Major API updates were made to address code review comments.
This revision mostly focuses on Python wrappers of C++ 0D and 1D elements (i.e.,
Interface0D and Interface1D, as well as their subclasses).
* Most getter/setter methods were reimplemented as attributes using PyGetSetDef.
Vector attributes are now implemented based on mathutils callbacks.  Boolean
attributes now only accept boolean values.
* The __getitem__ method was removed and the Sequence protocol was used instead.
* The naming of methods and attributes was fixed to follow the naming conventions
of the Blender Python API (i.e., lower case + underscores for methods and attributes,
and CamelCase for classes).  Some naming inconsistency within the Freestyle Python
API was also addressed.
* The Freestyle API had a number of method names including prefix/suffix "A" and
"B", and their meanings were inconsistent (i.e., referring to different things
depending on the classes).  The names with these two letters were replaced with
more straightforward names.  Also some attribute names were changed so as to indicate
the type of the value (e.g., FEdge.next_fedge instead of FEdge.next_edge) in line
with other names explicitly indicating what the value is (e.g., SVertex.viewvertex).
* In addition, some code clean-up was done in both C++ and Python.
Notes:
In summary, the following irregular naming changes were made through this revision
(those resulting from regular changes of naming conventions are not listed):
- CurvePoint: {A,B} --> {first,second}_svertex
- FEdge: vertex{A,B} --> {first,second}_svertex
- FEdge: {next,previous}Edge --> {next,previous}_fedge
- FEdgeSharp: normal{A,B} --> normal_{right,left}
- FEdgeSharp: {a,b}FaceMark --> face_mark_{right,left}
- FEdgeSharp: {a,b}Material --> material_{right,left}
- FEdgeSharp: {a,b}MaterialIndex --> material_index_{right,left}
- FrsCurve: empty --> is_empty
- FrsCurve: nSegments --> segments_size
- TVertex: mate() --> get_mate()
- ViewEdge: fedge{A,B} --> {first,last}_fedge
- ViewEdge: setaShape, aShape --> occlude
- ViewEdge: {A,B} --> {first,last}_viewvertex
- ViewMap: getScene3dBBox --> scene_bbox
		
	
		
			
				
	
	
		
			732 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			732 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
