This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/src/booleanops.c
Brecht Van Lommel 80ee52e444 Multiple UV and vertex color layers: (still work in progress)
These can be created and deleted in the Mesh panel in the same place as
before. There is always one active UV and vertex color layer, that is
edited and displayed.

Important things to do:
- Render engine, material support
- Multires and NMesh now lose non active layers

Also CustomData changes to support muliple layers of the same type, and
changes to layer allocation, updated documentation is here:
http://mediawiki.blender.org/index.php/BlenderDev/BlenderArchitecture/CustomData
2006-12-12 21:29:09 +00:00

567 lines
15 KiB
C

/**
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: all of this file.
*
* Contributor(s): none yet.
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
* CSG operations.
*/
#include <string.h>
#include "MEM_guardedalloc.h"
#include "BLI_arithb.h"
#include "BLI_blenlib.h"
#include "BLI_ghash.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "CSG_BooleanOps.h"
#include "BKE_booleanops.h"
#include "BKE_cdderivedmesh.h"
#include "BKE_customdata.h"
#include "BKE_depsgraph.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_library.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_object.h"
#include "BKE_utildefines.h"
#include "BIF_toolbox.h"
#include "BDR_editface.h"
#include <math.h>
/**
* Here's the vertex iterator structure used to walk through
* the blender vertex structure.
*/
typedef struct {
Mesh *mesh;
Object *ob;
int pos;
} VertexIt;
/**
* Implementations of local vertex iterator functions.
* These describe a blender mesh to the CSG module.
*/
static void VertexIt_Destruct(CSG_VertexIteratorDescriptor * iterator)
{
if (iterator->it) {
// deallocate memory for iterator
MEM_freeN(iterator->it);
iterator->it = 0;
}
iterator->Done = NULL;
iterator->Fill = NULL;
iterator->Reset = NULL;
iterator->Step = NULL;
iterator->num_elements = 0;
}
static int VertexIt_Done(CSG_IteratorPtr it)
{
VertexIt * iterator = (VertexIt *)it;
return(iterator->pos >= iterator->mesh->totvert);
}
static void VertexIt_Fill(CSG_IteratorPtr it, CSG_IVertex *vert)
{
VertexIt * iterator = (VertexIt *)it;
MVert *verts = iterator->mesh->mvert;
float global_pos[3];
/* boolean happens in global space, transform both with obmat */
VecMat4MulVecfl(
global_pos,
iterator->ob->obmat,
verts[iterator->pos].co
);
vert->position[0] = global_pos[0];
vert->position[1] = global_pos[1];
vert->position[2] = global_pos[2];
}
static void VertexIt_Step(CSG_IteratorPtr it)
{
VertexIt * iterator = (VertexIt *)it;
iterator->pos ++;
}
static void VertexIt_Reset(CSG_IteratorPtr it)
{
VertexIt * iterator = (VertexIt *)it;
iterator->pos = 0;
}
static void VertexIt_Construct(CSG_VertexIteratorDescriptor *output, Object *ob)
{
VertexIt *it;
if (output == 0) return;
// allocate some memory for blender iterator
it = (VertexIt *)(MEM_mallocN(sizeof(VertexIt),"Boolean_VIt"));
if (it == 0) {
return;
}
// assign blender specific variables
it->ob = ob;
it->mesh = ob->data;
it->pos = 0;
// assign iterator function pointers.
output->Step = VertexIt_Step;
output->Fill = VertexIt_Fill;
output->Done = VertexIt_Done;
output->Reset = VertexIt_Reset;
output->num_elements = it->mesh->totvert;
output->it = it;
}
/**
* Blender Face iterator
*/
typedef struct {
Mesh *mesh;
int pos;
int offset;
} FaceIt;
static void FaceIt_Destruct(CSG_FaceIteratorDescriptor * iterator)
{
MEM_freeN(iterator->it);
iterator->Done = NULL;
iterator->Fill = NULL;
iterator->Reset = NULL;
iterator->Step = NULL;
iterator->num_elements = 0;
}
static int FaceIt_Done(CSG_IteratorPtr it)
{
// assume CSG_IteratorPtr is of the correct type.
