This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/render/intern/source/pointdensity.c
Sergey Sharybin c46cbc602e Make lattice deform safe for threading
Lattice deformation used to store some runtime data
inside of lattice datablock itself. It's something
which is REALLY bad. Ideally DNA shouldn't contain
and runtime data.

For now solved it in a way that initialization of
lattice deform will create a structure which contains
lattice object for which deformation is calculating
and that runtime data which used to be stored in
lattice datablock itself.

It works really fine for mesh deform modifier, but
there's still runtime data stored in particle system
DNA, It didn't look something easy to be solved, so
leaving this as-is for now.

--
svn merge -r58277:58278 -r58795:58796 ^/branches/soc-2013-depsgraph_mt
2013-08-19 10:11:48 +00:00

548 lines
14 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributors: Matt Ebb
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/render/intern/source/pointdensity.c
* \ingroup render
*/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_noise.h"
#include "BLI_kdopbvh.h"
#include "BLI_utildefines.h"
#include "BLF_translation.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_lattice.h"
#include "BKE_main.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "BKE_texture.h"
#include "BKE_colortools.h"
#include "DNA_meshdata_types.h"
#include "DNA_texture_types.h"
#include "DNA_particle_types.h"
#include "render_types.h"
#include "renderdatabase.h"
#include "texture.h"
#include "pointdensity.h"
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
/* defined in pipeline.c, is hardcopy of active dynamic allocated Render */
/* only to be used here in this file, it's for speed */
extern struct Render R;
/* ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ */
static int point_data_used(PointDensity *pd)
{
int pd_bitflag = 0;
if (pd->source == TEX_PD_PSYS) {
if ((pd->noise_influence == TEX_PD_NOISE_VEL) || (pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_VEL) || (pd->color_source == TEX_PD_COLOR_PARTVEL) || (pd->color_source == TEX_PD_COLOR_PARTSPEED))
pd_bitflag |= POINT_DATA_VEL;
if ((pd->noise_influence == TEX_PD_NOISE_AGE) || (pd->color_source == TEX_PD_COLOR_PARTAGE) || (pd->falloff_type == TEX_PD_FALLOFF_PARTICLE_AGE))
pd_bitflag |= POINT_DATA_LIFE;
}
return pd_bitflag;
}
/* additional data stored alongside the point density BVH,
* accessible by point index number to retrieve other information
* such as particle velocity or lifetime */
static void alloc_point_data(PointDensity *pd, int total_particles, int point_data_used)
{
int data_size = 0;
if (point_data_used & POINT_DATA_VEL) {
/* store 3 channels of velocity data */
data_size += 3;
}
if (point_data_used & POINT_DATA_LIFE) {
/* store 1 channel of lifetime data */
data_size += 1;
}
if (data_size)
pd->point_data = MEM_mallocN(sizeof(float)*data_size*total_particles, "particle point data");
}
static void pointdensity_cache_psys(Render *re, PointDensity *pd, Object *ob, ParticleSystem *psys)
{
DerivedMesh* dm;
ParticleKey state;
ParticleCacheKey *cache;
ParticleSimulationData sim= {NULL};
ParticleData *pa=NULL;
float cfra = BKE_scene_frame_get(re->scene);
int i /*, childexists*/ /* UNUSED */;
int total_particles, offset=0;
int data_used = point_data_used(pd);
float partco[3];
float obview[4][4];
/* init everything */