#
 | 
						|
#  Filename : ChainingIterators.py
 | 
						|
#  Author   : Stephane Grabli
 | 
						|
#  Date     : 04/08/2005
 | 
						|
#  Purpose  : Chaining Iterators to be used with chaining operators
 | 
						|
#
 | 
						|
#############################################################################  
 | 
						|
#
 | 
						|
#  Copyright (C) : Please refer to the COPYRIGHT file distributed 
 | 
						|
#  with this source distribution. 
 | 
						|
#
 | 
						|
#  This program is free software; you can redistribute it and/or
 | 
						|
#  modify it under the terms of the GNU General Public License
 | 
						|
#  as published by the Free Software Foundation; either version 2
 | 
						|
#  of the License, or (at your option) any later version.
 | 
						|
#
 | 
						|
#  This program is distributed in the hope that it will be useful,
 | 
						|
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
#  GNU General Public License for more details.
 | 
						|
#
 | 
						|
#  You should have received a copy of the GNU General Public License
 | 
						|
#  along with this program; if not, write to the Free Software
 | 
						|
#  Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | 
						|
#
 | 
						|
#############################################################################
 | 
						|
 | 
						|
from freestyle_init import *
 | 
						|
 | 
						|
## the natural chaining iterator
 | 
						|
## It follows the edges of same nature following the topology of
 | 
						|
## objects with  preseance on silhouettes, then borders, 
 | 
						|
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
 | 
						|
## You can specify whether to stay in the selection or not.
 | 
						|
class pyChainSilhouetteIterator(ChainingIterator):
 | 
						|
	def __init__(self, stayInSelection=1):
 | 
						|
		ChainingIterator.__init__(self, stayInSelection, 1,None,1)
 | 
						|
	def getExactTypeName(self):
 | 
						|
		return "pyChainSilhouetteIterator"
 | 
						|
	def init(self):
 | 
						|
		pass
 | 
						|
	def traverse(self, iter):
 | 
						|
		winner = None
 | 
						|
		it = AdjacencyIterator(iter)
 | 
						|
		tvertex = self.getVertex()
 | 
						|
		if type(tvertex) is TVertex:
 | 
						|
			mateVE = tvertex.get_mate(self.getCurrentEdge())
 | 
						|
			while not it.isEnd():
 | 
						|
				ve = it.getObject()
 | 
						|
				if ve.id == mateVE.id:
 | 
						|
					winner = ve
 | 
						|
					break
 | 
						|
				it.increment()
 | 
						|
		else:
 | 
						|
			## case of NonTVertex
 | 
						|
			natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
 | 
						|
			for i in range(len(natures)):
 | 
						|
				currentNature = self.getCurrentEdge().nature
 | 
						|
				if (natures[i] & currentNature) != 0:
 | 
						|
					count=0
 | 
						|
					while not it.isEnd():
 | 
						|
						visitNext = 0
 | 
						|
						oNature = it.getObject().nature
 | 
						|
						if (oNature & natures[i]) != 0:
 | 
						|
							if natures[i] != oNature:
 | 
						|
								for j in range(i):
 | 
						|
									if (natures[j] & oNature) != 0:
 | 
						|
										visitNext = 1
 | 
						|
										break
 | 
						|
								if visitNext != 0:
 | 
						|
									break	 
 | 
						|
							count = count+1
 | 
						|
							winner = it.getObject()
 | 
						|
						it.increment()
 | 
						|
					if count != 1:
 | 
						|
						winner = None
 | 
						|
					break
 | 
						|
		return winner
 | 
						|
 | 
						|
## the natural chaining iterator
 | 
						|
## It follows the edges of same nature on the same
 | 
						|
## objects with  preseance on silhouettes, then borders, 
 | 
						|
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
 | 
						|
## You can specify whether to stay in the selection or not.
 | 
						|
## You can specify whether to chain iterate over edges that were 
 | 
						|
## already visited or not.
 | 
						|
class pyChainSilhouetteGenericIterator(ChainingIterator):
 | 
						|
	def __init__(self, stayInSelection=1, stayInUnvisited=1):
 | 
						|
		ChainingIterator.__init__(self, stayInSelection, stayInUnvisited,None,1)
 | 
						|
	def getExactTypeName(self):
 | 
						|
		return "pyChainSilhouetteGenericIterator"
 | 
						|
	def init(self):
 | 
						|
		pass
 | 
						|
	def traverse(self, iter):
 | 
						|
		winner = None
 | 
						|
		it = AdjacencyIterator(iter)
 | 
						|
		tvertex = self.getVertex()
 | 
						|
		if type(tvertex) is TVertex:
 | 
						|
			mateVE = tvertex.get_mate(self.getCurrentEdge())
 | 
						|
			while not it.isEnd():
 | 
						|
				ve = it.getObject()
 | 
						|
				if ve.id == mateVE.id:
 | 
						|
					winner = ve
 | 
						|
					break
 | 
						|
				it.increment()
 | 
						|
		else:
 | 
						|
			## case of NonTVertex
 | 
						|
			natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
 | 
						|
			for i in range(len(natures)):
 | 
						|
				currentNature = self.getCurrentEdge().nature
 | 
						|
