The node tree evaluator now calls a callback for every used socket with its corresponding value(s). Right now the callback does nothing. However, we can use it to collect attribute name hints, socket values for debugging or data that will be displayed in the spreadsheet. The main difficulty here was to also call the callback for sockets in nodes that are not directly executed (such as group nodes, muted nodes and reroutes). No functional changes are expected.
378 lines
14 KiB
C++
378 lines
14 KiB
C++
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "NOD_derived_node_tree.hh"
|
|
|
|
#include "BLI_dot_export.hh"
|
|
|
|
namespace blender::nodes {
|
|
|
|
/* Construct a new derived node tree for a given root node tree. The generated derived node tree
|
|
* does not own the used node tree refs (so that those can be used by others as well). The caller
|
|
* has to make sure that the node tree refs added to #node_tree_refs live at least as long as the
|
|
* derived node tree. */
|
|
DerivedNodeTree::DerivedNodeTree(bNodeTree &btree, NodeTreeRefMap &node_tree_refs)
|
|
{
|
|
/* Construct all possible contexts immediately. This is significantly cheaper than inlining all
|
|
* node groups. If it still becomes a performance issue in the future, contexts could be
|
|
* constructed lazily when they are needed. */
|
|
root_context_ = &this->construct_context_recursively(nullptr, nullptr, btree, node_tree_refs);
|
|
}
|
|
|
|
DTreeContext &DerivedNodeTree::construct_context_recursively(DTreeContext *parent_context,
|
|
const NodeRef *parent_node,
|
|
bNodeTree &btree,
|
|
NodeTreeRefMap &node_tree_refs)
|
|
{
|
|
DTreeContext &context = *allocator_.construct<DTreeContext>().release();
|
|
context.parent_context_ = parent_context;
|
|
context.parent_node_ = parent_node;
|
|
context.derived_tree_ = this;
|
|
context.tree_ = &get_tree_ref_from_map(node_tree_refs, btree);
|
|
used_node_tree_refs_.add(context.tree_);
|
|
|
|
for (const NodeRef *node : context.tree_->nodes()) {
|
|
if (node->is_group_node()) {
|
|
bNode *bnode = node->bnode();
|
|
bNodeTree *child_btree = reinterpret_cast<bNodeTree *>(bnode->id);
|
|
if (child_btree != nullptr) {
|
|
DTreeContext &child = this->construct_context_recursively(
|
|
&context, node, *child_btree, node_tree_refs);
|
|
context.children_.add_new(node, &child);
|
|
}
|
|
}
|
|
}
|
|
|
|
return context;
|
|
}
|
|
|
|
DerivedNodeTree::~DerivedNodeTree()
|
|
{
|
|
/* Has to be destructed manually, because the context info is allocated in a linear allocator. */
|
|
this->destruct_context_recursively(root_context_);
|
|
}
|
|
|
|
void DerivedNodeTree::destruct_context_recursively(DTreeContext *context)
|
|
{
|
|
for (DTreeContext *child : context->children_.values()) {
|
|
this->destruct_context_recursively(child);
|
|
}
|
|
context->~DTreeContext();
|
|
}
|
|
|
|
/* Returns true if there are any cycles in the node tree. */
|
|
bool DerivedNodeTree::has_link_cycles() const
|
|
{
|
|
for (const NodeTreeRef *tree_ref : used_node_tree_refs_) {
|
|
if (tree_ref->has_link_cycles()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Calls the given callback on all nodes in the (possibly nested) derived node tree. */
|
|
void DerivedNodeTree::foreach_node(FunctionRef<void(DNode)> callback) const
|
|
{
|
|
this->foreach_node_in_context_recursive(*root_context_, callback);
|
|
}
|
|
|
|
void DerivedNodeTree::foreach_node_in_context_recursive(const DTreeContext &context,
|
|
FunctionRef<void(DNode)> callback) const
|
|
{
|
|
for (const NodeRef *node_ref : context.tree_->nodes()) {
|
|
callback(DNode(&context, node_ref));
|
|
}
|
|
