This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/opensubdiv/internal/opensubdiv_evaluator_internal.cc
Sergey Sharybin 9f48a04799 Fix T63766: Multiresolution behavior when using crease edge
Switch to Gregory basis patches which are tangent continuous across their
boundaries.

Originally we've used BSpline basis patches to be more compatible with the
old subdivision code, but a lot of things changed anyway.
2019-12-05 16:38:26 +01:00

877 lines
34 KiB
C++

// Copyright 2018 Blender Foundation. All rights reserved.
//
// This program is free software; you can redistribute it and/or
// modify it under the terms of the GNU General Public License
// as published by the Free Software Foundation; either version 2
// of the License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
//
// Author: Sergey Sharybin
#include "internal/opensubdiv_evaluator_internal.h"
#include <cassert>
#include <cstdio>
#ifdef _MSC_VER
# include <iso646.h>
#endif
#include <opensubdiv/far/patchMap.h>
#include <opensubdiv/far/patchTable.h>
#include <opensubdiv/far/patchTableFactory.h>
#include <opensubdiv/osd/cpuEvaluator.h>
#include <opensubdiv/osd/cpuPatchTable.h>
#include <opensubdiv/osd/cpuVertexBuffer.h>
#include <opensubdiv/osd/mesh.h>
#include <opensubdiv/osd/types.h>
#include <opensubdiv/version.h>
#include "MEM_guardedalloc.h"
#include "internal/opensubdiv_topology_refiner_internal.h"
#include "internal/opensubdiv_util.h"
#include "internal/opensubdiv_util.h"
#include "opensubdiv_topology_refiner_capi.h"
using OpenSubdiv::Far::PatchMap;
using OpenSubdiv::Far::PatchTable;
using OpenSubdiv::Far::PatchTableFactory;
using OpenSubdiv::Far::StencilTable;
using OpenSubdiv::Far::StencilTableFactory;
using OpenSubdiv::Far::TopologyRefiner;
using OpenSubdiv::Osd::BufferDescriptor;
using OpenSubdiv::Osd::CpuEvaluator;
using OpenSubdiv::Osd::CpuPatchTable;
using OpenSubdiv::Osd::CpuVertexBuffer;
using OpenSubdiv::Osd::PatchCoord;
namespace opensubdiv_capi {
namespace {
// Array implementation which stores small data on stack (or, rather, in the class itself).
template<typename T, int kNumMaxElementsOnStack> class StackOrHeapArray {
public:
StackOrHeapArray()
: num_elements_(0), heap_elements_(NULL), num_heap_elements_(0), effective_elements_(NULL)
{
}
explicit StackOrHeapArray(int size) : StackOrHeapArray()
{
resize(size);
}
~StackOrHeapArray()
{
delete[] heap_elements_;
}
int size() const
{
return num_elements_;
};
T *data()
{
return effective_elements_;
}
void resize(int num_elements)
{
const int old_num_elements = num_elements_;
num_elements_ = num_elements;
// Early output if allcoation size did not change, or allocation size is smaller.
// We never re-allocate, sacrificing some memory over performance.
if (old_num_elements >= num_elements) {
return;
}
// Simple case: no previously allocated buffer, can simply do one allocation.
if (effective_elements_ == NULL) {
effective_elements_ = allocate(num_elements);
return;
}
// Make new allocation, and copy elements if needed.
T *old_buffer = effective_elements_;
effective_elements_ = allocate(num_elements);
if (old_buffer != effective_elements_) {
memcpy(effective_elements_, old_buffer, sizeof(T) * min(old_num_elements, num_elements));
}
if (old_buffer != stack_elements_) {
delete[] old_buffer;
}
}
protected:
T *allocate(int num_elements)
{
if (num_elements < kNumMaxElementsOnStack) {
return stack_elements_;
}
heap_elements_ = new T[num_elements];
return heap_elements_;
}
// Number of elements in the buffer.
int num_elements_;
// Elements which are allocated on a stack (or, rather, in the same allocation as the buffer
// itself).
