2799 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			2799 lines
		
	
	
		
			80 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  *
 | |
|  * Contributor(s): Michel Selten & Joseph Gilbert
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| /** \file blender/python/mathutils/mathutils_Matrix.c
 | |
|  *  \ingroup pymathutils
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include <Python.h>
 | |
| 
 | |
| #include "mathutils.h"
 | |
| 
 | |
| #include "BLI_math.h"
 | |
| #include "BLI_utildefines.h"
 | |
| #include "BLI_string.h"
 | |
| 
 | |
| #ifndef MATH_STANDALONE
 | |
| #  include "BLI_dynstr.h"
 | |
| #endif
 | |
| 
 | |
| typedef enum eMatrixAccess_t {
 | |
| 	MAT_ACCESS_ROW,
 | |
| 	MAT_ACCESS_COL
 | |
| } eMatrixAccess_t;
 | |
| 
 | |
| static PyObject *Matrix_copy(MatrixObject *self);
 | |
| static PyObject *Matrix_deepcopy(MatrixObject *self, PyObject *args);
 | |
| static int Matrix_ass_slice(MatrixObject *self, int begin, int end, PyObject *value);
 | |
| static PyObject *matrix__apply_to_copy(PyNoArgsFunction matrix_func, MatrixObject *self);
 | |
| static PyObject *MatrixAccess_CreatePyObject(MatrixObject *matrix, const eMatrixAccess_t type);
 | |
| 
 | |
| static int matrix_row_vector_check(MatrixObject *mat, VectorObject *vec, int row)
 | |
| {
 | |
| 	if ((vec->size != mat->num_col) || (row >= mat->num_row)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError,
 | |
| 		                "Matrix(): "
 | |
| 		                "owner matrix has been resized since this row vector was created");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else {
 | |
| 		return 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int matrix_col_vector_check(MatrixObject *mat, VectorObject *vec, int col)
 | |
| {
 | |
| 	if ((vec->size != mat->num_row) || (col >= mat->num_col)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError,
 | |
| 		                "Matrix(): "
 | |
| 		                "owner matrix has been resized since this column vector was created");
 | |
| 		return 0;
 | |
| 	}
 | |
| 	else {
 | |
| 		return 1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* ----------------------------------------------------------------------------
 | |
|  * matrix row callbacks
 | |
|  * this is so you can do matrix[i][j] = val OR matrix.row[i][j] = val */
 | |
| 
 | |
| unsigned char mathutils_matrix_row_cb_index = -1;
 | |
| 
 | |
| static int mathutils_matrix_row_check(BaseMathObject *bmo)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 	return BaseMath_ReadCallback(self);
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_row_get(BaseMathObject *bmo, int row)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 	int col;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 	if (!matrix_row_vector_check(self, (VectorObject *)bmo, row))
 | |
| 		return -1;
 | |
| 
 | |
| 	for (col = 0; col < self->num_col; col++) {
 | |
| 		bmo->data[col] = MATRIX_ITEM(self, row, col);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_row_set(BaseMathObject *bmo, int row)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 	int col;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 	if (!matrix_row_vector_check(self, (VectorObject *)bmo, row))
 | |
| 		return -1;
 | |
| 
 | |
| 	for (col = 0; col < self->num_col; col++) {
 | |
| 		MATRIX_ITEM(self, row, col) = bmo->data[col];
 | |
| 	}
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_row_get_index(BaseMathObject *bmo, int row, int col)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 	if (!matrix_row_vector_check(self, (VectorObject *)bmo, row))
 | |
| 		return -1;
 | |
| 
 | |
| 	bmo->data[col] = MATRIX_ITEM(self, row, col);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_row_set_index(BaseMathObject *bmo, int row, int col)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 	if (!matrix_row_vector_check(self, (VectorObject *)bmo, row))
 | |
| 		return -1;
 | |
| 
 | |
| 	MATRIX_ITEM(self, row, col) = bmo->data[col];
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| Mathutils_Callback mathutils_matrix_row_cb = {
 | |
| 	mathutils_matrix_row_check,
 | |
| 	mathutils_matrix_row_get,
 | |
| 	mathutils_matrix_row_set,
 | |
| 	mathutils_matrix_row_get_index,
 | |
| 	mathutils_matrix_row_set_index
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ----------------------------------------------------------------------------
 | |
|  * matrix row callbacks
 | |
|  * this is so you can do matrix.col[i][j] = val */
 | |
| 
 | |
| unsigned char mathutils_matrix_col_cb_index = -1;
 | |
| 
 | |
| static int mathutils_matrix_col_check(BaseMathObject *bmo)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 	return BaseMath_ReadCallback(self);
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_col_get(BaseMathObject *bmo, int col)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 	int num_row;
 | |
| 	int row;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 	if (!matrix_col_vector_check(self, (VectorObject *)bmo, col))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* for 'translation' size will always be '3' even on 4x4 vec */
 | |
| 	num_row = min_ii(self->num_row, ((VectorObject *)bmo)->size);
 | |
| 
 | |
| 	for (row = 0; row < num_row; row++) {
 | |