for (const DTreeContext *child_context : context.children_.values()) {
|
|
this->foreach_node_in_context_recursive(*child_context, callback);
|
|
}
|
|
}
|
|
|
|
DOutputSocket DInputSocket::get_corresponding_group_node_output() const
|
|
{
|
|
BLI_assert(*this);
|
|
BLI_assert(socket_ref_->node().is_group_output_node());
|
|
BLI_assert(socket_ref_->index() < socket_ref_->node().inputs().size() - 1);
|
|
|
|
const DTreeContext *parent_context = context_->parent_context();
|
|
const NodeRef *parent_node = context_->parent_node();
|
|
BLI_assert(parent_context != nullptr);
|
|
BLI_assert(parent_node != nullptr);
|
|
|
|
const int socket_index = socket_ref_->index();
|
|
return {parent_context, &parent_node->output(socket_index)};
|
|
}
|
|
|
|
Vector<DOutputSocket> DInputSocket::get_corresponding_group_input_sockets() const
|
|
{
|
|
BLI_assert(*this);
|
|
BLI_assert(socket_ref_->node().is_group_node());
|
|
|
|
const DTreeContext *child_context = context_->child_context(socket_ref_->node());
|
|
BLI_assert(child_context != nullptr);
|
|
|
|
const NodeTreeRef &child_tree = child_context->tree();
|
|
Span<const NodeRef *> group_input_nodes = child_tree.nodes_by_type("NodeGroupInput");
|
|
const int socket_index = socket_ref_->index();
|
|
Vector<DOutputSocket> sockets;
|
|
for (const NodeRef *group_input_node : group_input_nodes) {
|
|
sockets.append(DOutputSocket(child_context, &group_input_node->output(socket_index)));
|
|
}
|
|
return sockets;
|
|
}
|
|
|
|
DInputSocket DOutputSocket::get_corresponding_group_node_input() const
|
|
{
|
|
BLI_assert(*this);
|
|
BLI_assert(socket_ref_->node().is_group_input_node());
|
|
BLI_assert(socket_ref_->index() < socket_ref_->node().outputs().size() - 1);
|
|
|
|
const DTreeContext *parent_context = context_->parent_context();
|
|
const NodeRef *parent_node = context_->parent_node();
|
|
BLI_assert(parent_context != nullptr);
|
|
BLI_assert(parent_node != nullptr);
|
|
|
|
const int socket_index = socket_ref_->index();
|
|
return {parent_context, &parent_node->input(socket_index)};
|
|
}
|
|
|
|
DInputSocket DOutputSocket::get_active_corresponding_group_output_socket() const
|
|
{
|
|
BLI_assert(*this);
|
|
BLI_assert(socket_ref_->node().is_group_node());
|
|
|
|
const DTreeContext *child_context = context_->child_context(socket_ref_->node());
|
|
BLI_assert(child_context != nullptr);
|
|
|
|
const NodeTreeRef &child_tree = child_context->tree();
|
|
Span<const NodeRef *> group_output_nodes = child_tree.nodes_by_type("NodeGroupOutput");
|
|
const int socket_index = socket_ref_->index();
|
|
for (const NodeRef *group_output_node : group_output_nodes) {
|
|
if (group_output_node->bnode()->flag & NODE_DO_OUTPUT || group_output_nodes.size() == 1) {
|
|
return {child_context, &group_output_node->input(socket_index)};
|
|
}
|
|
}
|
|
return {};
|
|
}
|
|
|
|
/* Call `origin_fn` for every "real" origin socket. "Real" means that reroutes, muted nodes
|
|
* and node groups are handled by this function. Origin sockets are ones where a node gets its
|
|
* inputs from. */
|
|
void DInputSocket::foreach_origin_socket(FunctionRef<void(DSocket)> origin_fn) const
|
|
{
|
|
BLI_assert(*this);
|
|
for (const OutputSocketRef *linked_socket : socket_ref_->as_input().logically_linked_sockets()) {
|
|
const NodeRef &linked_node = linked_socket->node();
|
|
DOutputSocket linked_dsocket{context_, linked_socket};
|
|
|
|
if (linked_node.is_group_input_node()) {
|
|
if (context_->is_root()) {
|
|
/* This is a group input in the root node group. */
|
|
origin_fn(linked_dsocket);
|
|
}
|
|
else {
|
|
DInputSocket socket_in_parent_group = linked_dsocket.get_corresponding_group_node_input();