// Is used as long as buffer is smaller than kNumMaxElementsOnStack.
T stack_elements_[kNumMaxElementsOnStack];
// Heap storage for buffer larger than kNumMaxElementsOnStack.
T *heap_elements_;
int num_heap_elements_;
// Depending on the current buffer size points to rither stack_elements_ or heap_elements_.
T *effective_elements_;
};
// 32 is a number of inner vertices along the patch size at subdivision level 6.
typedef StackOrHeapArray<PatchCoord, 32 * 32> StackOrHeapPatchCoordArray;
// Buffer which implements API required by OpenSubdiv and uses an existing memory as an underlying
// storage.
template<typename T> class RawDataWrapperBuffer {
public:
RawDataWrapperBuffer(T *data) : data_(data)
{
}
T *BindCpuBuffer()
{
return data_;
}
// TODO(sergey): Support UpdateData().
protected:
T *data_;
};
template<typename T> class RawDataWrapperVertexBuffer : public RawDataWrapperBuffer<T> {
public:
RawDataWrapperVertexBuffer(T *data, int num_vertices)
: RawDataWrapperBuffer<T>(data), num_vertices_(num_vertices)
{
}
int GetNumVertices()
{
return num_vertices_;
}
protected:
int num_vertices_;
};
class ConstPatchCoordWrapperBuffer : public RawDataWrapperVertexBuffer<const PatchCoord> {
public:
ConstPatchCoordWrapperBuffer(const PatchCoord *data, int num_vertices)
: RawDataWrapperVertexBuffer(data, num_vertices)
{
}
};
template<typename EVAL_VERTEX_BUFFER,
typename STENCIL_TABLE,
typename PATCH_TABLE,
typename EVALUATOR,
typename DEVICE_CONTEXT = void>
class FaceVaryingVolatileEval {
public:
typedef OpenSubdiv::Osd::EvaluatorCacheT<EVALUATOR> EvaluatorCache;
FaceVaryingVolatileEval(int face_varying_channel,
const StencilTable *face_varying_stencils,
int face_varying_width,
PATCH_TABLE *patch_table,
EvaluatorCache *evaluator_cache = NULL,
DEVICE_CONTEXT *device_context = NULL)
: face_varying_channel_(face_varying_channel),
src_face_varying_desc_(0, face_varying_width, face_varying_width),
patch_table_(patch_table),
evaluator_cache_(evaluator_cache),
device_context_(device_context)
{
using OpenSubdiv::Osd::convertToCompatibleStencilTable;
num_coarse_face_varying_vertices_ = face_varying_stencils->GetNumControlVertices();
const int num_total_face_varying_vertices = face_varying_stencils->GetNumControlVertices() +
face_varying_stencils->GetNumStencils();
src_face_varying_data_ = EVAL_VERTEX_BUFFER::Create(
2, num_total_face_varying_vertices, device_context);
face_varying_stencils_ = convertToCompatibleStencilTable<STENCIL_TABLE>(face_varying_stencils,
device_context_);
}
~FaceVaryingVolatileEval()
{
delete src_face_varying_data_;
delete face_varying_stencils_;
}
void updateData(const float *src, int start_vertex, int num_vertices)
{
src_face_varying_data_->UpdateData(src, start_vertex, num_vertices, device_context_);
}
void refine()
{
BufferDescriptor dst_face_varying_desc = src_face_varying_desc_;
dst_face_varying_desc.offset += num_coarse_face_varying_vertices_ *
src_face_varying_desc_.stride;
const EVALUATOR *eval_instance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
evaluator_cache_, src_face_varying_desc_, dst_face_varying_desc, device_context_);
EVALUATOR::EvalStencils(src_face_varying_data_,
src_face_varying_desc_,
src_face_varying_data_,
dst_face_varying_desc,
face_varying_stencils_,
eval_instance,
device_context_);
}
// NOTE: face_varying must point to a memory of at least float[2]*num_patch_coords.
