COM_WriteBufferOperation.h"
#include "COM_ReadBufferOperation.h"
#include "COM_WorkScheduler.h"
#include "COM_ViewerOperation.h"
#include "COM_ChunkOrder.h"
#include "COM_Debug.h"
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_string.h"
#include "BKE_global.h"
#include "PIL_time.h"
#include "WM_api.h"
#include "WM_types.h"
ExecutionGroup::ExecutionGroup()
{
this->m_isOutput = false;
this->m_complex = false;
this->m_chunkExecutionStates = NULL;
this->m_bTree = NULL;
this->m_height = 0;
this->m_width = 0;
this->m_cachedMaxReadBufferOffset = 0;
this->m_numberOfXChunks = 0;
this->m_numberOfYChunks = 0;
this->m_numberOfChunks = 0;
this->m_initialized = false;
this->m_openCL = false;
this->m_singleThreaded = false;
this->m_chunksFinished = 0;
BLI_rcti_init(&this->m_viewerBorder, 0, 0, 0, 0);
this->m_executionStartTime = 0;
}
CompositorPriority ExecutionGroup::getRenderPriotrity()
{
return this->getOutputOperation()->getRenderPriority();
}
bool ExecutionGroup::canContainOperation(NodeOperation *operation)
{
if (!this->m_initialized) { return true; }
if (operation->isReadBufferOperation()) { return true; }
if (operation->isWriteBufferOperation()) { return false; }
if (operation->isSetOperation()) { return true; }
/* complex groups don't allow further ops (except read buffer and values, see above) */
if (m_complex) { return false; }
/* complex ops can't be added to other groups (except their own, which they initialize, see above) */
if (operation->isComplex()) { return false; }
return true;
}
bool ExecutionGroup::addOperation(NodeOperation *operation)
{
if (!canContainOperation(operation))
return false;
if (!operation->isReadBufferOperation() && !operation->isWriteBufferOperation()) {
m_complex = operation->isComplex();
m_openCL = operation->isOpenCL();
m_singleThreaded = operation->isSingleThreaded();
m_initialized = true;
}
m_operations.push_back(operation);
return true;
}
NodeOperation *ExecutionGroup::getOutputOperation() const
{
return this->m_operations[0]; // the first operation of the group is always the output operation.
}
void ExecutionGroup::initExecution()
{
if (this->m_chunkExecutionStates != NULL) {
MEM_freeN(this->m_chunkExecutionStates);
}
unsigned int index;
determineNumberOfChunks();
this->m_chunkExecutionStates = NULL;
if (this->m_numberOfChunks != 0) {
this->m_chunkExecutionStates = (ChunkExecutionState *)MEM_mallocN(sizeof(ChunkExecutionState) * this->m_numberOfChunks, __func__);
for (index = 0; index < this->m_numberOfChunks; index++) {
this->m_chunkExecutionStates[index] = COM_ES_NOT_SCHEDULED;
}
}
unsigned int maxNumber = 0;
for (index = 0; index < this->m_operations.size(); index++) {
NodeOperation *operation = this->m_operations[index];
if (operation->isReadBufferOperation()) {
ReadBufferOperation *readOperation = (ReadBufferOperation *)operation;
this->m_cachedReadOperations.push_back(readOperation);
maxNumber = max(maxNumber, readOperation->getOffset());
}
}
maxNumber++;
this->m_cachedMaxReadBufferOffset = maxNumber;
}
void ExecutionGroup::deinitExecution()
{
if (this->m_chunkExecutionStates != NULL) {
MEM_freeN(this->m_chunkExecutionStates);
this->m_chunkExecutionStates = NULL;
}
this->m_numberOfChunks = 0;
this->m_numberOfXChunks = 0;
this->m_numberOfYChunks = 0;
this->m_cachedReadOperations.clear();
this->m_bTree = NULL;
}
void ExecutionGroup::determineResolution(unsigned int resolution[2])
{
NodeOperation *operation = this->getOutputOperation();
resolution[0] = operation->getWidth();
resolution[1] = operation->getHeight();
this->setResolution(resolution);
BLI_rcti_init(&this->m_viewerBorder, 0, this->m_width, 0, this->m_height);
}
void ExecutionGroup::determineNumberOfChunks()
{
if (this->m_singleThreaded) {
this->m_numberOfXChunks = 1;
this->m_numberOfYChunks = 1;
this->m_numberOfChunks = 1;
}
else {
const float chunkSizef = this->m_chunkSize;
const int border_width = BLI_rcti_size_x(&this->m_viewerBorder);
const int border_height = BLI_rcti_size_y(&this->m_viewerBorder);
this->m_numberOfXChunks = ceil(border_width / chunkSizef);
this->m_numberOfYChunks = ceil(border_height / chunkSizef);
this->m_numberOfChunks = this->m_numberOfXChunks * this->m_numberOfYChunks;
}
}
/**
* this method is called for the top execution groups. containing the compositor node or the preview node or the viewer node)
*/
void ExecutionGroup::execute(ExecutionSystem *graph)
{
const CompositorContext &context = graph->getContext();
const bNodeTree *bTree = context.getbNodeTree();
if (this->m_width == 0 || this->m_height == 0) {return; } /// @note: break out... no pixels to calculate.