| 		bmo->data[row] = MATRIX_ITEM(self, row, col);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_col_set(BaseMathObject *bmo, int col)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 	int num_row;
 | |
| 	int row;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 	if (!matrix_col_vector_check(self, (VectorObject *)bmo, col))
 | |
| 		return -1;
 | |
| 
 | |
| 	/* for 'translation' size will always be '3' even on 4x4 vec */
 | |
| 	num_row = min_ii(self->num_row, ((VectorObject *)bmo)->size);
 | |
| 
 | |
| 	for (row = 0; row < num_row; row++) {
 | |
| 		MATRIX_ITEM(self, row, col) = bmo->data[row];
 | |
| 	}
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_col_get_index(BaseMathObject *bmo, int col, int row)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 	if (!matrix_col_vector_check(self, (VectorObject *)bmo, col))
 | |
| 		return -1;
 | |
| 
 | |
| 	bmo->data[row] = MATRIX_ITEM(self, row, col);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_col_set_index(BaseMathObject *bmo, int col, int row)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 	if (!matrix_col_vector_check(self, (VectorObject *)bmo, col))
 | |
| 		return -1;
 | |
| 
 | |
| 	MATRIX_ITEM(self, row, col) = bmo->data[row];
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| Mathutils_Callback mathutils_matrix_col_cb = {
 | |
| 	mathutils_matrix_col_check,
 | |
| 	mathutils_matrix_col_get,
 | |
| 	mathutils_matrix_col_set,
 | |
| 	mathutils_matrix_col_get_index,
 | |
| 	mathutils_matrix_col_set_index
 | |
| };
 | |
| 
 | |
| 
 | |
| /* ----------------------------------------------------------------------------
 | |
|  * matrix row callbacks
 | |
|  * this is so you can do matrix.translation = val
 | |
|  * note, this is _exactly like matrix.col except the 4th component is always omitted */
 | |
| 
 | |
| unsigned char mathutils_matrix_translation_cb_index = -1;
 | |
| 
 | |
| static int mathutils_matrix_translation_check(BaseMathObject *bmo)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 	return BaseMath_ReadCallback(self);
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_translation_get(BaseMathObject *bmo, int col)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 	int row;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	for (row = 0; row < 3; row++) {
 | |
| 		bmo->data[row] = MATRIX_ITEM(self, row, col);
 | |
| 	}
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_translation_set(BaseMathObject *bmo, int col)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 	int row;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	for (row = 0; row < 3; row++) {
 | |
| 		MATRIX_ITEM(self, row, col) = bmo->data[row];
 | |
| 	}
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_translation_get_index(BaseMathObject *bmo, int col, int row)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	bmo->data[row] = MATRIX_ITEM(self, row, col);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int mathutils_matrix_translation_set_index(BaseMathObject *bmo, int col, int row)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)bmo->cb_user;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	MATRIX_ITEM(self, row, col) = bmo->data[row];
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| Mathutils_Callback mathutils_matrix_translation_cb = {
 | |
| 	mathutils_matrix_translation_check,
 | |
| 	mathutils_matrix_translation_get,
 | |
| 	mathutils_matrix_translation_set,
 | |
| 	mathutils_matrix_translation_get_index,
 | |
| 	mathutils_matrix_translation_set_index
 | |
| };
 | |
| 
 | |
| 
 | |
| /* matrix column callbacks, this is so you can do matrix.translation = Vector()  */
 | |
| 
 | |
| /* ----------------------------------mathutils.Matrix() ----------------- */
 | |
| /* mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc. */
 | |
| /* create a new matrix type */
 | |
| static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	if (kwds && PyDict_Size(kwds)) {
 | |
| 		PyErr_SetString(PyExc_TypeError,
 | |
| 		                "Matrix(): "
 | |
| 		                "takes no keyword args");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	switch (PyTuple_GET_SIZE(args)) {
 | |
| 		case 0:
 | |
| 			return Matrix_CreatePyObject(NULL, 4, 4, Py_NEW, type);
 | |
| 		case 1:
 | |
| 		{
 | |
| 			PyObject *arg = PyTuple_GET_ITEM(args, 0);
 | |
| 
 | |
| 			/* Input is now as a sequence of rows so length of sequence
 | |
| 			 * is the number of rows */
 | |
| 			/* -1 is an error, size checks will accunt for this */
 | |
| 			const unsigned short num_row = PySequence_Size(arg);
 | |
| 
 | |
| 			if (num_row >= 2 && num_row <= 4) {
 | |
| 				PyObject *item = PySequence_GetItem(arg, 0);
 | |
| 				/* Since each item is a row, number of items is the
 | |
| 				 * same as the number of columns */
 | |
| 				const unsigned short num_col = PySequence_Size(item);
 | |
| 				Py_XDECREF(item);
 | |
| 
 | |
| 				if (num_col >= 2 && num_col <= 4) {
 | |
| 					/* sane row & col size, new matrix and assign as slice  */
 | |
| 					PyObject *matrix = Matrix_CreatePyObject(NULL, num_col, num_row, Py_NEW, type);
 | |
| 					if (Matrix_ass_slice((MatrixObject *)matrix, 0, INT_MAX, arg) == 0) {
 | |
| 						return matrix;
 | |
| 					}
 | |
| 					else { /* matrix ok, slice assignment not */
 | |
| 						Py_DECREF(matrix);