void evalPatches(const PatchCoord *patch_coord, const int num_patch_coords, float *face_varying)
{
RawDataWrapperBuffer<float> face_varying_data(face_varying);
BufferDescriptor face_varying_desc(0, 2, 2);
ConstPatchCoordWrapperBuffer patch_coord_buffer(patch_coord, num_patch_coords);
const EVALUATOR *eval_instance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
evaluator_cache_, src_face_varying_desc_, face_varying_desc, device_context_);
EVALUATOR::EvalPatchesFaceVarying(src_face_varying_data_,
src_face_varying_desc_,
&face_varying_data,
face_varying_desc,
patch_coord_buffer.GetNumVertices(),
&patch_coord_buffer,
patch_table_,
face_varying_channel_,
eval_instance,
device_context_);
}
protected:
int face_varying_channel_;
BufferDescriptor src_face_varying_desc_;
int num_coarse_face_varying_vertices_;
EVAL_VERTEX_BUFFER *src_face_varying_data_;
const STENCIL_TABLE *face_varying_stencils_;
// NOTE: We reference this, do not own it.
PATCH_TABLE *patch_table_;
EvaluatorCache *evaluator_cache_;
DEVICE_CONTEXT *device_context_;
};
// Volatile evaluator which can be used from threads.
//
// TODO(sergey): Make it possible to evaluate coordinates in chunks.
// TODO(sergey): Make it possible to evaluate multiple face varying layers.
// (or maybe, it's cheap to create new evaluator for existing
// topology to evaluate all needed face varying layers?)
template<typename SRC_VERTEX_BUFFER,
typename EVAL_VERTEX_BUFFER,
typename STENCIL_TABLE,
typename PATCH_TABLE,
typename EVALUATOR,
typename DEVICE_CONTEXT = void>
class VolatileEvalOutput {
public:
typedef OpenSubdiv::Osd::EvaluatorCacheT<EVALUATOR> EvaluatorCache;
typedef FaceVaryingVolatileEval<EVAL_VERTEX_BUFFER,
STENCIL_TABLE,
PATCH_TABLE,
EVALUATOR,
DEVICE_CONTEXT>
FaceVaryingEval;
VolatileEvalOutput(const StencilTable *vertex_stencils,
const StencilTable *varying_stencils,
const vector<const StencilTable *> &all_face_varying_stencils,
const int face_varying_width,
const PatchTable *patch_table,
EvaluatorCache *evaluator_cache = NULL,
DEVICE_CONTEXT *device_context = NULL)
: src_desc_(0, 3, 3),
src_varying_desc_(0, 3, 3),
face_varying_width_(face_varying_width),
evaluator_cache_(evaluator_cache),
device_context_(device_context)
{
// Total number of vertices = coarse points + refined points + local points.
int num_total_vertices = vertex_stencils->GetNumControlVertices() +
vertex_stencils->GetNumStencils();
num_coarse_vertices_ = vertex_stencils->GetNumControlVertices();
using OpenSubdiv::Osd::convertToCompatibleStencilTable;
src_data_ = SRC_VERTEX_BUFFER::Create(3, num_total_vertices, device_context_);
src_varying_data_ = SRC_VERTEX_BUFFER::Create(3, num_total_vertices, device_context_);
patch_table_ = PATCH_TABLE::Create(patch_table, device_context_);
vertex_stencils_ = convertToCompatibleStencilTable<STENCIL_TABLE>(vertex_stencils,
device_context_);
varying_stencils_ = convertToCompatibleStencilTable<STENCIL_TABLE>(varying_stencils,
device_context_);
// Create evaluators for every face varying channel.
face_varying_evaluators.reserve(all_face_varying_stencils.size());
int face_varying_channel = 0;
foreach (const StencilTable *face_varying_stencils, all_face_varying_stencils) {
face_varying_evaluators.push_back(new FaceVaryingEval(face_varying_channel,
face_varying_stencils,
face_varying_width,
patch_table_,
evaluator_cache_,
device_context_));
++face_varying_channel;
}
}
~VolatileEvalOutput()
{
delete src_data_;
delete src_varying_data_;
delete patch_table_;
delete vertex_stencils_;
delete varying_stencils_;
foreach (FaceVaryingEval *face_varying_evaluator, face_varying_evaluators) {
delete face_varying_evaluator;
}
}
// TODO(sergey): Implement binding API.