FaceIt * iterator = (FaceIt *)it;
return(iterator->pos >= iterator->mesh->totface);
}
static void FaceIt_Fill(CSG_IteratorPtr it, CSG_IFace *face)
{
// assume CSG_IteratorPtr is of the correct type.
FaceIt *face_it = (FaceIt *)it;
MFace *mfaces = face_it->mesh->mface;
MFace *mface = &mfaces[face_it->pos];
face->vertex_index[0] = mface->v1;
face->vertex_index[1] = mface->v2;
face->vertex_index[2] = mface->v3;
if (mface->v4) {
face->vertex_index[3] = mface->v4;
face->vertex_number = 4;
} else {
face->vertex_number = 3;
}
face->orig_face = face_it->offset + face_it->pos;
}
static void FaceIt_Step(CSG_IteratorPtr it)
{
FaceIt * face_it = (FaceIt *)it;
face_it->pos ++;
}
static void FaceIt_Reset(CSG_IteratorPtr it)
{
FaceIt * face_it = (FaceIt *)it;
face_it->pos = 0;
}
static void FaceIt_Construct(
CSG_FaceIteratorDescriptor *output, Object *ob, int offset)
{
FaceIt *it;
if (output == 0) return;
// allocate some memory for blender iterator
it = (FaceIt *)(MEM_mallocN(sizeof(FaceIt),"Boolean_FIt"));
if (it == 0) {
return ;
}
// assign blender specific variables
it->mesh = ob->data;
it->offset = offset;
it->pos = 0;
// assign iterator function pointers.
output->Step = FaceIt_Step;
output->Fill = FaceIt_Fill;
output->Done = FaceIt_Done;
output->Reset = FaceIt_Reset;
output->num_elements = it->mesh->totface;
output->it = it;
}
static Object *AddNewBlenderMesh(Base *base)
{
// This little function adds a new mesh object to the blender object list
// It uses ob to duplicate data as this seems to be easier than creating
// a new one. This new oject contains no faces nor vertices.
Mesh *old_me;
Base *basen;
Object *ob_new;
// now create a new blender object.
// duplicating all the settings from the previous object
// to the new one.
ob_new= copy_object(base->object);
// Ok we don't want to use the actual data from the
// last object, the above function incremented the
// number of users, so decrement it here.
old_me= ob_new->data;
old_me->id.us--;
// Now create a new base to add into the linked list of
// vase objects.
basen= MEM_mallocN(sizeof(Base), "duplibase");
*basen= *base;
BLI_addhead(&G.scene->base, basen); /* addhead: anders oneindige lus */
basen->object= ob_new;
basen->flag &= ~SELECT;
// Initialize the mesh data associated with this object.
ob_new->data= add_mesh();
G.totmesh++;
// Finally assign the object type.
ob_new->type= OB_MESH;
return ob_new;
}
static void InterpCSGFace(
DerivedMesh *dm, Mesh *orig_me, int index, int orig_index, int nr,
float mapmat[][4])
{
float obco[3], *co[4], *orig_co[4], w[4][4];
MFace *mface, *orig_mface;
int j;
mface = CDDM_get_face(dm, index);
orig_mface = orig_me->mface + orig_index;
// get the vertex coordinates from the original mesh
orig_co[0] = (orig_me->mvert + orig_mface->v1)->co;
orig_co[1] = (orig_me->mvert + orig_mface->v2)->co;
orig_co[2] = (orig_me->mvert + orig_mface->v3)->co;
orig_co[3] = (orig_mface->v4)? (orig_me->mvert + orig_mface->v4)->co: NULL;
// get the vertex coordinates from the new derivedmesh
co[0] = CDDM_get_vert(dm, mface->v1)->co;
co[1] = CDDM_get_vert(dm, mface->v2)->co;
co[2] = CDDM_get_vert(dm, mface->v3)->co;
co[3] = (nr == 4)? CDDM_get_vert(dm, mface->v4)->co: NULL;
for (j = 0; j < nr; j++) {
// get coordinate into the space of the original mesh
if (mapmat)
VecMat4MulVecfl(obco, mapmat, co[j]);
else
VecCopyf(obco, co[j]);