if (bTree->test_break && bTree->test_break(bTree->tbh)) {return; } /// @note: early break out for blur and preview nodes
if (this->m_numberOfChunks == 0) {return; } /// @note: early break out
unsigned int chunkNumber;
this->m_executionStartTime = PIL_check_seconds_timer();
this->m_chunksFinished = 0;
this->m_bTree = bTree;
unsigned int index;
unsigned int *chunkOrder = (unsigned int *)MEM_mallocN(sizeof(unsigned int) * this->m_numberOfChunks, __func__);
for (chunkNumber = 0; chunkNumber < this->m_numberOfChunks; chunkNumber++) {
chunkOrder[chunkNumber] = chunkNumber;
}
NodeOperation *operation = this->getOutputOperation();
float centerX = 0.5;
float centerY = 0.5;
OrderOfChunks chunkorder = COM_ORDER_OF_CHUNKS_DEFAULT;
if (operation->isViewerOperation()) {
ViewerOperation *viewer = (ViewerOperation *)operation;
centerX = viewer->getCenterX();
centerY = viewer->getCenterY();
chunkorder = viewer->getChunkOrder();
}
const int border_width = BLI_rcti_size_x(&this->m_viewerBorder);
const int border_height = BLI_rcti_size_y(&this->m_viewerBorder);
switch (chunkorder) {
case COM_TO_RANDOM:
for (index = 0; index < 2 * this->m_numberOfChunks; index++) {
int index1 = rand() % this->m_numberOfChunks;
int index2 = rand() % this->m_numberOfChunks;
int s = chunkOrder[index1];
chunkOrder[index1] = chunkOrder[index2];
chunkOrder[index2] = s;
}
break;
case COM_TO_CENTER_OUT:
{
ChunkOrderHotspot *hotspots[1];
hotspots[0] = new ChunkOrderHotspot(border_width * centerX, border_height * centerY, 0.0f);
rcti rect;
ChunkOrder *chunkOrders = (ChunkOrder *)MEM_mallocN(sizeof(ChunkOrder) * this->m_numberOfChunks, __func__);
for (index = 0; index < this->m_numberOfChunks; index++) {
determineChunkRect(&rect, index);
chunkOrders[index].setChunkNumber(index);
chunkOrders[index].setX(rect.xmin - this->m_viewerBorder.xmin);
chunkOrders[index].setY(rect.ymin - this->m_viewerBorder.ymin);
chunkOrders[index].determineDistance(hotspots, 1);
}
std::sort(&chunkOrders[0], &chunkOrders[this->m_numberOfChunks - 1]);
for (index = 0; index < this->m_numberOfChunks; index++) {
chunkOrder[index] = chunkOrders[index].getChunkNumber();
}
delete hotspots[0];
MEM_freeN(chunkOrders);
break;
}
case COM_TO_RULE_OF_THIRDS:
{
ChunkOrderHotspot *hotspots[9];
unsigned int tx = border_width / 6;
unsigned int ty = border_height / 6;
unsigned int mx = border_width / 2;
unsigned int my = border_height / 2;
unsigned int bx = mx + 2 * tx;
unsigned int by = my + 2 * ty;
float addition = this->m_numberOfChunks / COM_RULE_OF_THIRDS_DIVIDER;
hotspots[0] = new ChunkOrderHotspot(mx, my, addition * 0);
hotspots[1] = new ChunkOrderHotspot(tx, my, addition * 1);
hotspots[2] = new ChunkOrderHotspot(bx, my, addition * 2);
hotspots[3] = new ChunkOrderHotspot(bx, by, addition * 3);
hotspots[4] = new ChunkOrderHotspot(tx, ty, addition * 4);
hotspots[5] = new ChunkOrderHotspot(bx, ty, addition * 5);
hotspots[6] = new ChunkOrderHotspot(tx, by, addition * 6);
hotspots[7] = new ChunkOrderHotspot(mx, ty, addition * 7);
hotspots[8] = new ChunkOrderHotspot(mx, by, addition * 8);
rcti rect;
ChunkOrder *chunkOrders = (ChunkOrder *)MEM_mallocN(sizeof(ChunkOrder) * this->m_numberOfChunks, __func__);
for (index = 0; index < this->m_numberOfChunks; index++) {
determineChunkRect(&rect, index);
chunkOrders[index].setChunkNumber(index);
chunkOrders[index].setX(rect.xmin - this->m_viewerBorder.xmin);
chunkOrders[index].setY(rect.ymin - this->m_viewerBorder.ymin);
chunkOrders[index].determineDistance(hotspots, 9);