void updateData(const float *src, int start_vertex, int num_vertices)
{
src_data_->UpdateData(src, start_vertex, num_vertices, device_context_);
}
void updateVaryingData(const float *src, int start_vertex, int num_vertices)
{
src_varying_data_->UpdateData(src, start_vertex, num_vertices, device_context_);
}
void updateFaceVaryingData(const int face_varying_channel,
const float *src,
int start_vertex,
int num_vertices)
{
assert(face_varying_channel >= 0);
assert(face_varying_channel < face_varying_evaluators.size());
face_varying_evaluators[face_varying_channel]->updateData(src, start_vertex, num_vertices);
}
bool hasVaryingData() const
{
// return varying_stencils_ != NULL;
// TODO(sergey): Check this based on actual topology.
return false;
}
bool hasFaceVaryingData() const
{
return face_varying_evaluators.size() != 0;
}
void refine()
{
// Evaluate vertex positions.
BufferDescriptor dst_desc = src_desc_;
dst_desc.offset += num_coarse_vertices_ * src_desc_.stride;
const EVALUATOR *eval_instance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
evaluator_cache_, src_desc_, dst_desc, device_context_);
EVALUATOR::EvalStencils(src_data_,
src_desc_,
src_data_,
dst_desc,
vertex_stencils_,
eval_instance,
device_context_);
// Evaluate varying data.
if (hasVaryingData()) {
BufferDescriptor dst_varying_desc = src_varying_desc_;
dst_varying_desc.offset += num_coarse_vertices_ * src_varying_desc_.stride;
eval_instance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
evaluator_cache_, src_varying_desc_, dst_varying_desc, device_context_);
EVALUATOR::EvalStencils(src_varying_data_,
src_varying_desc_,
src_varying_data_,
dst_varying_desc,
varying_stencils_,
eval_instance,
device_context_);
}
// Evaluate face-varying data.
if (hasFaceVaryingData()) {
foreach (FaceVaryingEval *face_varying_evaluator, face_varying_evaluators) {
face_varying_evaluator->refine();
}
}
}
// NOTE: P must point to a memory of at least float[3]*num_patch_coords.
void evalPatches(const PatchCoord *patch_coord, const int num_patch_coords, float *P)
{
RawDataWrapperBuffer<float> P_data(P);
// TODO(sergey): Support interleaved vertex-varying data.
BufferDescriptor P_desc(0, 3, 3);
ConstPatchCoordWrapperBuffer patch_coord_buffer(patch_coord, num_patch_coords);
const EVALUATOR *eval_instance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
evaluator_cache_, src_desc_, P_desc, device_context_);
EVALUATOR::EvalPatches(src_data_,
src_desc_,
&P_data,
P_desc,
patch_coord_buffer.GetNumVertices(),
&patch_coord_buffer,
patch_table_,
eval_instance,
device_context_);
}
// NOTE: P, dPdu, dPdv must point to a memory of at least float[3]*num_patch_coords.
void evalPatchesWithDerivatives(const PatchCoord *patch_coord,
const int num_patch_coords,
float *P,
float *dPdu,
float *dPdv)
{
assert(dPdu);
assert(dPdv);
RawDataWrapperBuffer<float> P_data(P);
RawDataWrapperBuffer<float> dPdu_data(dPdu), dPdv_data(dPdv);
// TODO(sergey): Support interleaved vertex-varying data.