if (!psys || !ob || !pd) return;
mul_m4_m4m4(obview, ob->obmat, re->viewinv);
/* Just to create a valid rendering context for particles */
psys_render_set(ob, psys, re->viewmat, re->winmat, re->winx, re->winy, 0);
dm = mesh_create_derived_render(re->scene, ob, CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL);
if ( !psys_check_enabled(ob, psys)) {
psys_render_restore(ob, psys);
return;
}
sim.scene= re->scene;
sim.ob= ob;
sim.psys= psys;
/* in case ob->imat isn't up-to-date */
invert_m4_m4(ob->imat, ob->obmat);
total_particles = psys->totpart+psys->totchild;
psys->lattice_deform_data = psys_create_lattice_deform_data(&sim);
pd->point_tree = BLI_bvhtree_new(total_particles, 0.0, 4, 6);
alloc_point_data(pd, total_particles, data_used);
pd->totpoints = total_particles;
if (data_used & POINT_DATA_VEL) offset = pd->totpoints*3;
#if 0 /* UNUSED */
if (psys->totchild > 0 && !(psys->part->draw & PART_DRAW_PARENT))
childexists = 1;
#endif
for (i=0, pa=psys->particles; i < total_particles; i++, pa++) {
if (psys->part->type == PART_HAIR) {
/* hair particles */
if (i < psys->totpart && psys->pathcache)
cache = psys->pathcache[i];
else if (i >= psys->totpart && psys->childcache)
cache = psys->childcache[i - psys->totpart];
else
continue;
cache += cache->steps; /* use endpoint */
copy_v3_v3(state.co, cache->co);
zero_v3(state.vel);
state.time = 0.0f;
}
else {
/* emitter particles */
state.time = cfra;
if (!psys_get_particle_state(&sim, i, &state, 0))
continue;
if (data_used & POINT_DATA_LIFE) {
if (i < psys->totpart) {
state.time = (cfra - pa->time)/pa->lifetime;
}
else {
ChildParticle *cpa= (psys->child + i) - psys->totpart;
float pa_birthtime, pa_dietime;
state.time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
}
}
}
copy_v3_v3(partco, state.co);
if (pd->psys_cache_space == TEX_PD_OBJECTSPACE)
mul_m4_v3(ob->imat, partco);
else if (pd->psys_cache_space == TEX_PD_OBJECTLOC) {
sub_v3_v3(partco, ob->loc);
}
else {
/* TEX_PD_WORLDSPACE */
}
BLI_bvhtree_insert(pd->point_tree, i, partco, 1);
if (data_used & POINT_DATA_VEL) {
pd->point_data[i*3 + 0] = state.vel[0];
pd->point_data[i*3 + 1] = state.vel[1];
pd->point_data[i*3 + 2] = state.vel[2];
}
if (data_used & POINT_DATA_LIFE) {
pd->point_data[offset + i] = state.time;
}
}
BLI_bvhtree_balance(pd->point_tree);
dm->release(dm);
if (psys->lattice_deform_data) {
end_latt_deform(psys->lattice_deform_data);
psys->lattice_deform_data = NULL;
}
psys_render_restore(ob, psys);
}
static void pointdensity_cache_object(Render *re, PointDensity *pd, Object *ob)
{
int i;
DerivedMesh *dm;
MVert *mvert = NULL;
dm = mesh_create_derived_render(re->scene, ob, CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL);
mvert= dm->getVertArray(dm); /* local object space */
pd->totpoints= dm->getNumVerts(dm);
if (pd->totpoints == 0) return;
pd->point_tree = BLI_bvhtree_new(pd->totpoints, 0.0, 4, 6);
for (i=0; i < pd->totpoints; i++, mvert++) {
float co[3];
copy_v3_v3(co, mvert->co);
switch (pd->ob_cache_space) {
case TEX_PD_OBJECTSPACE:
break;
case TEX_PD_OBJECTLOC:
mul_m4_v3(ob->obmat, co);
sub_v3_v3(co, ob->loc);
break;
case TEX_PD_WORLDSPACE:
default:
mul_m4_v3(ob->obmat, co);
break;
}
BLI_bvhtree_insert(pd->point_tree, i, co, 1);
}
BLI_bvhtree_balance(pd->point_tree);
dm->release(dm);
}
void cache_pointdensity(Render *re, Tex *tex)
{
PointDensity *pd = tex->pd;
if (!pd)
return;
if (pd->point_tree) {
BLI_bvhtree_free(pd->point_tree);