}
std::sort(&chunkOrders[0], &chunkOrders[this->m_numberOfChunks]);
for (index = 0; index < this->m_numberOfChunks; index++) {
chunkOrder[index] = chunkOrders[index].getChunkNumber();
}
delete hotspots[0];
delete hotspots[1];
delete hotspots[2];
delete hotspots[3];
delete hotspots[4];
delete hotspots[5];
delete hotspots[6];
delete hotspots[7];
delete hotspots[8];
MEM_freeN(chunkOrders);
break;
}
case COM_TO_TOP_DOWN:
default:
break;
}
DebugInfo::execution_group_started(this);
DebugInfo::graphviz(graph);
bool breaked = false;
bool finished = false;
unsigned int startIndex = 0;
const int maxNumberEvaluated = BLI_system_thread_count() * 2;
while (!finished && !breaked) {
bool startEvaluated = false;
finished = true;
int numberEvaluated = 0;
for (index = startIndex; index < this->m_numberOfChunks && numberEvaluated < maxNumberEvaluated; index++) {
chunkNumber = chunkOrder[index];
int yChunk = chunkNumber / this->m_numberOfXChunks;
int xChunk = chunkNumber - (yChunk * this->m_numberOfXChunks);
const ChunkExecutionState state = this->m_chunkExecutionStates[chunkNumber];
if (state == COM_ES_NOT_SCHEDULED) {
scheduleChunkWhenPossible(graph, xChunk, yChunk);
finished = false;
startEvaluated = true;
numberEvaluated++;
if (bTree->update_draw)
bTree->update_draw(bTree->udh);
}
else if (state == COM_ES_SCHEDULED) {
finished = false;
startEvaluated = true;
numberEvaluated++;
}
else if (state == COM_ES_EXECUTED && !startEvaluated) {
startIndex = index + 1;
}
}
WorkScheduler::finish();
if (bTree->test_break && bTree->test_break(bTree->tbh)) {
breaked = true;
}
}
DebugInfo::execution_group_finished(this);
DebugInfo::graphviz(graph);
MEM_freeN(chunkOrder);
}
MemoryBuffer **ExecutionGroup::getInputBuffersOpenCL(int chunkNumber)
{
rcti rect;
vector<MemoryProxy *> memoryproxies;
unsigned int index;
determineChunkRect(&rect, chunkNumber);
this->determineDependingMemoryProxies(&memoryproxies);
MemoryBuffer **memoryBuffers = (MemoryBuffer **)MEM_callocN(sizeof(MemoryBuffer *) * this->m_cachedMaxReadBufferOffset, __func__);
rcti output;
for (index = 0; index < this->m_cachedReadOperations.size(); index++) {
ReadBufferOperation *readOperation = (ReadBufferOperation *)this->m_cachedReadOperations[index];
MemoryProxy *memoryProxy = readOperation->getMemoryProxy();
this->determineDependingAreaOfInterest(&rect, readOperation, &output);
MemoryBuffer *memoryBuffer = memoryProxy->getExecutor()->constructConsolidatedMemoryBuffer(memoryProxy, &output);
memoryBuffers[readOperation->getOffset()] = memoryBuffer;
}
return memoryBuffers;
}
MemoryBuffer *ExecutionGroup::constructConsolidatedMemoryBuffer(MemoryProxy *memoryProxy, rcti *rect)
{
MemoryBuffer *imageBuffer = memoryProxy->getBuffer();
MemoryBuffer *result = new MemoryBuffer(memoryProxy, rect);
result->copyContentFrom(imageBuffer);
return result;
}
void ExecutionGroup::finalizeChunkExecution(int chunkNumber, MemoryBuffer **memoryBuffers)
{
if (this->m_chunkExecutionStates[chunkNumber] == COM_ES_SCHEDULED)
this->m_chunkExecutionStates[chunkNumber] = COM_ES_EXECUTED;
atomic_add_u(&this->m_chunksFinished, 0);
if (memoryBuffers) {
for (unsigned int index = 0; index < this->m_cachedMaxReadBufferOffset; index++) {
MemoryBuffer *buffer = memoryBuffers[index];
if (buffer) {
if (buffer->isTemporarily()) {
memoryBuffers[index] = NULL;
delete buffer;
}
}
}
MEM_freeN(memoryBuffers);
}
if (this->m_bTree) {
// status report is only performed for top level Execution Groups.