				if (natures[i] & currentNature) != 0:
 | 
						|
					count=0
 | 
						|
					while not it.isEnd():
 | 
						|
						visitNext = 0
 | 
						|
						oNature = it.getObject().nature
 | 
						|
						ve = it.getObject()
 | 
						|
						if ve.id == self.getCurrentEdge().id:
 | 
						|
							it.increment()
 | 
						|
							continue
 | 
						|
						if (oNature & natures[i]) != 0:
 | 
						|
							if natures[i] != oNature:
 | 
						|
								for j in range(i):
 | 
						|
									if (natures[j] & oNature) != 0:
 | 
						|
										visitNext = 1
 | 
						|
										break
 | 
						|
								if visitNext != 0:
 | 
						|
									break	 
 | 
						|
							count = count+1
 | 
						|
							winner = ve
 | 
						|
						it.increment()
 | 
						|
					if count != 1:
 | 
						|
						winner = None
 | 
						|
					break
 | 
						|
		return winner
 | 
						|
			
 | 
						|
class pyExternalContourChainingIterator(ChainingIterator):
 | 
						|
	def __init__(self):
 | 
						|
		ChainingIterator.__init__(self, 0, 1,None,1)
 | 
						|
		self._isExternalContour = ExternalContourUP1D()
 | 
						|
		
 | 
						|
	def getExactTypeName(self):
 | 
						|
		return "pyExternalContourIterator"
 | 
						|
	
 | 
						|
	def init(self):
 | 
						|
		self._nEdges = 0
 | 
						|
		self._isInSelection = 1
 | 
						|
 | 
						|
	def checkViewEdge(self, ve, orientation):
 | 
						|
		if orientation != 0:
 | 
						|
			vertex = ve.second_svertex()
 | 
						|
		else:
 | 
						|
			vertex = ve.first_svertex()
 | 
						|
		it = AdjacencyIterator(vertex,1,1)
 | 
						|
		while not it.isEnd():
 | 
						|
			ave = it.getObject()
 | 
						|
			if self._isExternalContour(ave):
 | 
						|
				return 1
 | 
						|
			it.increment()
 | 
						|
		print("pyExternlContourChainingIterator : didn't find next edge")
 | 
						|
		return 0
 | 
						|
	def traverse(self, iter):
 | 
						|
		winner = None
 | 
						|
		it = AdjacencyIterator(iter)
 | 
						|
		while not it.isEnd():
 | 
						|
			ve = it.getObject()
 | 
						|
			if self._isExternalContour(ve):
 | 
						|
				if ve.time_stamp == GetTimeStampCF():
 | 
						|
					winner = ve
 | 
						|
			it.increment()
 | 
						|
		
 | 
						|
		self._nEdges = self._nEdges+1
 | 
						|
		if winner is None:
 | 
						|
			orient = 1
 | 
						|
			it = AdjacencyIterator(iter)
 | 
						|
			while not it.isEnd():
 | 
						|
				ve = it.getObject()
 | 
						|
				if it.isIncoming() != 0: # FIXME
 | 
						|
					orient = 0
 | 
						|
				good = self.checkViewEdge(ve,orient)
 | 
						|
				if good != 0:
 | 
						|
					winner = ve
 | 
						|
				it.increment()
 | 
						|
		return winner
 | 
						|
 | 
						|
## the natural chaining iterator
 | 
						|
## with a sketchy multiple touch
 | 
						|
class pySketchyChainSilhouetteIterator(ChainingIterator):
 | 
						|
	def __init__(self, nRounds=3,stayInSelection=1):
 | 
						|
		ChainingIterator.__init__(self, stayInSelection, 0,None,1)
 | 
						|
		self._timeStamp = GetTimeStampCF()+nRounds
 | 
						|
		self._nRounds = nRounds
 | 
						|
	def getExactTypeName(self):
 | 
						|
		return "pySketchyChainSilhouetteIterator"
 | 
						|
	def init(self):
 | 
						|
		self._timeStamp = GetTimeStampCF()+self._nRounds
 | 
						|
	def traverse(self, iter):
 | 
						|
		winner = None
 | 
						|
		it = AdjacencyIterator(iter)
 | 
						|
		tvertex = self.getVertex()
 | 
						|
		if type(tvertex) is TVertex:
 | 
						|
			mateVE = tvertex.get_mate(self.getCurrentEdge())
 | 
						|
			while not it.isEnd():
 | 
						|
				ve = it.getObject()
 | 
						|
				if ve.id == mateVE.id:
 | 
						|
					winner = ve
 | 
						|
					break
 | 
						|
				it.increment()
 | 
						|
		else:
 | 
						|
			## case of NonTVertex
 | 
						|
			natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
 | 
						|
			for i in range(len(natures)):
 | 
						|
				currentNature = self.getCurrentEdge().nature
 | 
						|
				if (natures[i] & currentNature) != 0:
 | 
						|
					count=0
 | 
						|
					while not it.isEnd():
 | 
						|
						visitNext = 0
 | 
						|
						oNature = it.getObject().nature
 | 
						|
						ve = it.getObject()
 | 
						|
						if ve.id == self.getCurrentEdge().id:
 | 
						|
							it.increment()
 | 
						|
							continue
 | 
						|
						if (oNature & natures[i]) != 0:
 | 
						|
							if (natures[i] != oNature) != 0:
 | 
						|
								for j in range(i):
 | 
						|
									if (natures[j] & oNature) != 0:
 | 
						|
										visitNext = 1
 | 
						|
										break
 | 
						|
								if visitNext != 0:
 | 
						|
									break	 
 | 
						|
							count = count+1
 | 
						|
							winner = ve
 | 
						|
						it.increment()
 | 
						|
					if count != 1:
 | 
						|
						winner = None
 | 
						|
					break
 | 
						|
		if winner is None:
 | 
						|
			winner = self.getCurrentEdge()
 | 
						|
		if winner.chaining_time_stamp == self._timeStamp:
 | 
						|
			winner = None
 | 
						|
		return winner
 | 
						|
 | 
						|
 | 
						|
# Chaining iterator designed for sketchy style.
 | 
						|
# can chain several times the same ViewEdge
 | 
						|
# in order to produce multiple strokes per ViewEdge.
 | 
						|
class pySketchyChainingIterator(ChainingIterator):
 | 
						|
	def __init__(self, nRounds=3, stayInSelection=1):
 | 
						|
		ChainingIterator.__init__(self, stayInSelection, 0,None,1)
 | 
						|
		self._timeStamp = GetTimeStampCF()+nRounds
 | 
						|
		self._nRounds = nRounds
 | 
						|
	def getExactTypeName(self):
 | 
						|
		return "pySketchyChainingIterator"
 | 
						|
 | 
						|
	def init(self):
 | 
						|
		self._timeStamp = GetTimeStampCF()+self._nRounds
 | 
						|
 | 
						|
	def traverse(self, iter):
 | 
						|
		winner = None
 | 
						|
		it = AdjacencyIterator(iter)
 | 
						|
		while not it.isEnd():
 | 
						|
			ve = it.getObject()
 | 
						|
			if ve.id == self.getCurrentEdge().id:
 | 
						|
				it.increment()
 | 
						|
				continue
 | 
						|
			winner = ve
 | 
						|
			it.increment()
 | 
						|
		if winner is None:
 | 
						|
			winner = self.getCurrentEdge()
 | 
						|
		if winner.chaining_time_stamp == self._timeStamp:
 | 
						|
			return None
 | 
						|
		return winner
 | 
						|
 | 
						|
 | 
						|
## Chaining iterator that fills small occlusions
 | 
						|
## 	percent
 | 
						|
##		The max length of the occluded part 
 | 
						|
##		expressed in % of the total chain length
 | 
						|
class pyFillOcclusionsRelativeChainingIterator(ChainingIterator):
 | 
						|
	def __init__(self, percent):
 | 
						|
		ChainingIterator.__init__(self, 0, 1,None,1)
 | 
						|
		self._length = 0
 | 
						|
		self._percent = float(percent)
 | 
						|
	def getExactTypeName(self):
 | 
						|
		return "pyFillOcclusionsChainingIterator"
 | 
						|
	def init(self):
 | 
						|
		# each time we're evaluating a chain length 
 | 
						|
		# we try to do it once. Thus we reinit 
 | 
						|
		# the chain length here:
 | 
						|
		self._length = 0
 | 
						|
	def traverse(self, iter):
 | 
						|
		winner = None
 | 
						|
		winnerOrientation = 0
 | 
						|
		print(self.getCurrentEdge().id.first, self.getCurrentEdge().id.second)
 | 
						|
		it = AdjacencyIterator(iter)
 | 
						|
		tvertex = self.getVertex()
 | 
						|
		if type(tvertex) is TVertex:
 | 
						|
			mateVE = tvertex.get_mate(self.getCurrentEdge())
 | 
						|
			while not it.isEnd():
 | 
						|
				ve = it.getObject()
 | 
						|
				if ve.id == mateVE.id:
 | 
						|
					winner = ve
 | 
						|
					if it.isIncoming() == 0: # FIXME
 | 
						|
						winnerOrientation = 1
 | 
						|
					else:
 | 
						|
						winnerOrientation = 0
 | 
						|
					break
 | 
						|
				it.increment()
 | 
						|
		else:
 | 
						|
			## case of NonTVertex
 | 
						|
			natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
 | 
						|
			for nat in natures:
 | 
						|
				if (self.getCurrentEdge().nature & nat) != 0:
 | 
						|
					count=0
 | 
						|
					while not it.isEnd():
 | 
						|
						ve = it.getObject()
 | 
						|
						if (ve.nature & nat) != 0:
 | 
						|
							count = count+1
 | 
						|
							winner = ve
 | 
						|
							if it.isIncoming() == 0: # FIXME
 | 
						|
								winnerOrientation = 1
 | 
						|
							else:
 | 
						|
								winnerOrientation = 0
 | 
						|
						it.increment()
 | 
						|
					if count != 1:
 | 
						|
						winner = None
 | 
						|
					break
 | 
						|
		if winner is not None:
 | 
						|
			# check whether this edge was part of the selection
 | 
						|
			if winner.time_stamp != GetTimeStampCF():
 | 
						|
				#print("---", winner.id.first, winner.id.second)