InterpWeightsQ3Dfl(orig_co[0], orig_co[1], orig_co[2], orig_co[3], obco, w[j]);
}
CustomData_interp(&orig_me->fdata, &dm->faceData, &orig_index, NULL, (float*)w, 1, index);
}
/* Iterate over the CSG Output Descriptors and create a new DerivedMesh
from them */
static DerivedMesh *ConvertCSGDescriptorsToDerivedMesh(
CSG_FaceIteratorDescriptor *face_it,
CSG_VertexIteratorDescriptor *vertex_it,
float parinv[][4],
float mapmat[][4],
Material **mat,
int *totmat,
Object *ob1,
Object *ob2)
{
DerivedMesh *dm;
GHash *material_hash = NULL;
Mesh *me1= (Mesh*)ob1->data;
Mesh *me2= (Mesh*)ob2->data;
int i;
// create a new DerivedMesh
dm = CDDM_new(vertex_it->num_elements, 0, face_it->num_elements);
CustomData_merge(&me1->fdata, &dm->faceData, CD_MASK_DERIVEDMESH,
CD_DEFAULT, face_it->num_elements);
CustomData_merge(&me2->fdata, &dm->faceData, CD_MASK_DERIVEDMESH,
CD_DEFAULT, face_it->num_elements);
// step through the vertex iterators:
for (i = 0; !vertex_it->Done(vertex_it->it); i++) {
CSG_IVertex csgvert;
MVert *mvert = CDDM_get_vert(dm, i);
// retrieve a csg vertex from the boolean module
vertex_it->Fill(vertex_it->it, &csgvert);
vertex_it->Step(vertex_it->it);
// we have to map the vertex coordinates back in the coordinate frame
// of the resulting object, since it was computed in world space
VecMat4MulVecfl(mvert->co, parinv, csgvert.position);
}
// a hash table to remap materials to indices
if (mat) {
material_hash = BLI_ghash_new(BLI_ghashutil_ptrhash, BLI_ghashutil_ptrcmp);
*totmat = 0;
}
// step through the face iterators
for(i = 0; !face_it->Done(face_it->it); i++) {
Mesh *orig_me;
Object *orig_ob;
Material *orig_mat;
CSG_IFace csgface;
MFace *mface;
int orig_index, mat_nr;
// retrieve a csg face from the boolean module
face_it->Fill(face_it->it, &csgface);
face_it->Step(face_it->it);
// find the original mesh and data
orig_me = (csgface.orig_face < me1->totface)? me1: me2;
orig_ob = (orig_me == me1)? ob1: ob2;
orig_index = (orig_me == me1)? csgface.orig_face: csgface.orig_face - me1->totface;
// copy all face layers, including mface
CustomData_copy_data(&orig_me->fdata, &dm->faceData, orig_index, i, 1);
// set mface
mface = CDDM_get_face(dm, i);
mface->v1 = csgface.vertex_index[0];
mface->v2 = csgface.vertex_index[1];
mface->v3 = csgface.vertex_index[2];
mface->v4 = (csgface.vertex_number == 4)? csgface.vertex_index[3]: 0;
// set material, based on lookup in hash table
orig_mat= give_current_material(orig_ob, mface->mat_nr+1);
if (mat && orig_mat) {
if (!BLI_ghash_haskey(material_hash, orig_mat)) {
mat[*totmat] = orig_mat;
mat_nr = mface->mat_nr = (*totmat)++;
BLI_ghash_insert(material_hash, orig_mat, (void*)mat_nr);
}
else
mface->mat_nr = (int)BLI_ghash_lookup(material_hash, orig_mat);
}
else
mface->mat_nr = 0;
InterpCSGFace(dm, orig_me, i, orig_index, csgface.vertex_number,
(orig_me == me2)? mapmat: NULL);
test_index_face(mface, &dm->faceData, i, csgface.vertex_number);
}
if (material_hash)
BLI_ghash_free(material_hash, NULL, NULL);
CDDM_calc_edges(dm);
CDDM_calc_normals(dm);
return dm;
}
static void BuildMeshDescriptors(
struct Object *ob,
int face_offset,
struct CSG_FaceIteratorDescriptor * face_it,
struct CSG_VertexIteratorDescriptor * vertex_it)
{
VertexIt_Construct(vertex_it,ob);
FaceIt_Construct(face_it,ob,face_offset);
}
static void FreeMeshDescriptors(
struct CSG_FaceIteratorDescriptor *face_it,