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 			break;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* will overwrite error */
 | |
| 	PyErr_SetString(PyExc_TypeError,
 | |
| 	                "Matrix(): "
 | |
| 	                "expects no args or a single arg containing 2-4 numeric sequences");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| static PyObject *matrix__apply_to_copy(PyNoArgsFunction matrix_func, MatrixObject *self)
 | |
| {
 | |
| 	PyObject *ret = Matrix_copy(self);
 | |
| 	if (ret) {
 | |
| 		PyObject *ret_dummy = matrix_func(ret);
 | |
| 		if (ret_dummy) {
 | |
| 			Py_DECREF(ret_dummy);
 | |
| 			return (PyObject *)ret;
 | |
| 		}
 | |
| 		else { /* error */
 | |
| 			Py_DECREF(ret);
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* copy may fail if the read callback errors out */
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /* when a matrix is 4x4 size but initialized as a 3x3, re-assign values for 4x4 */
 | |
| static void matrix_3x3_as_4x4(float mat[16])
 | |
| {
 | |
| 	mat[10] = mat[8];
 | |
| 	mat[9] = mat[7];
 | |
| 	mat[8] = mat[6];
 | |
| 	mat[7] = 0.0f;
 | |
| 	mat[6] = mat[5];
 | |
| 	mat[5] = mat[4];
 | |
| 	mat[4] = mat[3];
 | |
| 	mat[3] = 0.0f;
 | |
| }
 | |
| 
 | |
| /*-----------------------CLASS-METHODS----------------------------*/
 | |
| 
 | |
| /* mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc. */
 | |
| PyDoc_STRVAR(C_Matrix_Identity_doc,
 | |
| ".. classmethod:: Identity(size)\n"
 | |
| "\n"
 | |
| "   Create an identity matrix.\n"
 | |
| "\n"
 | |
| "   :arg size: The size of the identity matrix to construct [2, 4].\n"
 | |
| "   :type size: int\n"
 | |
| "   :return: A new identity matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *C_Matrix_Identity(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	int matSize;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "i:Matrix.Identity", &matSize)) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (matSize < 2 || matSize > 4) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError,
 | |
| 		                "Matrix.Identity(): "
 | |
| 		                "size must be between 2 and 4");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return Matrix_CreatePyObject(NULL, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(C_Matrix_Rotation_doc,
 | |
| ".. classmethod:: Rotation(angle, size, axis)\n"
 | |
| "\n"
 | |
| "   Create a matrix representing a rotation.\n"
 | |
| "\n"
 | |
| "   :arg angle: The angle of rotation desired, in radians.\n"
 | |
| "   :type angle: float\n"
 | |
| "   :arg size: The size of the rotation matrix to construct [2, 4].\n"
 | |
| "   :type size: int\n"
 | |
| "   :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object\n"
 | |
| "      (optional when size is 2).\n"
 | |
| "   :type axis: string or :class:`Vector`\n"
 | |
| "   :return: A new rotation matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *C_Matrix_Rotation(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	PyObject *vec = NULL;
 | |
| 	const char *axis = NULL;
 | |
| 	int matSize;
 | |
| 	double angle; /* use double because of precision problems at high values */
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		             0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		             0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		             0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "di|O:Matrix.Rotation", &angle, &matSize, &vec)) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (vec && PyUnicode_Check(vec)) {
 | |
| 		axis = _PyUnicode_AsString((PyObject *)vec);
 | |
| 		if (axis == NULL || axis[0] == '\0' || axis[1] != '\0' || axis[0] < 'X' || axis[0] > 'Z') {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 			                "Matrix.Rotation(): "
 | |
| 			                "3rd argument axis value must be a 3D vector "
 | |
| 			                "or a string in 'X', 'Y', 'Z'");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 		else {
 | |
| 			/* use the string */
 | |
| 			vec = NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	angle = angle_wrap_rad(angle);
 | |
| 
 | |
| 	if (matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.Rotation(): "
 | |
| 		                "can only return a 2x2 3x3 or 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (matSize == 2 && (vec != NULL)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.Rotation(): "
 | |
| 		                "cannot create a 2x2 rotation matrix around arbitrary axis");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if ((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.Rotation(): "
 | |
| 		                "axis of rotation for 3d and 4d matrices is required");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* check for valid vector/axis above */
 | |
| 	if (vec) {
 | |
| 		float tvec[3];
 | |
| 
 | |
| 		if (mathutils_array_parse(tvec, 3, 3, vec, "Matrix.Rotation(angle, size, axis), invalid 'axis' arg") == -1)
 | |
| 			return NULL;
 | |
| 
 | |
| 		axis_angle_to_mat3((float (*)[3])mat, tvec, angle);
 | |
| 	}
 | |
| 	else if (matSize == 2) {
 | |
| 		angle_to_mat2((float (*)[2])mat, angle);
 | |
| 
 | |
| 	}
 | |
| 	else {
 | |
| 		/* valid axis checked above */
 | |
| 		axis_angle_to_mat3_single((float (*)[3])mat, axis[0], angle);