float progress = this->m_chunksFinished;
progress /= this->m_numberOfChunks;
this->m_bTree->progress(this->m_bTree->prh, progress);
char buf[128];
BLI_snprintf(buf, sizeof(buf), "Compositing | Tile %u-%u",
this->m_chunksFinished,
this->m_numberOfChunks);
this->m_bTree->stats_draw(this->m_bTree->sdh, buf);
}
}
inline void ExecutionGroup::determineChunkRect(rcti *rect, const unsigned int xChunk, const unsigned int yChunk) const
{
const int border_width = BLI_rcti_size_x(&this->m_viewerBorder);
const int border_height = BLI_rcti_size_y(&this->m_viewerBorder);
if (this->m_singleThreaded) {
BLI_rcti_init(rect, this->m_viewerBorder.xmin, border_width, this->m_viewerBorder.ymin, border_height);
}
else {
const unsigned int minx = xChunk * this->m_chunkSize + this->m_viewerBorder.xmin;
const unsigned int miny = yChunk * this->m_chunkSize + this->m_viewerBorder.ymin;
const unsigned int width = min((unsigned int) this->m_viewerBorder.xmax, this->m_width);
const unsigned int height = min((unsigned int) this->m_viewerBorder.ymax, this->m_height);
BLI_rcti_init(rect, min(minx, this->m_width), min(minx + this->m_chunkSize, width), min(miny, this->m_height), min(miny + this->m_chunkSize, height));
}
}
void ExecutionGroup::determineChunkRect(rcti *rect, const unsigned int chunkNumber) const
{
const unsigned int yChunk = chunkNumber / this->m_numberOfXChunks;
const unsigned int xChunk = chunkNumber - (yChunk * this->m_numberOfXChunks);
determineChunkRect(rect, xChunk, yChunk);
}
MemoryBuffer *ExecutionGroup::allocateOutputBuffer(int /*chunkNumber*/,
rcti *rect)
{
// we asume that this method is only called from complex execution groups.
NodeOperation *operation = this->getOutputOperation();
if (operation->isWriteBufferOperation()) {
WriteBufferOperation *writeOperation = (WriteBufferOperation *)operation;
MemoryBuffer *buffer = new MemoryBuffer(writeOperation->getMemoryProxy(), rect);
return buffer;
}
return NULL;
}
bool ExecutionGroup::scheduleAreaWhenPossible(ExecutionSystem *graph, rcti *area)
{
if (this->m_singleThreaded) {
return scheduleChunkWhenPossible(graph, 0, 0);
}
// find all chunks inside the rect
// determine minxchunk, minychunk, maxxchunk, maxychunk where x and y are chunknumbers
int indexx, indexy;
int minx = max_ii(area->xmin - m_viewerBorder.xmin, 0);
int maxx = min_ii(area->xmax - m_viewerBorder.xmin, m_viewerBorder.xmax - m_viewerBorder.xmin);
int miny = max_ii(area->ymin - m_viewerBorder.ymin, 0);
int maxy = min_ii(area->ymax - m_viewerBorder.ymin, m_viewerBorder.ymax - m_viewerBorder.ymin);
int minxchunk = minx / (int)m_chunkSize;
int maxxchunk = (maxx + (int)m_chunkSize - 1) / (int)m_chunkSize;
int minychunk = miny / (int)m_chunkSize;
int maxychunk = (maxy + (int)m_chunkSize - 1) / (int)m_chunkSize;
minxchunk = max_ii(minxchunk, 0);
minychunk = max_ii(minychunk, 0);
maxxchunk = min_ii(maxxchunk, (int)m_numberOfXChunks);
maxychunk = min_ii(maxychunk, (int)m_numberOfYChunks);
bool result = true;
for (indexx = minxchunk; indexx < maxxchunk; indexx++) {
for (indexy = minychunk; indexy < maxychunk; indexy++) {
if (!scheduleChunkWhenPossible(graph, indexx, indexy)) {
result = false;
}
}
}
return result;
}
bool ExecutionGroup::scheduleChunk(unsigned int chunkNumber)
{
if (this->m_chunkExecutionStates[chunkNumber] == COM_ES_NOT_SCHEDULED) {
this->m_chunkExecutionStates[chunkNumber] = COM_ES_SCHEDULED;