pd->point_tree = NULL;
}
if (pd->source == TEX_PD_PSYS) {
Object *ob = pd->object;
ParticleSystem *psys;
if (!ob || !pd->psys) return;
psys= BLI_findlink(&ob->particlesystem, pd->psys-1);
if (!psys) return;
pointdensity_cache_psys(re, pd, ob, psys);
}
else if (pd->source == TEX_PD_OBJECT) {
Object *ob = pd->object;
if (ob && ob->type == OB_MESH)
pointdensity_cache_object(re, pd, ob);
}
}
static void free_pointdensity(Render *UNUSED(re), Tex *tex)
{
PointDensity *pd = tex->pd;
if (!pd) return;
if (pd->point_tree) {
BLI_bvhtree_free(pd->point_tree);
pd->point_tree = NULL;
}
if (pd->point_data) {
MEM_freeN(pd->point_data);
pd->point_data = NULL;
}
pd->totpoints = 0;
}
void make_pointdensities(Render *re)
{
Tex *tex;
if (re->scene->r.scemode & R_BUTS_PREVIEW)
return;
re->i.infostr = IFACE_("Caching Point Densities");
re->stats_draw(re->sdh, &re->i);
for (tex= re->main->tex.first; tex; tex= tex->id.next) {
if (tex->id.us && tex->type==TEX_POINTDENSITY) {
cache_pointdensity(re, tex);
}
}
re->i.infostr = NULL;
re->stats_draw(re->sdh, &re->i);
}
void free_pointdensities(Render *re)
{
Tex *tex;
if (re->scene->r.scemode & R_BUTS_PREVIEW)
return;
for (tex= re->main->tex.first; tex; tex= tex->id.next) {
if (tex->id.us && tex->type==TEX_POINTDENSITY) {
free_pointdensity(re, tex);
}
}
}
typedef struct PointDensityRangeData {
float *density;
float squared_radius;
float *point_data;
float *vec;
float softness;
short falloff_type;
short noise_influence;
float *age;
int point_data_used;
int offset;
struct CurveMapping *density_curve;
float velscale;
} PointDensityRangeData;
static void accum_density(void *userdata, int index, float squared_dist)
{
PointDensityRangeData *pdr = (PointDensityRangeData *)userdata;
const float dist = (pdr->squared_radius - squared_dist) / pdr->squared_radius * 0.5f;
float density = 0.0f;
if (pdr->point_data_used & POINT_DATA_VEL) {
pdr->vec[0] += pdr->point_data[index*3 + 0]; // * density;
pdr->vec[1] += pdr->point_data[index*3 + 1]; // * density;
pdr->vec[2] += pdr->point_data[index*3 + 2]; // * density;
}
if (pdr->point_data_used & POINT_DATA_LIFE) {
*pdr->age += pdr->point_data[pdr->offset + index]; // * density;
}
if (pdr->falloff_type == TEX_PD_FALLOFF_STD)
density = dist;
else if (pdr->falloff_type == TEX_PD_FALLOFF_SMOOTH)
density = 3.0f*dist*dist - 2.0f*dist*dist*dist;
else if (pdr->falloff_type == TEX_PD_FALLOFF_SOFT)
density = pow(dist, pdr->softness);
else if (pdr->falloff_type == TEX_PD_FALLOFF_CONSTANT)
density = pdr->squared_radius;
else if (pdr->falloff_type == TEX_PD_FALLOFF_ROOT)
density = sqrt(dist);
else if (pdr->falloff_type == TEX_PD_FALLOFF_PARTICLE_AGE) {
if (pdr->point_data_used & POINT_DATA_LIFE)
density = dist*MIN2(pdr->point_data[pdr->offset + index], 1.0f);
else
density = dist;
}
else if (pdr->falloff_type == TEX_PD_FALLOFF_PARTICLE_VEL) {
if (pdr->point_data_used & POINT_DATA_VEL)
density = dist*len_v3(pdr->point_data + index*3)*pdr->velscale;
else
density = dist;
}
if (pdr->density_curve && dist != 0.0f) {
curvemapping_initialize(pdr->density_curve);
density = curvemapping_evaluateF(pdr->density_curve, 0, density/dist)*dist;
}
*pdr->density += density;
}
static void init_pointdensityrangedata(PointDensity *pd, PointDensityRangeData *pdr,
float *density, float *vec, float *age, struct CurveMapping *density_curve, float velscale)
{
pdr->squared_radius = pd->radius*pd->radius;