 | |
| 	}
 | |
| 
 | |
| 	if (matSize == 4) {
 | |
| 		matrix_3x3_as_4x4(mat);
 | |
| 	}
 | |
| 	/* pass to matrix creation */
 | |
| 	return Matrix_CreatePyObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
 | |
| }
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(C_Matrix_Translation_doc,
 | |
| ".. classmethod:: Translation(vector)\n"
 | |
| "\n"
 | |
| "   Create a matrix representing a translation.\n"
 | |
| "\n"
 | |
| "   :arg vector: The translation vector.\n"
 | |
| "   :type vector: :class:`Vector`\n"
 | |
| "   :return: An identity matrix with a translation.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *C_Matrix_Translation(PyObject *cls, PyObject *value)
 | |
| {
 | |
| 	float mat[4][4] = MAT4_UNITY;
 | |
| 
 | |
| 	if (mathutils_array_parse(mat[3], 3, 4, value, "mathutils.Matrix.Translation(vector), invalid vector arg") == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return Matrix_CreatePyObject(&mat[0][0], 4, 4, Py_NEW, (PyTypeObject *)cls);
 | |
| }
 | |
| /* ----------------------------------mathutils.Matrix.Scale() ------------- */
 | |
| /* mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc. */
 | |
| PyDoc_STRVAR(C_Matrix_Scale_doc,
 | |
| ".. classmethod:: Scale(factor, size, axis)\n"
 | |
| "\n"
 | |
| "   Create a matrix representing a scaling.\n"
 | |
| "\n"
 | |
| "   :arg factor: The factor of scaling to apply.\n"
 | |
| "   :type factor: float\n"
 | |
| "   :arg size: The size of the scale matrix to construct [2, 4].\n"
 | |
| "   :type size: int\n"
 | |
| "   :arg axis: Direction to influence scale. (optional).\n"
 | |
| "   :type axis: :class:`Vector`\n"
 | |
| "   :return: A new scale matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *C_Matrix_Scale(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	PyObject *vec = NULL;
 | |
| 	int vec_size;
 | |
| 	float tvec[3];
 | |
| 	float factor;
 | |
| 	int matSize;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "fi|O:Matrix.Scale", &factor, &matSize, &vec)) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.Scale(): "
 | |
| 		                "can only return a 2x2 3x3 or 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (vec) {
 | |
| 		vec_size = (matSize == 2 ? 2 : 3);
 | |
| 		if (mathutils_array_parse(tvec, vec_size, vec_size, vec,
 | |
| 		                          "Matrix.Scale(factor, size, axis), invalid 'axis' arg") == -1)
 | |
| 		{
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	if (vec == NULL) {  /* scaling along axis */
 | |
| 		if (matSize == 2) {
 | |
| 			mat[0] = factor;
 | |
| 			mat[3] = factor;
 | |
| 		}
 | |
| 		else {
 | |
| 			mat[0] = factor;
 | |
| 			mat[4] = factor;
 | |
| 			mat[8] = factor;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* scaling in arbitrary direction
 | |
| 		 * normalize arbitrary axis */
 | |
| 		float norm = 0.0f;
 | |
| 		int x;
 | |
| 		for (x = 0; x < vec_size; x++) {
 | |
| 			norm += tvec[x] * tvec[x];
 | |
| 		}
 | |
| 		norm = (float) sqrt(norm);
 | |
| 		for (x = 0; x < vec_size; x++) {
 | |
| 			tvec[x] /= norm;
 | |
| 		}
 | |
| 		if (matSize == 2) {
 | |
| 			mat[0] = 1 + ((factor - 1) * (tvec[0] * tvec[0]));
 | |
| 			mat[1] =     ((factor - 1) * (tvec[0] * tvec[1]));
 | |
| 			mat[2] =     ((factor - 1) * (tvec[0] * tvec[1]));
 | |
| 			mat[3] = 1 + ((factor - 1) * (tvec[1] * tvec[1]));
 | |
| 		}
 | |
| 		else {
 | |
| 			mat[0] = 1 + ((factor - 1) * (tvec[0] * tvec[0]));
 | |
| 			mat[1] =     ((factor - 1) * (tvec[0] * tvec[1]));
 | |
| 			mat[2] =     ((factor - 1) * (tvec[0] * tvec[2]));
 | |
| 			mat[3] =     ((factor - 1) * (tvec[0] * tvec[1]));
 | |
| 			mat[4] = 1 + ((factor - 1) * (tvec[1] * tvec[1]));
 | |
| 			mat[5] =     ((factor - 1) * (tvec[1] * tvec[2]));
 | |
| 			mat[6] =     ((factor - 1) * (tvec[0] * tvec[2]));
 | |
| 			mat[7] =     ((factor - 1) * (tvec[1] * tvec[2]));
 | |
| 			mat[8] = 1 + ((factor - 1) * (tvec[2] * tvec[2]));
 | |
| 		}
 | |
| 	}
 | |
| 	if (matSize == 4) {
 | |
| 		matrix_3x3_as_4x4(mat);
 | |
| 	}
 | |
| 	/* pass to matrix creation */
 | |
| 	return Matrix_CreatePyObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
 | |
| }
 | |
| /* ----------------------------------mathutils.Matrix.OrthoProjection() --- */
 | |
| /* mat is a 1D array of floats - row[0][0], row[0][1], row[1][0], etc. */
 | |
| PyDoc_STRVAR(C_Matrix_OrthoProjection_doc,
 | |
| ".. classmethod:: OrthoProjection(axis, size)\n"
 | |
| "\n"
 | |
| "   Create a matrix to represent an orthographic projection.\n"
 | |
| "\n"
 | |
| "   :arg axis: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'],\n"
 | |
| "      where a single axis is for a 2D matrix.\n"
 | |
| "      Or a vector for an arbitrary axis\n"
 | |
| "   :type axis: string or :class:`Vector`\n"
 | |
| "   :arg size: The size of the projection matrix to construct [2, 4].\n"
 | |
| "   :type size: int\n"
 | |
| "   :return: A new projection matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *C_Matrix_OrthoProjection(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	PyObject *axis;
 | |
| 
 | |
| 	int matSize, x;
 | |
| 	float norm = 0.0f;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "Oi:Matrix.OrthoProjection", &axis, &matSize)) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.OrthoProjection(): "