WorkScheduler::schedule(this, chunkNumber);
return true;
}
return false;
}
bool ExecutionGroup::scheduleChunkWhenPossible(ExecutionSystem *graph, int xChunk, int yChunk)
{
if (xChunk < 0 || xChunk >= (int)this->m_numberOfXChunks) {
return true;
}
if (yChunk < 0 || yChunk >= (int)this->m_numberOfYChunks) {
return true;
}
int chunkNumber = yChunk * this->m_numberOfXChunks + xChunk;
// chunk is already executed
if (this->m_chunkExecutionStates[chunkNumber] == COM_ES_EXECUTED) {
return true;
}
// chunk is scheduled, but not executed
if (this->m_chunkExecutionStates[chunkNumber] == COM_ES_SCHEDULED) {
return false;
}
// chunk is nor executed nor scheduled.
vector<MemoryProxy *> memoryProxies;
this->determineDependingMemoryProxies(&memoryProxies);
rcti rect;
determineChunkRect(&rect, xChunk, yChunk);
unsigned int index;
bool canBeExecuted = true;
rcti area;
for (index = 0; index < this->m_cachedReadOperations.size(); index++) {
ReadBufferOperation *readOperation = (ReadBufferOperation *)this->m_cachedReadOperations[index];
BLI_rcti_init(&area, 0, 0, 0, 0);
MemoryProxy *memoryProxy = memoryProxies[index];
determineDependingAreaOfInterest(&rect, readOperation, &area);
ExecutionGroup *group = memoryProxy->getExecutor();
if (group != NULL) {
if (!group->scheduleAreaWhenPossible(graph, &area)) {
canBeExecuted = false;
}
}
else {
throw "ERROR";
}
}
if (canBeExecuted) {
scheduleChunk(chunkNumber);
}
return false;
}
void ExecutionGroup::determineDependingAreaOfInterest(rcti *input, ReadBufferOperation *readOperation, rcti *output)
{
this->getOutputOperation()->determineDependingAreaOfInterest(input, readOperation, output);
}
void ExecutionGroup::determineDependingMemoryProxies(vector<MemoryProxy *> *memoryProxies)
{
unsigned int index;
for (index = 0; index < this->m_cachedReadOperations.size(); index++) {
ReadBufferOperation *readOperation = (ReadBufferOperation *) this->m_cachedReadOperations[index];
memoryProxies->push_back(readOperation->getMemoryProxy());
}
}
bool ExecutionGroup::isOpenCL()
{
return this->m_openCL;
}
void ExecutionGroup::setViewerBorder(float xmin, float xmax, float ymin, float ymax)
{
NodeOperation *operation = this->getOutputOperation();
if (operation->isViewerOperation() || operation->isPreviewOperation()) {
BLI_rcti_init(&this->m_viewerBorder, xmin * this->m_width, xmax * this->m_width,
ymin * this->m_height, ymax * this->m_height);
}
}
void ExecutionGroup::setRenderBorder(float xmin, float xmax, float ymin, float ymax)
{
NodeOperation *operation = this->getOutputOperation();
if (operation->isOutputOperation(true)) {
/* Basically, setting border need to happen for only operations
* which operates in render resolution buffers (like compositor
* output nodes).
*
* In this cases adding border will lead to mapping coordinates
* from output buffer space to input buffer spaces when executing
* operation.
*
* But nodes like viewer and file output just shall display or
* safe the same exact buffer which goes to their input, no need
* in any kind of coordinates mapping.
*/
bool operationNeedsBorder = !(operation->isViewerOperation() ||
operation->isPreviewOperation() ||
operation->isFileOutputOperation());
if (operationNeedsBorder) {
BLI_rcti_init(&this->m_viewerBorder, xmin * this->m_width, xmax * this->m_width,
ymin * this->m_height, ymax * this->m_height);
}
}
}