BufferDescriptor P_desc(0, 3, 3);
BufferDescriptor dpDu_desc(0, 3, 3), pPdv_desc(0, 3, 3);
ConstPatchCoordWrapperBuffer patch_coord_buffer(patch_coord, num_patch_coords);
const EVALUATOR *eval_instance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
evaluator_cache_, src_desc_, P_desc, dpDu_desc, pPdv_desc, device_context_);
EVALUATOR::EvalPatches(src_data_,
src_desc_,
&P_data,
P_desc,
&dPdu_data,
dpDu_desc,
&dPdv_data,
pPdv_desc,
patch_coord_buffer.GetNumVertices(),
&patch_coord_buffer,
patch_table_,
eval_instance,
device_context_);
}
// NOTE: varying must point to a memory of at least float[3]*num_patch_coords.
void evalPatchesVarying(const PatchCoord *patch_coord,
const int num_patch_coords,
float *varying)
{
RawDataWrapperBuffer<float> varying_data(varying);
BufferDescriptor varying_desc(3, 3, 6);
ConstPatchCoordWrapperBuffer patch_coord_buffer(patch_coord, num_patch_coords);
const EVALUATOR *eval_instance = OpenSubdiv::Osd::GetEvaluator<EVALUATOR>(
evaluator_cache_, src_varying_desc_, varying_desc, device_context_);
EVALUATOR::EvalPatchesVarying(src_varying_data_,
src_varying_desc_,
&varying_data,
varying_desc,
patch_coord_buffer.GetNumVertices(),
&patch_coord_buffer,
patch_table_,
eval_instance,
device_context_);
}
void evalPatchesFaceVarying(const int face_varying_channel,
const PatchCoord *patch_coord,
const int num_patch_coords,
float face_varying[2])
{
assert(face_varying_channel >= 0);
assert(face_varying_channel < face_varying_evaluators.size());
face_varying_evaluators[face_varying_channel]->evalPatches(
patch_coord, num_patch_coords, face_varying);
}
private:
SRC_VERTEX_BUFFER *src_data_;
SRC_VERTEX_BUFFER *src_varying_data_;
PATCH_TABLE *patch_table_;
BufferDescriptor src_desc_;
BufferDescriptor src_varying_desc_;
int num_coarse_vertices_;
const STENCIL_TABLE *vertex_stencils_;
const STENCIL_TABLE *varying_stencils_;
int face_varying_width_;
vector<FaceVaryingEval *> face_varying_evaluators;
EvaluatorCache *evaluator_cache_;
DEVICE_CONTEXT *device_context_;
};
void convertPatchCoordsToArray(const OpenSubdiv_PatchCoord *patch_coords,
const int num_patch_coords,
const OpenSubdiv::Far::PatchMap *patch_map,
StackOrHeapPatchCoordArray *array)
{
array->resize(num_patch_coords);
for (int i = 0; i < num_patch_coords; ++i) {
const PatchTable::PatchHandle *handle = patch_map->FindPatch(
patch_coords[i].ptex_face, patch_coords[i].u, patch_coords[i].v);
(array->data())[i] = PatchCoord(*handle, patch_coords[i].u, patch_coords[i].v);
}
}
} // namespace
// Note: Define as a class instead of typedcef to make it possible
// to have anonymous class in opensubdiv_evaluator_internal.h
class CpuEvalOutput : public VolatileEvalOutput<CpuVertexBuffer,
CpuVertexBuffer,
StencilTable,
CpuPatchTable,
CpuEvaluator> {
public:
CpuEvalOutput(const StencilTable *vertex_stencils,
const StencilTable *varying_stencils,
const vector<const StencilTable *> &all_face_varying_stencils,
const int face_varying_width,
const PatchTable *patch_table,
EvaluatorCache *evaluator_cache = NULL)
: VolatileEvalOutput<CpuVertexBuffer,
CpuVertexBuffer,
StencilTable,
CpuPatchTable,
CpuEvaluator>(vertex_stencils,
varying_stencils,
all_face_varying_stencils,
face_varying_width,
patch_table,
evaluator_cache)
{
}
};
////////////////////////////////////////////////////////////////////////////////
// Evaluator wrapper for anonymous API.