pdr->density = density;
pdr->point_data = pd->point_data;
pdr->falloff_type = pd->falloff_type;
pdr->vec = vec;
pdr->age = age;
pdr->softness = pd->falloff_softness;
pdr->noise_influence = pd->noise_influence;
pdr->point_data_used = point_data_used(pd);
pdr->offset = (pdr->point_data_used & POINT_DATA_VEL)?pd->totpoints*3:0;
pdr->density_curve = density_curve;
pdr->velscale = velscale;
}
int pointdensitytex(Tex *tex, const float texvec[3], TexResult *texres)
{
int retval = TEX_INT;
PointDensity *pd = tex->pd;
PointDensityRangeData pdr;
float density=0.0f, age=0.0f, time=0.0f;
float vec[3] = {0.0f, 0.0f, 0.0f}, co[3];
float col[4];
float turb, noise_fac;
int num=0;
texres->tin = 0.0f;
if ((!pd) || (!pd->point_tree))
return 0;
init_pointdensityrangedata(pd, &pdr, &density, vec, &age,
(pd->flag&TEX_PD_FALLOFF_CURVE ? pd->falloff_curve : NULL), pd->falloff_speed_scale*0.001f);
noise_fac = pd->noise_fac * 0.5f; /* better default */
copy_v3_v3(co, texvec);
if (point_data_used(pd)) {
/* does a BVH lookup to find accumulated density and additional point data *
* stores particle velocity vector in 'vec', and particle lifetime in 'time' */
num = BLI_bvhtree_range_query(pd->point_tree, co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f/num);
}
/* reset */
density = vec[0] = vec[1] = vec[2] = 0.0f;
}
if (pd->flag & TEX_PD_TURBULENCE) {
if (pd->noise_influence == TEX_PD_NOISE_AGE) {
turb = BLI_gTurbulence(pd->noise_size, texvec[0]+age, texvec[1]+age, texvec[2]+age, pd->noise_depth, 0, pd->noise_basis);
}
else if (pd->noise_influence == TEX_PD_NOISE_TIME) {
time = R.r.cfra / (float)R.r.efra;
turb = BLI_gTurbulence(pd->noise_size, texvec[0]+time, texvec[1]+time, texvec[2]+time, pd->noise_depth, 0, pd->noise_basis);
//turb = BLI_turbulence(pd->noise_size, texvec[0]+time, texvec[1]+time, texvec[2]+time, pd->noise_depth);
}
else {
turb = BLI_gTurbulence(pd->noise_size, texvec[0]+vec[0], texvec[1]+vec[1], texvec[2]+vec[2], pd->noise_depth, 0, pd->noise_basis);
}
turb -= 0.5f; /* re-center 0.0-1.0 range around 0 to prevent offsetting result */
/* now we have an offset coordinate to use for the density lookup */
co[0] = texvec[0] + noise_fac * turb;
co[1] = texvec[1] + noise_fac * turb;
co[2] = texvec[2] + noise_fac * turb;
}
/* BVH query with the potentially perturbed coordinates */
num = BLI_bvhtree_range_query(pd->point_tree, co, pd->radius, accum_density, &pdr);
if (num > 0) {
age /= num;
mul_v3_fl(vec, 1.0f/num);
}
texres->tin = density;
BRICONT;
if (pd->color_source == TEX_PD_COLOR_CONSTANT)
return retval;
retval |= TEX_RGB;
switch (pd->color_source) {
case TEX_PD_COLOR_PARTAGE:
if (pd->coba) {
if (do_colorband(pd->coba, age, col)) {
texres->talpha = TRUE;
copy_v3_v3(&texres->tr, col);
texres->tin *= col[3];
texres->ta = texres->tin;
}
}
break;
case TEX_PD_COLOR_PARTSPEED:
{
float speed = len_v3(vec) * pd->speed_scale;
if (pd->coba) {
if (do_colorband(pd->coba, speed, col)) {
texres->talpha = TRUE;
copy_v3_v3(&texres->tr, col);
texres->tin *= col[3];
texres->ta = texres->tin;
}
}
break;
}
case TEX_PD_COLOR_PARTVEL:
texres->talpha = TRUE;
mul_v3_fl(vec, pd->speed_scale);
copy_v3_v3(&texres->tr, vec);
texres->ta = texres->tin;
break;
case TEX_PD_COLOR_CONSTANT:
default:
texres->tr = texres->tg = texres->tb = texres->ta = 1.0f;
break;
}
BRICONTRGB;
return retval;
#if 0
if (texres->nor!=NULL) {
texres->nor[0] = texres->nor[1] = texres->nor[2] = 0.0f;
}
#endif
}