 | 
						|
				# if not, let's check whether it's short enough with
 | 
						|
				# respect to the chain made without staying in the selection
 | 
						|
				#------------------------------------------------------------
 | 
						|
				# Did we compute the prospective chain length already ?
 | 
						|
				if self._length == 0:
 | 
						|
					#if not, let's do it
 | 
						|
					_it = pyChainSilhouetteGenericIterator(0,0)
 | 
						|
					_it.setBegin(winner)
 | 
						|
					_it.setCurrentEdge(winner)
 | 
						|
					_it.setOrientation(winnerOrientation)
 | 
						|
					_it.init()
 | 
						|
					while not _it.isEnd():
 | 
						|
						ve = _it.getObject()
 | 
						|
						#print("--------", ve.id.first, ve.id.second)
 | 
						|
						self._length = self._length + ve.length_2d
 | 
						|
						_it.increment()
 | 
						|
						if _it.isBegin():
 | 
						|
							break;
 | 
						|
					_it.setBegin(winner)
 | 
						|
					_it.setCurrentEdge(winner)
 | 
						|
					_it.setOrientation(winnerOrientation)
 | 
						|
					if not _it.isBegin():
 | 
						|
						_it.decrement()
 | 
						|
						while (not _it.isEnd()) and (not _it.isBegin()):
 | 
						|
							ve = _it.getObject()
 | 
						|
							#print("--------", ve.id.first, ve.id.second)
 | 
						|
							self._length = self._length + ve.length_2d
 | 
						|
							_it.decrement()
 | 
						|
 | 
						|
				# let's do the comparison:
 | 
						|
				# nw let's compute the length of this connex non selected part:
 | 
						|
				connexl = 0
 | 
						|
				_cit = pyChainSilhouetteGenericIterator(0,0)
 | 
						|
				_cit.setBegin(winner)
 | 
						|
				_cit.setCurrentEdge(winner)
 | 
						|
				_cit.setOrientation(winnerOrientation)
 | 
						|
				_cit.init()
 | 
						|
				while _cit.isEnd() == 0 and _cit.getObject().time_stamp != GetTimeStampCF():
 | 
						|
					ve = _cit.getObject()
 | 
						|
					#print("-------- --------", ve.id.first, ve.id.second)
 | 
						|
					connexl = connexl + ve.length_2d
 | 
						|
					_cit.increment()
 | 
						|
				if connexl > self._percent * self._length:
 | 
						|
					winner = None
 | 
						|
		return winner
 | 
						|
 | 
						|
## Chaining iterator that fills small occlusions
 | 
						|
## 	size
 | 
						|
##		The max length of the occluded part 
 | 
						|
##		expressed in pixels
 | 
						|
class pyFillOcclusionsAbsoluteChainingIterator(ChainingIterator):
 | 
						|
	def __init__(self, length):
 | 
						|
		ChainingIterator.__init__(self, 0, 1,None,1)
 | 
						|
		self._length = float(length)
 | 
						|
	def getExactTypeName(self):
 | 
						|
		return "pySmallFillOcclusionsChainingIterator"
 | 
						|
	def init(self):
 | 
						|
		pass
 | 
						|
	def traverse(self, iter):
 | 
						|
		winner = None
 | 
						|
		winnerOrientation = 0
 | 
						|
		#print(self.getCurrentEdge().id.first, self.getCurrentEdge().id.second)
 | 
						|
		it = AdjacencyIterator(iter)
 | 
						|
		tvertex = self.getVertex()
 | 
						|
		if type(tvertex) is TVertex:
 | 
						|
			mateVE = tvertex.get_mate(self.getCurrentEdge())
 | 
						|
			while not it.isEnd():
 | 
						|
				ve = it.getObject()
 | 
						|
				if ve.id == mateVE.id:
 | 
						|
					winner = ve
 | 
						|
					if it.isIncoming() == 0: # FIXME
 | 
						|
						winnerOrientation = 1
 | 
						|
					else:
 | 
						|
						winnerOrientation = 0
 | 
						|
					break
 | 
						|
				it.increment()
 | 
						|
		else:
 | 
						|
			## case of NonTVertex
 | 
						|
			natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
 | 
						|
			for nat in natures:
 | 
						|
				if (self.getCurrentEdge().nature & nat) != 0:
 | 
						|
					count=0
 | 
						|
					while not it.isEnd():
 | 
						|
						ve = it.getObject()
 | 
						|
						if (ve.nature & nat) != 0:
 | 
						|
							count = count+1
 | 
						|
							winner = ve
 | 
						|
							if it.isIncoming() == 0: # FIXME
 | 
						|
								winnerOrientation = 1
 | 
						|
							else:
 | 
						|
								winnerOrientation = 0
 | 
						|
						it.increment()
 | 
						|
					if count != 1:
 | 
						|
						winner = None
 | 
						|
					break
 | 
						|
		if winner is not None:
 | 
						|
			# check whether this edge was part of the selection
 | 
						|
			if winner.time_stamp != GetTimeStampCF():
 | 
						|
				#print("---", winner.id.first, winner.id.second)
 | 
						|
				# nw let's compute the length of this connex non selected part:
 | 
						|
				connexl = 0
 | 
						|
				_cit = pyChainSilhouetteGenericIterator(0,0)
 | 
						|
				_cit.setBegin(winner)
 | 
						|
				_cit.setCurrentEdge(winner)
 | 
						|
				_cit.setOrientation(winnerOrientation)
 | 
						|
				_cit.init()
 | 
						|
				while _cit.isEnd() == 0 and _cit.getObject().time_stamp != GetTimeStampCF():