CpuEvalOutputAPI::CpuEvalOutputAPI(CpuEvalOutput *implementation,
OpenSubdiv::Far::PatchMap *patch_map)
: implementation_(implementation), patch_map_(patch_map)
{
}
CpuEvalOutputAPI::~CpuEvalOutputAPI()
{
delete implementation_;
}
void CpuEvalOutputAPI::setCoarsePositions(const float *positions,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
implementation_->updateData(positions, start_vertex_index, num_vertices);
}
void CpuEvalOutputAPI::setVaryingData(const float *varying_data,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
implementation_->updateVaryingData(varying_data, start_vertex_index, num_vertices);
}
void CpuEvalOutputAPI::setFaceVaryingData(const int face_varying_channel,
const float *face_varying_data,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
implementation_->updateFaceVaryingData(
face_varying_channel, face_varying_data, start_vertex_index, num_vertices);
}
void CpuEvalOutputAPI::setCoarsePositionsFromBuffer(const void *buffer,
const int start_offset,
const int stride,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
const unsigned char *current_buffer = (unsigned char *)buffer;
current_buffer += start_offset;
for (int i = 0; i < num_vertices; ++i) {
const int current_vertex_index = start_vertex_index + i;
implementation_->updateData(
reinterpret_cast<const float *>(current_buffer), current_vertex_index, 1);
current_buffer += stride;
}
}
void CpuEvalOutputAPI::setVaryingDataFromBuffer(const void *buffer,
const int start_offset,
const int stride,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
const unsigned char *current_buffer = (unsigned char *)buffer;
current_buffer += start_offset;
for (int i = 0; i < num_vertices; ++i) {
const int current_vertex_index = start_vertex_index + i;
implementation_->updateVaryingData(
reinterpret_cast<const float *>(current_buffer), current_vertex_index, 1);
current_buffer += stride;
}
}
void CpuEvalOutputAPI::setFaceVaryingDataFromBuffer(const int face_varying_channel,
const void *buffer,
const int start_offset,
const int stride,
const int start_vertex_index,
const int num_vertices)
{
// TODO(sergey): Add sanity check on indices.
const unsigned char *current_buffer = (unsigned char *)buffer;
current_buffer += start_offset;
for (int i = 0; i < num_vertices; ++i) {
const int current_vertex_index = start_vertex_index + i;
implementation_->updateFaceVaryingData(face_varying_channel,
reinterpret_cast<const float *>(current_buffer),
current_vertex_index,
1);
current_buffer += stride;
}
}
void CpuEvalOutputAPI::refine()
{
implementation_->refine();
}
void CpuEvalOutputAPI::evaluateLimit(const int ptex_face_index,
float face_u,
float face_v,
float P[3],
float dPdu[3],
float dPdv[3])
{
assert(face_u >= 0.0f);
assert(face_u <= 1.0f);
assert(face_v >= 0.0f);
assert(face_v <= 1.0f);
const PatchTable::PatchHandle *handle = patch_map_->FindPatch(ptex_face_index, face_u, face_v);
PatchCoord patch_coord(*handle, face_u, face_v);
if (dPdu != NULL || dPdv != NULL) {
implementation_->evalPatchesWithDerivatives(&patch_coord, 1, P, dPdu, dPdv);
}
else {
implementation_->evalPatches(&patch_coord, 1, P);
}
}
void CpuEvalOutputAPI::evaluateVarying(const int ptex_face_index,
float face_u,
float face_v,
float varying[3])
{
assert(face_u >= 0.0f);
assert(face_u <= 1.0f);