|
|
if (socket_in_parent_group->is_logically_linked()) {
|
|
/* Follow the links coming into the corresponding socket on the parent group node. */
|
|
socket_in_parent_group.foreach_origin_socket(origin_fn);
|
|
}
|
|
else {
|
|
/* The corresponding input on the parent group node is not connected. Therefore, we use
|
|
* the value of that input socket directly. */
|
|
origin_fn(socket_in_parent_group);
|
|
}
|
|
}
|
|
}
|
|
else if (linked_node.is_group_node()) {
|
|
DInputSocket socket_in_group = linked_dsocket.get_active_corresponding_group_output_socket();
|
|
if (socket_in_group) {
|
|
if (socket_in_group->is_logically_linked()) {
|
|
/* Follow the links coming into the group output node of the child node group. */
|
|
socket_in_group.foreach_origin_socket(origin_fn);
|
|
}
|
|
else {
|
|
/* The output of the child node group is not connected, so we have to get the value from
|
|
* that socket. */
|
|
origin_fn(socket_in_group);
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
/* The normal case: just use the value of a linked output socket. */
|
|
origin_fn(linked_dsocket);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calls `target_fn` for every "real" target socket. "Real" means that reroutes, muted nodes
|
|
* and node groups are handled by this function. Target sockets are on the nodes that use the value
|
|
* from this socket. The `skipped_fn` function is called for sockets that have been skipped during
|
|
* the search for target sockets (e.g. reroutes). */
|
|
void DOutputSocket::foreach_target_socket(FunctionRef<void(DInputSocket)> target_fn,
|
|
FunctionRef<void(DSocket)> skipped_fn) const
|
|
{
|
|
for (const SocketRef *skipped_socket : socket_ref_->logically_linked_skipped_sockets()) {
|
|
skipped_fn.call_safe({context_, skipped_socket});
|
|
}
|
|
for (const InputSocketRef *linked_socket : socket_ref_->as_output().logically_linked_sockets()) {
|
|
const NodeRef &linked_node = linked_socket->node();
|
|
DInputSocket linked_dsocket{context_, linked_socket};
|
|
|
|
if (linked_node.is_group_output_node()) {
|
|
if (context_->is_root()) {
|
|
/* This is a group output in the root node group. */
|
|
target_fn(linked_dsocket);
|
|
}
|
|
else {
|
|
/* Follow the links going out of the group node in the parent node group. */
|
|
DOutputSocket socket_in_parent_group =
|
|
linked_dsocket.get_corresponding_group_node_output();
|
|
skipped_fn.call_safe(linked_dsocket);
|
|
skipped_fn.call_safe(socket_in_parent_group);
|
|
socket_in_parent_group.foreach_target_socket(target_fn, skipped_fn);
|
|
}
|
|
}
|
|
else if (linked_node.is_group_node()) {
|
|
/* Follow the links within the nested node group. */
|
|
Vector<DOutputSocket> sockets_in_group =
|
|
linked_dsocket.get_corresponding_group_input_sockets();
|
|
skipped_fn.call_safe(linked_dsocket);
|
|
for (DOutputSocket socket_in_group : sockets_in_group) {
|
|
skipped_fn.call_safe(socket_in_group);
|
|
socket_in_group.foreach_target_socket(target_fn, skipped_fn);
|
|
}
|
|
}
|
|
else {
|
|
/* The normal case: just use the linked input socket as target. */
|
|
target_fn(linked_dsocket);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Each nested node group gets its own cluster. Just as node groups, clusters can be nested. */
|
|
static dot::Cluster *get_dot_cluster_for_context(
|
|
dot::DirectedGraph &digraph,
|
|
const DTreeContext *context,
|
|
Map<const DTreeContext *, dot::Cluster *> &dot_clusters)
|
|
{
|
|
return dot_clusters.lookup_or_add_cb(context, [&]() -> dot::Cluster * {
|
|
const DTreeContext *parent_context = context->parent_context();
|
|
if (parent_context == nullptr) {