 | 
						|
					ve = _cit.getObject()
 | 
						|
					#print("-------- --------", ve.id.first, ve.id.second)
 | 
						|
					connexl = connexl + ve.length_2d
 | 
						|
					_cit.increment()
 | 
						|
				if connexl > self._length:
 | 
						|
					winner = None
 | 
						|
		return winner
 | 
						|
 | 
						|
 | 
						|
## Chaining iterator that fills small occlusions
 | 
						|
## 	percent
 | 
						|
##		The max length of the occluded part 
 | 
						|
##		expressed in % of the total chain length
 | 
						|
class pyFillOcclusionsAbsoluteAndRelativeChainingIterator(ChainingIterator):
 | 
						|
	def __init__(self, percent, l):
 | 
						|
		ChainingIterator.__init__(self, 0, 1,None,1)
 | 
						|
		self._length = 0
 | 
						|
		self._absLength = l
 | 
						|
		self._percent = float(percent)
 | 
						|
	def getExactTypeName(self):
 | 
						|
		return "pyFillOcclusionsChainingIterator"
 | 
						|
	def init(self):
 | 
						|
		# each time we're evaluating a chain length 
 | 
						|
		# we try to do it once. Thus we reinit 
 | 
						|
		# the chain length here:
 | 
						|
		self._length = 0
 | 
						|
	def traverse(self, iter):
 | 
						|
		winner = None
 | 
						|
		winnerOrientation = 0
 | 
						|
		print(self.getCurrentEdge().id.first, self.getCurrentEdge().id.second)
 | 
						|
		it = AdjacencyIterator(iter)
 | 
						|
		tvertex = self.getVertex()
 | 
						|
		if type(tvertex) is TVertex:
 | 
						|
			mateVE = tvertex.get_mate(self.getCurrentEdge())
 | 
						|
			while not it.isEnd():
 | 
						|
				ve = it.getObject()
 | 
						|
				if ve.id == mateVE.id:
 | 
						|
					winner = ve
 | 
						|
					if it.isIncoming() == 0: # FIXME
 | 
						|
						winnerOrientation = 1
 | 
						|
					else:
 | 
						|
						winnerOrientation = 0
 | 
						|
					break
 | 
						|
				it.increment()
 | 
						|
		else:
 | 
						|
			## case of NonTVertex
 | 
						|
			natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
 | 
						|
			for nat in natures:
 | 
						|
				if (self.getCurrentEdge().nature & nat) != 0:
 | 
						|
					count=0
 | 
						|
					while not it.isEnd():
 | 
						|
						ve = it.getObject()
 | 
						|
						if (ve.nature & nat) != 0:
 | 
						|
							count = count+1
 | 
						|
							winner = ve
 | 
						|
							if it.isIncoming() == 0: # FIXME
 | 
						|
								winnerOrientation = 1
 | 
						|
							else:
 | 
						|
								winnerOrientation = 0
 | 
						|
						it.increment()
 | 
						|
					if count != 1:
 | 
						|
						winner = None
 | 
						|
					break
 | 
						|
		if winner is not None:
 | 
						|
			# check whether this edge was part of the selection
 | 
						|
			if winner.time_stamp != GetTimeStampCF():
 | 
						|
				#print("---", winner.id.first, winner.id.second)
 | 
						|
				# if not, let's check whether it's short enough with
 | 
						|
				# respect to the chain made without staying in the selection
 | 
						|
				#------------------------------------------------------------
 | 
						|
				# Did we compute the prospective chain length already ?
 | 
						|
				if self._length == 0:
 | 
						|
					#if not, let's do it
 | 
						|
					_it = pyChainSilhouetteGenericIterator(0,0)
 | 
						|
					_it.setBegin(winner)
 | 
						|
					_it.setCurrentEdge(winner)
 | 
						|
					_it.setOrientation(winnerOrientation)
 | 
						|
					_it.init()
 | 
						|
					while not _it.isEnd():
 | 
						|
						ve = _it.getObject()
 | 
						|
						#print("--------", ve.id.first, ve.id.second)
 | 
						|
						self._length = self._length + ve.length_2d
 | 
						|
						_it.increment()
 | 
						|
						if _it.isBegin():
 | 
						|
							break;
 | 
						|
					_it.setBegin(winner)
 | 
						|
					_it.setCurrentEdge(winner)
 | 
						|
					_it.setOrientation(winnerOrientation)
 | 
						|
					if not _it.isBegin():
 | 
						|
						_it.decrement()
 | 
						|
						while (not _it.isEnd()) and (not _it.isBegin()):
 | 
						|
							ve = _it.getObject()
 | 
						|
							#print("--------", ve.id.first, ve.id.second)
 | 
						|
							self._length = self._length + ve.length_2d
 | 
						|
							_it.decrement()
 | 
						|
 | 
						|
				# let's do the comparison:
 | 
						|
				# nw let's compute the length of this connex non selected part:
 | 
						|
				connexl = 0
 | 
						|
				_cit = pyChainSilhouetteGenericIterator(0,0)
 | 
						|
				_cit.setBegin(winner)
 | 
						|
				_cit.setCurrentEdge(winner)
 | 
						|
				_cit.setOrientation(winnerOrientation)
 | 
						|
				_cit.init()
 | 
						|
				while _cit.isEnd() == 0 and _cit.getObject().time_stamp != GetTimeStampCF():
 | 
						|
					ve = _cit.getObject()
 | 
						|
					#print("-------- --------", ve.id.first, ve.id.second)
 | 
						|
					connexl = connexl + ve.length_2d