assert(face_v >= 0.0f);
assert(face_v <= 1.0f);
const PatchTable::PatchHandle *handle = patch_map_->FindPatch(ptex_face_index, face_u, face_v);
PatchCoord patch_coord(*handle, face_u, face_v);
implementation_->evalPatchesVarying(&patch_coord, 1, varying);
}
void CpuEvalOutputAPI::evaluateFaceVarying(const int face_varying_channel,
const int ptex_face_index,
float face_u,
float face_v,
float face_varying[2])
{
assert(face_u >= 0.0f);
assert(face_u <= 1.0f);
assert(face_v >= 0.0f);
assert(face_v <= 1.0f);
const PatchTable::PatchHandle *handle = patch_map_->FindPatch(ptex_face_index, face_u, face_v);
PatchCoord patch_coord(*handle, face_u, face_v);
implementation_->evalPatchesFaceVarying(face_varying_channel, &patch_coord, 1, face_varying);
}
void CpuEvalOutputAPI::evaluatePatchesLimit(const OpenSubdiv_PatchCoord *patch_coords,
const int num_patch_coords,
float *P,
float *dPdu,
float *dPdv)
{
StackOrHeapPatchCoordArray patch_coords_array;
convertPatchCoordsToArray(patch_coords, num_patch_coords, patch_map_, &patch_coords_array);
if (dPdu != NULL || dPdv != NULL) {
implementation_->evalPatchesWithDerivatives(
patch_coords_array.data(), num_patch_coords, P, dPdu, dPdv);
}
else {
implementation_->evalPatches(patch_coords_array.data(), num_patch_coords, P);
}
}
} // namespace opensubdiv_capi
OpenSubdiv_EvaluatorInternal::OpenSubdiv_EvaluatorInternal()
: eval_output(NULL), patch_map(NULL), patch_table(NULL)
{
}
OpenSubdiv_EvaluatorInternal::~OpenSubdiv_EvaluatorInternal()
{
delete eval_output;
delete patch_map;
delete patch_table;
}
OpenSubdiv_EvaluatorInternal *openSubdiv_createEvaluatorInternal(
OpenSubdiv_TopologyRefiner *topology_refiner)
{
using opensubdiv_capi::vector;
TopologyRefiner *refiner = topology_refiner->internal->osd_topology_refiner;
if (refiner == NULL) {
// Happens on bad topology.
return NULL;
}
// TODO(sergey): Base this on actual topology.
const bool has_varying_data = false;
const int num_face_varying_channels = refiner->GetNumFVarChannels();
const bool has_face_varying_data = (num_face_varying_channels != 0);
const int level = topology_refiner->getSubdivisionLevel(topology_refiner);
const bool is_adaptive = topology_refiner->getIsAdaptive(topology_refiner);
// Common settings for stencils and patches.
const bool stencil_generate_intermediate_levels = is_adaptive;
const bool stencil_generate_offsets = true;
const bool use_inf_sharp_patch = true;
// Refine the topology with given settings.
// TODO(sergey): What if topology is already refined?
if (is_adaptive) {
TopologyRefiner::AdaptiveOptions options(level);
options.considerFVarChannels = has_face_varying_data;
options.useInfSharpPatch = use_inf_sharp_patch;
refiner->RefineAdaptive(options);
}
else {
TopologyRefiner::UniformOptions options(level);
refiner->RefineUniform(options);
}
// Generate stencil table to update the bi-cubic patches control vertices
// after they have been re-posed (both for vertex & varying interpolation).
//
// Vertex stencils.
StencilTableFactory::Options vertex_stencil_options;
vertex_stencil_options.generateOffsets = stencil_generate_offsets;
vertex_stencil_options.generateIntermediateLevels = stencil_generate_intermediate_levels;
const StencilTable *vertex_stencils = StencilTableFactory::Create(*refiner,
vertex_stencil_options);
// Varying stencils.