 | |
| 		                "can only return a 2x2 3x3 or 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (PyUnicode_Check(axis)) {  /* ortho projection onto cardinal plane */
 | |
| 		Py_ssize_t plane_len;
 | |
| 		const char *plane = _PyUnicode_AsStringAndSize(axis, &plane_len);
 | |
| 		if (matSize == 2) {
 | |
| 			if (plane_len == 1 && plane[0] == 'X') {
 | |
| 				mat[0] = 1.0f;
 | |
| 			}
 | |
| 			else if (plane_len == 1 && plane[0] == 'Y') {
 | |
| 				mat[3] = 1.0f;
 | |
| 			}
 | |
| 			else {
 | |
| 				PyErr_Format(PyExc_ValueError,
 | |
| 				             "Matrix.OrthoProjection(): "
 | |
| 				             "unknown plane, expected: X, Y, not '%.200s'",
 | |
| 				             plane);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 		else {
 | |
| 			if (plane_len == 2 && plane[0] == 'X' && plane[1] == 'Y') {
 | |
| 				mat[0] = 1.0f;
 | |
| 				mat[4] = 1.0f;
 | |
| 			}
 | |
| 			else if (plane_len == 2 && plane[0] == 'X' && plane[1] == 'Z') {
 | |
| 				mat[0] = 1.0f;
 | |
| 				mat[8] = 1.0f;
 | |
| 			}
 | |
| 			else if (plane_len == 2 && plane[0] == 'Y' && plane[1] == 'Z') {
 | |
| 				mat[4] = 1.0f;
 | |
| 				mat[8] = 1.0f;
 | |
| 			}
 | |
| 			else {
 | |
| 				PyErr_Format(PyExc_ValueError,
 | |
| 				             "Matrix.OrthoProjection(): "
 | |
| 				             "unknown plane, expected: XY, XZ, YZ, not '%.200s'",
 | |
| 				             plane);
 | |
| 				return NULL;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* arbitrary plane */
 | |
| 
 | |
| 		int vec_size = (matSize == 2 ? 2 : 3);
 | |
| 		float tvec[4];
 | |
| 
 | |
| 		if (mathutils_array_parse(tvec, vec_size, vec_size, axis,
 | |
| 		                          "Matrix.OrthoProjection(axis, size), invalid 'axis' arg") == -1)
 | |
| 		{
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* normalize arbitrary axis */
 | |
| 		for (x = 0; x < vec_size; x++) {
 | |
| 			norm += tvec[x] * tvec[x];
 | |
| 		}
 | |
| 		norm = (float) sqrt(norm);
 | |
| 		for (x = 0; x < vec_size; x++) {
 | |
| 			tvec[x] /= norm;
 | |
| 		}
 | |
| 		if (matSize == 2) {
 | |
| 			mat[0] = 1 - (tvec[0] * tvec[0]);
 | |
| 			mat[1] =   - (tvec[0] * tvec[1]);
 | |
| 			mat[2] =   - (tvec[0] * tvec[1]);
 | |
| 			mat[3] = 1 - (tvec[1] * tvec[1]);
 | |
| 		}
 | |
| 		else if (matSize > 2) {
 | |
| 			mat[0] = 1 - (tvec[0] * tvec[0]);
 | |
| 			mat[1] =   - (tvec[0] * tvec[1]);
 | |
| 			mat[2] =   - (tvec[0] * tvec[2]);
 | |
| 			mat[3] =   - (tvec[0] * tvec[1]);
 | |
| 			mat[4] = 1 - (tvec[1] * tvec[1]);
 | |
| 			mat[5] =   - (tvec[1] * tvec[2]);
 | |
| 			mat[6] =   - (tvec[0] * tvec[2]);
 | |
| 			mat[7] =   - (tvec[1] * tvec[2]);
 | |
| 			mat[8] = 1 - (tvec[2] * tvec[2]);
 | |
| 		}
 | |
| 	}
 | |
| 	if (matSize == 4) {
 | |
| 		matrix_3x3_as_4x4(mat);
 | |
| 	}
 | |
| 	/* pass to matrix creation */
 | |
| 	return Matrix_CreatePyObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(C_Matrix_Shear_doc,
 | |
| ".. classmethod:: Shear(plane, size, factor)\n"
 | |
| "\n"
 | |
| "   Create a matrix to represent an shear transformation.\n"
 | |
| "\n"
 | |
| "   :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'],\n"
 | |
| "      where a single axis is for a 2D matrix only.\n"
 | |
| "   :type plane: string\n"
 | |
| "   :arg size: The size of the shear matrix to construct [2, 4].\n"
 | |
| "   :type size: int\n"
 | |
| "   :arg factor: The factor of shear to apply. For a 3 or 4 *size* matrix\n"
 | |
| "      pass a pair of floats corresponding with the *plane* axis.\n"
 | |
| "   :type factor: float or float pair\n"
 | |
| "   :return: A new shear matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *C_Matrix_Shear(PyObject *cls, PyObject *args)
 | |
| {
 | |
| 	int matSize;
 | |
| 	const char *plane;
 | |
| 	PyObject *fac;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "siO:Matrix.Shear", &plane, &matSize, &fac)) {
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (matSize != 2 && matSize != 3 && matSize != 4) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.Shear(): "
 | |
| 		                "can only return a 2x2 3x3 or 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (matSize == 2) {
 | |
| 		float const factor = PyFloat_AsDouble(fac);
 | |
| 
 | |
| 		if (factor == -1.0f && PyErr_Occurred()) {
 | |
| 			PyErr_SetString(PyExc_TypeError,
 | |
| 			                "Matrix.Shear(): "
 | |
| 			                "the factor to be a float");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* unit */
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[3] = 1.0f;
 | |
| 
 | |
| 		if (STREQ(plane, "X")) {
 | |
| 			mat[2] = factor;
 | |
| 		}
 | |
| 		else if (STREQ(plane, "Y")) {
 | |
| 			mat[1] = factor;
 | |
| 		}
 | |
| 		else {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 			                "Matrix.Shear(): "
 | |
| 			                "expected: X, Y or wrong matrix size for shearing plane");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		/* 3 or 4, apply as 3x3, resize later if needed */
 | |
| 		float factor[2];
 | |
| 
 | |
| 		if (mathutils_array_parse(factor, 2, 2, fac, "Matrix.Shear()") < 0) {
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		/* unit */
 | |
| 		mat[0] = 1.0f;
 | |
| 		mat[4] = 1.0f;
 | |
| 		mat[8] = 1.0f;
 | |
| 
 | |