|
|
return nullptr;
|
|
}
|
|
dot::Cluster *parent_cluster = get_dot_cluster_for_context(
|
|
digraph, parent_context, dot_clusters);
|
|
std::string cluster_name = context->tree().name() + " / " + context->parent_node()->name();
|
|
dot::Cluster &cluster = digraph.new_cluster(cluster_name);
|
|
cluster.set_parent_cluster(parent_cluster);
|
|
return &cluster;
|
|
});
|
|
}
|
|
|
|
/* Generates a graph in dot format. The generated graph has all node groups inlined. */
|
|
std::string DerivedNodeTree::to_dot() const
|
|
{
|
|
dot::DirectedGraph digraph;
|
|
digraph.set_rankdir(dot::Attr_rankdir::LeftToRight);
|
|
|
|
Map<const DTreeContext *, dot::Cluster *> dot_clusters;
|
|
Map<DInputSocket, dot::NodePort> dot_input_sockets;
|
|
Map<DOutputSocket, dot::NodePort> dot_output_sockets;
|
|
|
|
this->foreach_node([&](DNode node) {
|
|
/* Ignore nodes that should not show up in the final output. */
|
|
if (node->is_muted() || node->is_group_node() || node->is_reroute_node() || node->is_frame()) {
|
|
return;
|
|
}
|
|
if (!node.context()->is_root()) {
|
|
if (node->is_group_input_node() || node->is_group_output_node()) {
|
|
return;
|
|
}
|
|
}
|
|
|
|
dot::Cluster *cluster = get_dot_cluster_for_context(digraph, node.context(), dot_clusters);
|
|
|
|
dot::Node &dot_node = digraph.new_node("");
|
|
dot_node.set_parent_cluster(cluster);
|
|
dot_node.set_background_color("white");
|
|
|
|
Vector<std::string> input_names;
|
|
Vector<std::string> output_names;
|
|
for (const InputSocketRef *socket : node->inputs()) {
|
|
if (socket->is_available()) {
|
|
input_names.append(socket->name());
|
|
}
|
|
}
|
|
for (const OutputSocketRef *socket : node->outputs()) {
|
|
if (socket->is_available()) {
|
|
output_names.append(socket->name());
|
|
}
|
|
}
|
|
|
|
dot::NodeWithSocketsRef dot_node_with_sockets = dot::NodeWithSocketsRef(
|
|
dot_node, node->name(), input_names, output_names);
|
|
|
|
int input_index = 0;
|
|
for (const InputSocketRef *socket : node->inputs()) {
|
|
if (socket->is_available()) {
|
|
dot_input_sockets.add_new(DInputSocket{node.context(), socket},
|
|
dot_node_with_sockets.input(input_index));
|
|
input_index++;
|
|
}
|
|
}
|
|
int output_index = 0;
|
|
for (const OutputSocketRef *socket : node->outputs()) {
|
|
if (socket->is_available()) {
|
|
dot_output_sockets.add_new(DOutputSocket{node.context(), socket},
|
|
dot_node_with_sockets.output(output_index));
|
|
output_index++;
|
|
}
|
|
}
|
|
});
|
|
|
|
/* Floating inputs are used for example to visualize unlinked group node inputs. */
|
|
Map<DSocket, dot::Node *> dot_floating_inputs;
|
|
|
|
for (const auto item : dot_input_sockets.items()) {
|
|
DInputSocket to_socket = item.key;
|
|
dot::NodePort dot_to_port = item.value;
|
|
to_socket.foreach_origin_socket([&](DSocket from_socket) {
|
|
if (from_socket->is_output()) {
|
|
dot::NodePort *dot_from_port = dot_output_sockets.lookup_ptr(DOutputSocket(from_socket));
|
|
if (dot_from_port != nullptr) {
|
|
digraph.new_edge(*dot_from_port, dot_to_port);
|
|
return;
|
|
}
|
|
}
|
|
dot::Node &dot_node = *dot_floating_inputs.lookup_or_add_cb(from_socket, [&]() {
|
|
dot::Node &dot_node = digraph.new_node(from_socket->name());
|
|
dot_node.set_background_color("white");
|
|
dot_node.set_shape(dot::Attr_shape::Ellipse);
|
|
dot_node.set_parent_cluster(
|
|
get_dot_cluster_for_context(digraph, from_socket.context(), dot_clusters));
|
|
return &dot_node;
|
|
});
|
|
digraph.new_edge(dot_node, dot_to_port);
|
|
});
|
|
}
|
|
|
|
digraph.set_random_cluster_bgcolors();
|
|
|
|
return digraph.to_dot_string();
|
|
}
|
|
|
|
} // namespace blender::nodes
|