 | 
						|
					_cit.increment()
 | 
						|
				if (connexl > self._percent * self._length) or (connexl > self._absLength):
 | 
						|
					winner = None
 | 
						|
		return winner
 | 
						|
 | 
						|
## Chaining iterator that fills small occlusions without caring about the 
 | 
						|
## actual selection
 | 
						|
## 	percent
 | 
						|
##		The max length of the occluded part 
 | 
						|
##		expressed in % of the total chain length
 | 
						|
class pyFillQi0AbsoluteAndRelativeChainingIterator(ChainingIterator):
 | 
						|
	def __init__(self, percent, l):
 | 
						|
		ChainingIterator.__init__(self, 0, 1,None,1)
 | 
						|
		self._length = 0
 | 
						|
		self._absLength = l
 | 
						|
		self._percent = float(percent)
 | 
						|
	def getExactTypeName(self):
 | 
						|
		return "pyFillOcclusionsChainingIterator"
 | 
						|
	def init(self):
 | 
						|
		# each time we're evaluating a chain length 
 | 
						|
		# we try to do it once. Thus we reinit 
 | 
						|
		# the chain length here:
 | 
						|
		self._length = 0
 | 
						|
	def traverse(self, iter):
 | 
						|
		winner = None
 | 
						|
		winnerOrientation = 0
 | 
						|
		print(self.getCurrentEdge().id.first, self.getCurrentEdge().id.second)
 | 
						|
		it = AdjacencyIterator(iter)
 | 
						|
		tvertex = self.getVertex()
 | 
						|
		if type(tvertex) is TVertex:
 | 
						|
			mateVE = tvertex.get_mate(self.getCurrentEdge())
 | 
						|
			while not it.isEnd():
 | 
						|
				ve = it.getObject()
 | 
						|
				if ve.id == mateVE.id:
 | 
						|
					winner = ve
 | 
						|
					if it.isIncoming() == 0: # FIXME
 | 
						|
						winnerOrientation = 1
 | 
						|
					else:
 | 
						|
						winnerOrientation = 0
 | 
						|
					break
 | 
						|
				it.increment()
 | 
						|
		else:
 | 
						|
			## case of NonTVertex
 | 
						|
			natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
 | 
						|
			for nat in natures:
 | 
						|
				if (self.getCurrentEdge().nature & nat) != 0:
 | 
						|
					count=0
 | 
						|
					while not it.isEnd():
 | 
						|
						ve = it.getObject()
 | 
						|
						if (ve.nature & nat) != 0:
 | 
						|
							count = count+1
 | 
						|
							winner = ve
 | 
						|
							if it.isIncoming() == 0: # FIXME
 | 
						|
								winnerOrientation = 1
 | 
						|
							else:
 | 
						|
								winnerOrientation = 0
 | 
						|
						it.increment()
 | 
						|
					if count != 1:
 | 
						|
						winner = None
 | 
						|
					break
 | 
						|
		if winner is not None:
 | 
						|
			# check whether this edge was part of the selection
 | 
						|
			if winner.qi != 0:
 | 
						|
				#print("---", winner.id.first, winner.id.second)
 | 
						|
				# if not, let's check whether it's short enough with
 | 
						|
				# respect to the chain made without staying in the selection
 | 
						|
				#------------------------------------------------------------
 | 
						|
				# Did we compute the prospective chain length already ?
 | 
						|
				if self._length == 0:
 | 
						|
					#if not, let's do it
 | 
						|
					_it = pyChainSilhouetteGenericIterator(0,0)
 | 
						|
					_it.setBegin(winner)
 | 
						|
					_it.setCurrentEdge(winner)
 | 
						|
					_it.setOrientation(winnerOrientation)
 | 
						|
					_it.init()
 | 
						|
					while not _it.isEnd():
 | 
						|
						ve = _it.getObject()
 | 
						|
						#print("--------", ve.id.first, ve.id.second)
 | 
						|
						self._length = self._length + ve.length_2d
 | 
						|
						_it.increment()
 | 
						|
						if _it.isBegin():
 | 
						|
							break;
 | 
						|
					_it.setBegin(winner)
 | 
						|
					_it.setCurrentEdge(winner)
 | 
						|
					_it.setOrientation(winnerOrientation)
 | 
						|
					if not _it.isBegin():
 | 
						|
						_it.decrement()
 | 
						|
						while (not _it.isEnd()) and (not _it.isBegin()):
 | 
						|
							ve = _it.getObject()
 | 
						|
							#print("--------", ve.id.first, ve.id.second)
 | 
						|
							self._length = self._length + ve.length_2d
 | 
						|
							_it.decrement()
 | 
						|
 | 
						|
				# let's do the comparison:
 | 
						|
				# nw let's compute the length of this connex non selected part:
 | 
						|
				connexl = 0
 | 
						|
				_cit = pyChainSilhouetteGenericIterator(0,0)
 | 
						|
				_cit.setBegin(winner)
 | 
						|
				_cit.setCurrentEdge(winner)
 | 
						|
				_cit.setOrientation(winnerOrientation)
 | 
						|
				_cit.init()
 | 
						|
				while not _cit.isEnd() and _cit.getObject().qi != 0:
 | 
						|
					ve = _cit.getObject()
 | 
						|
					#print("-------- --------", ve.id.first, ve.id.second)
 | 
						|
					connexl = connexl + ve.length_2d
 | 
						|
					_cit.increment()
 | 
						|
				if (connexl > self._percent * self._length) or (connexl > self._absLength):