| 		if (STREQ(plane, "XY")) {
 | |
| 			mat[6] = factor[0];
 | |
| 			mat[7] = factor[1];
 | |
| 		}
 | |
| 		else if (STREQ(plane, "XZ")) {
 | |
| 			mat[3] = factor[0];
 | |
| 			mat[5] = factor[1];
 | |
| 		}
 | |
| 		else if (STREQ(plane, "YZ")) {
 | |
| 			mat[1] = factor[0];
 | |
| 			mat[2] = factor[1];
 | |
| 		}
 | |
| 		else {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 			                "Matrix.Shear(): "
 | |
| 			                "expected: X, Y, XY, XZ, YZ");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	if (matSize == 4) {
 | |
| 		matrix_3x3_as_4x4(mat);
 | |
| 	}
 | |
| 	/* pass to matrix creation */
 | |
| 	return Matrix_CreatePyObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
 | |
| }
 | |
| 
 | |
| void matrix_as_3x3(float mat[3][3], MatrixObject *self)
 | |
| {
 | |
| 	copy_v3_v3(mat[0], MATRIX_COL_PTR(self, 0));
 | |
| 	copy_v3_v3(mat[1], MATRIX_COL_PTR(self, 1));
 | |
| 	copy_v3_v3(mat[2], MATRIX_COL_PTR(self, 2));
 | |
| }
 | |
| 
 | |
| /* assumes rowsize == colsize is checked and the read callback has run */
 | |
| static float matrix_determinant_internal(MatrixObject *self)
 | |
| {
 | |
| 	if (self->num_col == 2) {
 | |
| 		return determinant_m2(MATRIX_ITEM(self, 0, 0), MATRIX_ITEM(self, 0, 1),
 | |
| 		                      MATRIX_ITEM(self, 1, 0), MATRIX_ITEM(self, 1, 1));
 | |
| 	}
 | |
| 	else if (self->num_col == 3) {
 | |
| 		return determinant_m3(MATRIX_ITEM(self, 0, 0), MATRIX_ITEM(self, 0, 1), MATRIX_ITEM(self, 0, 2),
 | |
| 		                      MATRIX_ITEM(self, 1, 0), MATRIX_ITEM(self, 1, 1), MATRIX_ITEM(self, 1, 2),
 | |
| 		                      MATRIX_ITEM(self, 2, 0), MATRIX_ITEM(self, 2, 1), MATRIX_ITEM(self, 2, 2));
 | |
| 	}
 | |
| 	else {
 | |
| 		return determinant_m4((float (*)[4])self->matrix);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*-----------------------------METHODS----------------------------*/
 | |
| PyDoc_STRVAR(Matrix_to_quaternion_doc,
 | |
| ".. method:: to_quaternion()\n"
 | |
| "\n"
 | |
| "   Return a quaternion representation of the rotation matrix.\n"
 | |
| "\n"
 | |
| "   :return: Quaternion representation of the rotation matrix.\n"
 | |
| "   :rtype: :class:`Quaternion`\n"
 | |
| );
 | |
| static PyObject *Matrix_to_quaternion(MatrixObject *self)
 | |
| {
 | |
| 	float quat[4];
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* must be 3-4 cols, 3-4 rows, square matrix */
 | |
| 	if ((self->num_row < 3) || (self->num_col < 3) || (self->num_row != self->num_col)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.to_quat(): "
 | |
| 		                "inappropriate matrix size - expects 3x3 or 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (self->num_row == 3) {
 | |
| 		mat3_to_quat(quat, (float (*)[3])self->matrix);
 | |
| 	}
 | |
| 	else {
 | |
| 		mat4_to_quat(quat, (float (*)[4])self->matrix);
 | |
| 	}
 | |
| 
 | |
| 	return Quaternion_CreatePyObject(quat, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| /*---------------------------matrix.toEuler() --------------------*/
 | |
| PyDoc_STRVAR(Matrix_to_euler_doc,
 | |
| ".. method:: to_euler(order, euler_compat)\n"
 | |
| "\n"
 | |
| "   Return an Euler representation of the rotation matrix\n"
 | |
| "   (3x3 or 4x4 matrix only).\n"
 | |
| "\n"
 | |
| "   :arg order: Optional rotation order argument in\n"
 | |
| "      ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
 | |
| "   :type order: string\n"
 | |
| "   :arg euler_compat: Optional euler argument the new euler will be made\n"
 | |
| "      compatible with (no axis flipping between them).\n"
 | |
| "      Useful for converting a series of matrices to animation curves.\n"
 | |
| "   :type euler_compat: :class:`Euler`\n"
 | |
| "   :return: Euler representation of the matrix.\n"
 | |
| "   :rtype: :class:`Euler`\n"
 | |
| );
 | |
| static PyObject *Matrix_to_euler(MatrixObject *self, PyObject *args)
 | |
| {
 | |
| 	const char *order_str = NULL;
 | |
| 	short order = EULER_ORDER_XYZ;
 | |
| 	float eul[3], eul_compatf[3];
 | |
| 	EulerObject *eul_compat = NULL;
 | |
| 
 | |
| 	float tmat[3][3];
 | |
| 	float (*mat)[3];
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (eul_compat) {
 | |
| 		if (BaseMath_ReadCallback(eul_compat) == -1)
 | |
| 			return NULL;
 | |
| 
 | |
| 		copy_v3_v3(eul_compatf, eul_compat->eul);
 | |
| 	}
 | |
| 
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix */
 | |
| 	if (self->num_row == 3 && self->num_col == 3) {
 | |
| 		mat = (float (*)[3])self->matrix;
 | |
| 	}
 | |
| 	else if (self->num_row == 4 && self->num_col == 4) {
 | |
| 		copy_m3_m4(tmat, (float (*)[4])self->matrix);
 | |
| 		mat = tmat;
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.to_euler(): "
 | |
| 		                "inappropriate matrix size - expects 3x3 or 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (order_str) {
 | |
| 		order = euler_order_from_string(order_str, "Matrix.to_euler()");
 | |
| 
 | |
| 		if (order == -1)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (eul_compat) {
 | |
| 		if (order == 1) mat3_to_compatible_eul(eul, eul_compatf, mat);
 | |
| 		else            mat3_to_compatible_eulO(eul, eul_compatf, order, mat);
 | |
| 	}
 | |
| 	else {
 | |
| 		if (order == 1) mat3_to_eul(eul, mat);
 | |
| 		else mat3_to_eulO(eul, order, mat);
