This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/blenlib/tests/BLI_length_parameterize_test.cc
Hans Goudey 72d25fa41d Curves: Add length cache, length paramerterize utility
This commit adds calculation of lengths along the curve for each
evaluated point. This is used for sampling, resampling, the "curve
parameter" node, and potentially more places in the future.

This commit also includes a utility for calculation of uniform samples
in blenlib. It can find evenlyspaced samples along a sequence of points
and use linear interpolation to move data from those points to the
samples. Making the utility more general aligns better with the more
functional approach of the new curves code and makes the behavior
available elsewhere.

A "color math" header is added to allow very basic interpolation
between two colors in the `blender::math` namespace.

Differential Revision: https://developer.blender.org/D14382
2022-03-29 19:45:59 -05:00

203 lines
6.4 KiB
C++

/* SPDX-License-Identifier: Apache-2.0 */
#include "BLI_array.hh"
#include "BLI_length_parameterize.hh"
#include "BLI_vector.hh"
#include "testing/testing.h"
namespace blender::length_parameterize::tests {
template<typename T> Array<float> calculate_lengths(const Span<T> values, const bool cyclic)
{
Array<float> lengths(lengths_num(values.size(), cyclic));
accumulate_lengths<T>(values, cyclic, lengths);
return lengths;
}
template<typename T> void test_uniform_lengths(const Span<T> values)
{
const float segment_length = math::distance(values.first(), values.last()) / (values.size() - 1);
for (const int i : values.index_range().drop_back(1)) {
EXPECT_NEAR(math::distance(values[i], values[i + 1]), segment_length, 1e-5);
}
}
TEST(length_parameterize, FloatSimple)
{
Array<float> values{{0, 1, 4}};
Array<float> lengths = calculate_lengths(values.as_span(), false);
Array<int> indices(4);
Array<float> factors(4);
create_uniform_samples(lengths, false, indices, factors);
Array<float> results(4);
linear_interpolation<float>(values, indices, factors, results);
Array<float> expected({
0.0f,
1.33333f,
2.66667f,
4.0f,
});
for (const int i : results.index_range()) {
EXPECT_NEAR(results[i], expected[i], 1e-5);
}
test_uniform_lengths(results.as_span());
}
TEST(length_parameterize, Float)
{
Array<float> values{{1, 2, 3, 5, 10}};
Array<float> lengths = calculate_lengths(values.as_span(), false);
Array<int> indices(20);
Array<float> factors(20);
create_uniform_samples(lengths, false, indices, factors);
Array<float> results(20);
linear_interpolation<float>(values, indices, factors, results);
Array<float> expected({
1.0f, 1.47368f, 1.94737f, 2.42105f, 2.89474f, 3.36842f, 3.84211f,
4.31579f, 4.78947f, 5.26316f, 5.73684f, 6.21053f, 6.68421f, 7.1579f,
7.63158f, 8.10526f, 8.57895f, 9.05263f, 9.52632f, 10.0f,
});
for (const int i : results.index_range()) {
EXPECT_NEAR(results[i], expected[i], 1e-5);
}
test_uniform_lengths(results.as_span());
}
TEST(length_parameterize, Float2)
{
Array<float2> values{{{0, 0}, {1, 0}, {1, 1}, {0, 1}}};
Array<float> lengths = calculate_lengths(values.as_span(), false);
Array<int> indices(12);
Array<float> factors(12);
create_uniform_samples(lengths, false, indices, factors);
Array<float2> results(12);
linear_interpolation<float2>(values, indices, factors, results);
Array<float2> expected({
{0.0f, 0.0f},
{0.272727f, 0.0f},
{0.545455f, 0.0f},
{0.818182f, 0.0f},
{1.0f, 0.0909091f},
{1.0f, 0.363636f},
{1.0f, 0.636364f},
{1.0f, 0.909091f},
{0.818182f, 1.0f},