struct CSG_VertexIteratorDescriptor *vertex_it)
{
VertexIt_Destruct(vertex_it);
FaceIt_Destruct(face_it);
}
DerivedMesh *NewBooleanDerivedMesh_intern(
struct Object *ob, struct Object *ob_select,
int int_op_type, Material **mat, int *totmat)
{
float inv_mat[4][4];
float map_mat[4][4];
DerivedMesh *dm = NULL;
Mesh *me1 = get_mesh(ob);
Mesh *me2 = get_mesh(ob_select);
if (me1 == NULL || me2 == NULL) return 0;
if (!me1->totface || !me2->totface) return 0;
// we map the final object back into ob's local coordinate space. For this
// we need to compute the inverse transform from global to ob (inv_mat),
// and the transform from ob to ob_select for use in interpolation (map_mat)
Mat4Invert(inv_mat, ob_select->obmat);
Mat4MulMat4(map_mat, ob->obmat, inv_mat);
Mat4Invert(inv_mat, ob->obmat);
{
// interface with the boolean module:
//
// the idea is, we pass the boolean module verts and faces using the
// provided descriptors. once the boolean operation is performed, we
// get back output descriptors, from which we then build a DerivedMesh
CSG_VertexIteratorDescriptor vd_1, vd_2;
CSG_FaceIteratorDescriptor fd_1, fd_2;
CSG_OperationType op_type;
CSG_BooleanOperation *bool_op;
// work out the operation they chose and pick the appropriate
// enum from the csg module.
switch (int_op_type) {
case 1 : op_type = e_csg_intersection; break;
case 2 : op_type = e_csg_union; break;
case 3 : op_type = e_csg_difference; break;
case 4 : op_type = e_csg_classify; break;
default : op_type = e_csg_intersection;
}
BuildMeshDescriptors(ob, 0, &fd_1, &vd_1);
BuildMeshDescriptors(ob_select, me1->totface, &fd_2, &vd_2);
bool_op = CSG_NewBooleanFunction();
// perform the operation
if (CSG_PerformBooleanOperation(bool_op, op_type, fd_1, vd_1, fd_2, vd_2)) {
CSG_VertexIteratorDescriptor vd_o;
CSG_FaceIteratorDescriptor fd_o;
CSG_OutputFaceDescriptor(bool_op, &fd_o);
CSG_OutputVertexDescriptor(bool_op, &vd_o);
// iterate through results of operation and insert
// into new object
dm = ConvertCSGDescriptorsToDerivedMesh(
&fd_o, &vd_o, inv_mat, map_mat, mat, totmat, ob, ob_select);
// free up the memory
CSG_FreeVertexDescriptor(&vd_o);
CSG_FreeFaceDescriptor(&fd_o);
}
else
error("Unknown internal error in boolean");
CSG_FreeBooleanOperation(bool_op);
FreeMeshDescriptors(&fd_1, &vd_1);
FreeMeshDescriptors(&fd_2, &vd_2);
}
return dm;
}
int NewBooleanMesh(Base *base, Base *base_select, int int_op_type)
{
Mesh *me_new;
int a, maxmat, totmat= 0;
Object *ob_new, *ob, *ob_select;
Material **mat;
DerivedMesh *dm;
ob= base->object;
ob_select= base_select->object;
maxmat= ob->totcol + ob_select->totcol;
mat= (Material**)MEM_mallocN(sizeof(Material*)*maxmat, "NewBooleanMeshMat");
dm= NewBooleanDerivedMesh_intern(ob, ob_select, int_op_type, mat, &totmat);
if (dm == NULL) {
MEM_freeN(mat);
return 0;
}
/* create a new blender mesh object - using 'base' as a template */
ob_new= AddNewBlenderMesh(base);
me_new= ob_new->data;
DM_to_mesh(dm, me_new);
dm->release(dm);
/* add materials to object */
for (a = 0; a < totmat; a++)
assign_material(ob_new, mat[a], a+1);
MEM_freeN(mat);
/* update dag */
DAG_object_flush_update(G.scene, ob_new, OB_RECALC_DATA);
return 1;
}
DerivedMesh *NewBooleanDerivedMesh(struct Object *ob, struct Object *ob_select,
int int_op_type)
{
return NewBooleanDerivedMesh_intern(ob, ob_select, int_op_type, NULL, NULL);
}