//
// TODO(sergey): Seems currently varying stencils are always required in
// OpenSubdiv itself.
const StencilTable *varying_stencils = NULL;
if (has_varying_data) {
StencilTableFactory::Options varying_stencil_options;
varying_stencil_options.generateOffsets = stencil_generate_offsets;
varying_stencil_options.generateIntermediateLevels = stencil_generate_intermediate_levels;
varying_stencil_options.interpolationMode = StencilTableFactory::INTERPOLATE_VARYING;
varying_stencils = StencilTableFactory::Create(*refiner, varying_stencil_options);
}
// Face warying stencil.
vector<const StencilTable *> all_face_varying_stencils;
all_face_varying_stencils.reserve(num_face_varying_channels);
for (int face_varying_channel = 0; face_varying_channel < num_face_varying_channels;
++face_varying_channel) {
StencilTableFactory::Options face_varying_stencil_options;
face_varying_stencil_options.generateOffsets = stencil_generate_offsets;
face_varying_stencil_options.generateIntermediateLevels = stencil_generate_intermediate_levels;
face_varying_stencil_options.interpolationMode = StencilTableFactory::INTERPOLATE_FACE_VARYING;
face_varying_stencil_options.fvarChannel = face_varying_channel;
all_face_varying_stencils.push_back(
StencilTableFactory::Create(*refiner, face_varying_stencil_options));
}
// Generate bi-cubic patch table for the limit surface.
PatchTableFactory::Options patch_options(level);
patch_options.SetEndCapType(PatchTableFactory::Options::ENDCAP_GREGORY_BASIS);
patch_options.useInfSharpPatch = use_inf_sharp_patch;
patch_options.generateFVarTables = has_face_varying_data;
patch_options.generateFVarLegacyLinearPatches = false;
const PatchTable *patch_table = PatchTableFactory::Create(*refiner, patch_options);
// Append local points stencils.
// Point stencils.
const StencilTable *local_point_stencil_table = patch_table->GetLocalPointStencilTable();
if (local_point_stencil_table != NULL) {
const StencilTable *table = StencilTableFactory::AppendLocalPointStencilTable(
*refiner, vertex_stencils, local_point_stencil_table);
delete vertex_stencils;
vertex_stencils = table;
}
// Varying stencils.
if (has_varying_data) {
const StencilTable *local_point_varying_stencil_table =
patch_table->GetLocalPointVaryingStencilTable();
if (local_point_varying_stencil_table != NULL) {
const StencilTable *table = StencilTableFactory::AppendLocalPointStencilTable(
*refiner, varying_stencils, local_point_varying_stencil_table);
delete varying_stencils;
varying_stencils = table;
}
}
for (int face_varying_channel = 0; face_varying_channel < num_face_varying_channels;
++face_varying_channel) {
const StencilTable *table = StencilTableFactory::AppendLocalPointStencilTableFaceVarying(
*refiner,
all_face_varying_stencils[face_varying_channel],
patch_table->GetLocalPointFaceVaryingStencilTable(face_varying_channel),
face_varying_channel);
if (table != NULL) {
delete all_face_varying_stencils[face_varying_channel];
all_face_varying_stencils[face_varying_channel] = table;
}
}
// Create OpenSubdiv's CPU side evaluator.
// TODO(sergey): Make it possible to use different evaluators.
opensubdiv_capi::CpuEvalOutput *eval_output = new opensubdiv_capi::CpuEvalOutput(
vertex_stencils, varying_stencils, all_face_varying_stencils, 2, patch_table);
OpenSubdiv::Far::PatchMap *patch_map = new PatchMap(*patch_table);
// Wrap everything we need into an object which we control from our side.
OpenSubdiv_EvaluatorInternal *evaluator_descr;
evaluator_descr = OBJECT_GUARDED_NEW(OpenSubdiv_EvaluatorInternal);
evaluator_descr->eval_output = new opensubdiv_capi::CpuEvalOutputAPI(eval_output, patch_map);
evaluator_descr->patch_map = patch_map;
evaluator_descr->patch_table = patch_table;
// TOOD(sergey): Look into whether we've got duplicated stencils arrays.
delete vertex_stencils;
delete varying_stencils;
foreach (const StencilTable *table, all_face_varying_stencils) {
delete table;
}
return evaluator_descr;
}
void openSubdiv_deleteEvaluatorInternal(OpenSubdiv_EvaluatorInternal *evaluator)
{
OBJECT_GUARDED_DELETE(evaluator, OpenSubdiv_EvaluatorInternal);
}