 | |
| 	}
 | |
| 
 | |
| 	return Euler_CreatePyObject(eul, order, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_resize_4x4_doc,
 | |
| ".. method:: resize_4x4()\n"
 | |
| "\n"
 | |
| "   Resize the matrix to 4x4.\n"
 | |
| );
 | |
| static PyObject *Matrix_resize_4x4(MatrixObject *self)
 | |
| {
 | |
| 	float mat[4][4] = MAT4_UNITY;
 | |
| 	int col;
 | |
| 
 | |
| 	if (self->wrapped == Py_WRAP) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.resize_4x4(): "
 | |
| 		                "cannot resize wrapped data - make a copy and resize that");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	if (self->cb_user) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.resize_4x4(): "
 | |
| 		                "cannot resize owned data - make a copy and resize that");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	self->matrix = PyMem_Realloc(self->matrix, (sizeof(float) * 16));
 | |
| 	if (self->matrix == NULL) {
 | |
| 		PyErr_SetString(PyExc_MemoryError,
 | |
| 		                "Matrix.resize_4x4(): "
 | |
| 		                "problem allocating pointer space");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	for (col = 0; col < self->num_col; col++) {
 | |
| 		memcpy(mat[col], MATRIX_COL_PTR(self, col), self->num_row * sizeof(float));
 | |
| 	}
 | |
| 
 | |
| 	copy_m4_m4((float (*)[4])self->matrix, (float (*)[4])mat);
 | |
| 
 | |
| 	self->num_col = 4;
 | |
| 	self->num_row = 4;
 | |
| 
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_to_4x4_doc,
 | |
| ".. method:: to_4x4()\n"
 | |
| "\n"
 | |
| "   Return a 4x4 copy of this matrix.\n"
 | |
| "\n"
 | |
| "   :return: a new matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *Matrix_to_4x4(MatrixObject *self)
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (self->num_row == 4 && self->num_col == 4) {
 | |
| 		return Matrix_CreatePyObject(self->matrix, 4, 4, Py_NEW, Py_TYPE(self));
 | |
| 	}
 | |
| 	else if (self->num_row == 3 && self->num_col == 3) {
 | |
| 		float mat[4][4];
 | |
| 		copy_m4_m3(mat, (float (*)[3])self->matrix);
 | |
| 		return Matrix_CreatePyObject((float *)mat, 4, 4, Py_NEW, Py_TYPE(self));
 | |
| 	}
 | |
| 	/* TODO, 2x2 matrix */
 | |
| 
 | |
| 	PyErr_SetString(PyExc_ValueError,
 | |
| 	                "Matrix.to_4x4(): "
 | |
| 	                "inappropriate matrix size");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_to_3x3_doc,
 | |
| ".. method:: to_3x3()\n"
 | |
| "\n"
 | |
| "   Return a 3x3 copy of this matrix.\n"
 | |
| "\n"
 | |
| "   :return: a new matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *Matrix_to_3x3(MatrixObject *self)
 | |
| {
 | |
| 	float mat[3][3];
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if ((self->num_row < 3) || (self->num_col < 3)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.to_3x3(): inappropriate matrix size");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	matrix_as_3x3(mat, self);
 | |
| 
 | |
| 	return Matrix_CreatePyObject((float *)mat, 3, 3, Py_NEW, Py_TYPE(self));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_to_translation_doc,
 | |
| ".. method:: to_translation()\n"
 | |
| "\n"
 | |
| "   Return a the translation part of a 4 row matrix.\n"
 | |
| "\n"
 | |
| "   :return: Return a the translation of a matrix.\n"
 | |
| "   :rtype: :class:`Vector`\n"
 | |
| );
 | |
| static PyObject *Matrix_to_translation(MatrixObject *self)
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if ((self->num_row < 3) || self->num_col < 4) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.to_translation(): "
 | |
| 		                "inappropriate matrix size");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return Vector_CreatePyObject(MATRIX_COL_PTR(self, 3), 3, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_to_scale_doc,
 | |
| ".. method:: to_scale()\n"
 | |
| "\n"
 | |
| "   Return a the scale part of a 3x3 or 4x4 matrix.\n"
 | |
| "\n"
 | |
| "   :return: Return a the scale of a matrix.\n"
 | |
| "   :rtype: :class:`Vector`\n"
 | |
| "\n"
 | |
| "   .. note:: This method does not return negative a scale on any axis because it is not possible to obtain this data from the matrix alone.\n"
 | |
| );
 | |
| static PyObject *Matrix_to_scale(MatrixObject *self)
 | |
| {
 | |
| 	float rot[3][3];
 | |
| 	float mat[3][3];
 | |
| 	float size[3];
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix */
 | |
| 	if ((self->num_row < 3) || (self->num_col < 3)) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.to_scale(): "
 | |
| 		                "inappropriate matrix size, 3x3 minimum size");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	matrix_as_3x3(mat, self);
 | |
| 
 | |
| 	/* compatible mat4_to_loc_rot_size */
 | |
| 	mat3_to_rot_size(rot, size, mat);
 | |
| 
 | |
| 	return Vector_CreatePyObject(size, 3, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| /*---------------------------matrix.invert() ---------------------*/
 | |
| PyDoc_STRVAR(Matrix_invert_doc,
 | |
| ".. method:: invert()\n"
 | |
| "\n"
 | |
| "   Set the matrix to its inverse.\n"
 | |
| "\n"
 | |
| "   .. note:: When the matrix cant be inverted a :exc:`ValueError` exception is raised.\n"
 | |
| "\n"
 | |
| "   .. seealso:: <http://en.wikipedia.org/wiki/Inverse_matrix>\n"
 | |
| );
 | |
| static PyObject *Matrix_invert(MatrixObject *self)