 | 
						|
					winner = None
 | 
						|
		return winner
 | 
						|
 | 
						|
 | 
						|
## the natural chaining iterator
 | 
						|
## It follows the edges of same nature on the same
 | 
						|
## objects with  preseance on silhouettes, then borders, 
 | 
						|
## then suggestive contours, then everything else. It doesn't chain the same ViewEdge twice
 | 
						|
## You can specify whether to stay in the selection or not.
 | 
						|
class pyNoIdChainSilhouetteIterator(ChainingIterator):
 | 
						|
	def __init__(self, stayInSelection=1):
 | 
						|
		ChainingIterator.__init__(self, stayInSelection, 1,None,1)
 | 
						|
	def getExactTypeName(self):
 | 
						|
		return "pyChainSilhouetteIterator"
 | 
						|
	def init(self):
 | 
						|
		pass
 | 
						|
	def traverse(self, iter):
 | 
						|
		winner = None
 | 
						|
		it = AdjacencyIterator(iter)
 | 
						|
		tvertex = self.getVertex()
 | 
						|
		if type(tvertex) is TVertex:
 | 
						|
			mateVE = tvertex.get_mate(self.getCurrentEdge())
 | 
						|
			while not it.isEnd():
 | 
						|
				ve = it.getObject()
 | 
						|
				feB = self.getCurrentEdge().last_fedge
 | 
						|
				feA = ve.first_fedge
 | 
						|
				vB = feB.second_svertex
 | 
						|
				vA = feA.first_svertex
 | 
						|
				if vA.id.first == vB.id.first:
 | 
						|
					winner = ve
 | 
						|
					break
 | 
						|
				feA = self.getCurrentEdge().first_fedge
 | 
						|
				feB = ve.last_fedge
 | 
						|
				vB = feB.second_svertex
 | 
						|
				vA = feA.first_svertex
 | 
						|
				if vA.id.first == vB.id.first:
 | 
						|
					winner = ve
 | 
						|
					break
 | 
						|
				feA = self.getCurrentEdge().last_fedge
 | 
						|
				feB = ve.last_fedge
 | 
						|
				vB = feB.second_svertex
 | 
						|
				vA = feA.second_svertex
 | 
						|
				if vA.id.first == vB.id.first:
 | 
						|
					winner = ve
 | 
						|
					break
 | 
						|
				feA = self.getCurrentEdge().first_fedge
 | 
						|
				feB = ve.first_fedge
 | 
						|
				vB = feB.first_svertex
 | 
						|
				vA = feA.first_svertex
 | 
						|
				if vA.id.first == vB.id.first:
 | 
						|
					winner = ve
 | 
						|
					break
 | 
						|
				it.increment()
 | 
						|
		else:
 | 
						|
			## case of NonTVertex
 | 
						|
			natures = [Nature.SILHOUETTE,Nature.BORDER,Nature.CREASE,Nature.SUGGESTIVE_CONTOUR,Nature.VALLEY,Nature.RIDGE]
 | 
						|
			for i in range(len(natures)):
 | 
						|
				currentNature = self.getCurrentEdge().nature
 | 
						|
				if (natures[i] & currentNature) != 0:
 | 
						|
					count=0
 | 
						|
					while not it.isEnd():
 | 
						|
						visitNext = 0
 | 
						|
						oNature = it.getObject().nature
 | 
						|
						if (oNature & natures[i]) != 0:
 | 
						|
							if natures[i] != oNature:
 | 
						|
								for j in range(i):
 | 
						|
									if (natures[j] & oNature) != 0:
 | 
						|
										visitNext = 1
 | 
						|
										break
 | 
						|
								if visitNext != 0:
 | 
						|
									break	 
 | 
						|
							count = count+1
 | 
						|
							winner = it.getObject()
 | 
						|
						it.increment()
 | 
						|
					if count != 1:
 | 
						|
						winner = None
 | 
						|
					break
 | 
						|
		return winner
 | 
						|
 |