{0.545455f, 1.0f},
{0.272727f, 1.0f},
{0.0f, 1.0f},
});
for (const int i : results.index_range()) {
EXPECT_NEAR(results[i].x, expected[i].x, 1e-5);
EXPECT_NEAR(results[i].y, expected[i].y, 1e-5);
}
}
TEST(length_parameterize, Float2Cyclic)
{
Array<float2> values{{{0, 0}, {1, 0}, {1, 1}, {0, 1}}};
Array<float> lengths = calculate_lengths(values.as_span(), true);
Array<int> indices(12);
Array<float> factors(12);
create_uniform_samples(lengths, true, indices, factors);
Array<float2> results(12);
linear_interpolation<float2>(values, indices, factors, results);
Array<float2> expected({
{0.0f, 0.0f},
{0.333333f, 0.0f},
{0.666667f, 0.0f},
{1.0f, 0.0f},
{1.0f, 0.333333f},
{1.0f, 0.666667f},
{1.0f, 1.0f},
{0.666667f, 1.0f},
{0.333333f, 1.0f},
{0.0f, 1.0f},
{0.0f, 0.666667f},
{0.0f, 0.333333f},
});
for (const int i : results.index_range()) {
EXPECT_NEAR(results[i].x, expected[i].x, 1e-5);
EXPECT_NEAR(results[i].y, expected[i].y, 1e-5);
}
}
TEST(length_parameterize, LineMany)
{
Array<float> values{{1, 2}};
Array<float> lengths = calculate_lengths(values.as_span(), false);
Array<int> indices(5007);
Array<float> factors(5007);
create_uniform_samples(lengths, false, indices, factors);
Array<float> results(5007);
linear_interpolation<float>(values, indices, factors, results);
Array<float> expected({
1.9962f, 1.9964f, 1.9966f, 1.9968f, 1.997f, 1.9972f, 1.9974f, 1.9976f, 1.9978f, 1.998f,
1.9982f, 1.9984f, 1.9986f, 1.9988f, 1.999f, 1.9992f, 1.9994f, 1.9996f, 1.9998f, 2.0f,
});
for (const int i : expected.index_range()) {
EXPECT_NEAR(results.as_span().take_back(20)[i], expected[i], 1e-5);
}
}
TEST(length_parameterize, CyclicMany)
{
Array<float2> values{{{0, 0}, {1, 0}, {1, 1}, {0, 1}}};
Array<float> lengths = calculate_lengths(values.as_span(), true);
Array<int> indices(5007);
Array<float> factors(5007);
create_uniform_samples(lengths, true, indices, factors);
Array<float2> results(5007);
linear_interpolation<float2>(values, indices, factors, results);
Array<float2> expected({
{0, 0.0159776}, {0, 0.0151787}, {0, 0.0143797}, {0, 0.013581}, {0, 0.0127821},
{0, 0.0119832}, {0, 0.0111842}, {0, 0.0103855}, {0, 0.00958657}, {0, 0.00878763},
{0, 0.00798869}, {0, 0.00718999}, {0, 0.00639105}, {0, 0.00559211}, {0, 0.00479317},
{0, 0.00399446}, {0, 0.00319552}, {0, 0.00239658}, {0, 0.00159764}, {0, 0.000798941},
});
for (const int i : expected.index_range()) {
EXPECT_NEAR(results.as_span().take_back(20)[i].x, expected[i].x, 1e-5);
EXPECT_NEAR(results.as_span().take_back(20)[i].y, expected[i].y, 1e-5);
}
}
TEST(length_parameterize, InterpolateColor)
{
Array<float2> values{{{0, 0}, {1, 0}, {1, 1}, {0, 1}}};
Array<float> lengths = calculate_lengths(values.as_span(), true);
Array<ColorGeometry4f> colors{{{0, 0, 0, 1}, {1, 0, 0, 1}, {1, 1, 0, 1}, {0, 1, 0, 1}}};
Array<int> indices(10);
Array<float> factors(10);
create_uniform_samples(lengths, true, indices, factors);
Array<ColorGeometry4f> results(10);
linear_interpolation<ColorGeometry4f>(colors, indices, factors, results);
Array<ColorGeometry4f> expected({
{0, 0, 0, 1},
{0.4, 0, 0, 1},
{0.8, 0, 0, 1},
{1, 0.2, 0, 1},
{1, 0.6, 0, 1},
{1, 1, 0, 1},
{0.6, 1, 0, 1},
{0.2, 1, 0, 1},
{0, 0.8, 0, 1},
{0, 0.4, 0, 1},
});
for (const int i : results.index_range()) {
EXPECT_NEAR(results[i].r, expected[i].r, 1e-6);
EXPECT_NEAR(results[i].g, expected[i].g, 1e-6);
EXPECT_NEAR(results[i].b, expected[i].b, 1e-6);
EXPECT_NEAR(results[i].a, expected[i].a, 1e-6);
}
}
} // namespace blender::length_parameterize::tests