 | |
| {
 | |
| 
 | |
| 	int x, y, z = 0;
 | |
| 	float det = 0.0f;
 | |
| 	float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 	                 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (self->num_col != self->num_row) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.invert(ed): "
 | |
| 		                "only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* calculate the determinant */
 | |
| 	det = matrix_determinant_internal(self);
 | |
| 
 | |
| 	if (det != 0) {
 | |
| 		/* calculate the classical adjoint */
 | |
| 		switch (self->num_col) {
 | |
| 			case 2:
 | |
| 			{
 | |
| 				adjoint_m2_m2((float (*)[2])mat, (float (*)[2])self->matrix);
 | |
| 				break;
 | |
| 			}
 | |
| 			case 3:
 | |
| 			{
 | |
| 				adjoint_m3_m3((float (*)[3])mat, (float (*)[3])self->matrix);
 | |
| 				break;
 | |
| 			}
 | |
| 			case 4:
 | |
| 			{
 | |
| 				adjoint_m4_m4((float (*)[4])mat, (float (*)[4])self->matrix);
 | |
| 				break;
 | |
| 			}
 | |
| 			default:
 | |
| 				PyErr_Format(PyExc_ValueError,
 | |
| 				             "Matrix invert(ed): size (%d) unsupported",
 | |
| 				             (int)self->num_col);
 | |
| 				return NULL;
 | |
| 		}
 | |
| 		/* divide by determinate */
 | |
| 		for (x = 0; x < (self->num_col * self->num_row); x++) {
 | |
| 			mat[x] /= det;
 | |
| 		}
 | |
| 		/* set values */
 | |
| 		for (x = 0; x < self->num_col; x++) {
 | |
| 			for (y = 0; y < self->num_row; y++) {
 | |
| 				MATRIX_ITEM(self, y, x) = mat[z];
 | |
| 				z++;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.invert(ed): "
 | |
| 		                "matrix does not have an inverse");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_inverted_doc,
 | |
| ".. method:: inverted()\n"
 | |
| "\n"
 | |
| "   Return an inverted copy of the matrix.\n"
 | |
| "\n"
 | |
| "   :return: the inverted matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| "\n"
 | |
| "   .. note:: When the matrix cant be inverted a :exc:`ValueError` exception is raised.\n"
 | |
| );
 | |
| static PyObject *Matrix_inverted(MatrixObject *self)
 | |
| {
 | |
| 	return matrix__apply_to_copy((PyNoArgsFunction)Matrix_invert, self);
 | |
| }
 | |
| 
 | |
| /*---------------------------matrix.adjugate() ---------------------*/
 | |
| PyDoc_STRVAR(Matrix_adjugate_doc,
 | |
| ".. method:: adjugate()\n"
 | |
| "\n"
 | |
| "   Set the matrix to its adjugate.\n"
 | |
| "\n"
 | |
| "   .. note:: When the matrix cant be adjugated a :exc:`ValueError` exception is raised.\n"
 | |
| "\n"
 | |
| "   .. seealso:: <http://en.wikipedia.org/wiki/Adjugate_matrix>\n"
 | |
| );
 | |
| static PyObject *Matrix_adjugate(MatrixObject *self)
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (self->num_col != self->num_row) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.adjugate(d): "
 | |
| 		                "only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	/* calculate the classical adjoint */
 | |
| 	switch (self->num_col) {
 | |
| 		case 2:
 | |
| 		{
 | |
| 			float mat[2][2];
 | |
| 			adjoint_m2_m2(mat, (float (*)[2])self->matrix);
 | |
| 			copy_v4_v4((float *)self->matrix, (float *)mat);
 | |
| 			break;
 | |
| 		}
 | |
| 		case 3:
 | |
| 		{
 | |
| 			float mat[3][3];
 | |
| 			adjoint_m3_m3(mat, (float (*)[3])self->matrix);
 | |
| 			copy_m3_m3((float (*)[3])self->matrix, mat);
 | |
| 			break;
 | |
| 		}
 | |
| 		case 4:
 | |
| 		{
 | |
| 			float mat[4][4];
 | |
| 			adjoint_m4_m4(mat, (float (*)[4])self->matrix);
 | |
| 			copy_m4_m4((float (*)[4])self->matrix, mat);
 | |
| 			break;
 | |
| 		}
 | |
| 		default:
 | |
| 			PyErr_Format(PyExc_ValueError,
 | |
| 			             "Matrix adjugate(d): size (%d) unsupported",
 | |
| 			             (int)self->num_col);
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_adjugated_doc,
 | |
| ".. method:: adjugated()\n"
 | |
| "\n"
 | |
| "   Return an adjugated copy of the matrix.\n"
 | |
| "\n"
 | |
| "   :return: the adjugated matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| "\n"
 | |
| "   .. note:: When the matrix cant be adjugated a :exc:`ValueError` exception is raised.\n"
 | |
| );
 | |
| static PyObject *Matrix_adjugated(MatrixObject *self)
 | |
| {
 | |
| 	return matrix__apply_to_copy((PyNoArgsFunction)Matrix_adjugate, self);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_rotate_doc,
 | |
| ".. method:: rotate(other)\n"
 | |
| "\n"
 | |
| "   Rotates the matrix a by another mathutils value.\n"
 | |
| "\n"
 | |
| "   :arg other: rotation component of mathutils value\n"
 | |
| "   :type other: :class:`Euler`, :class:`Quaternion` or :class:`Matrix`\n"
 | |
| "\n"
 | |
| "   .. note:: If any of the columns are not unit length this may not have desired results.\n"
 | |
| );
 | |
| static PyObject *Matrix_rotate(MatrixObject *self, PyObject *value)
 | |
| {
 | |
| 	float self_rmat[3][3], other_rmat[3][3], rmat[3][3];
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (mathutils_any_to_rotmat(other_rmat, value, "matrix.rotate(value)") == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (self->num_row != 3 || self->num_col != 3) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.rotate(): "
 | |
| 		                "must have 3x3 dimensions");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	matrix_as_3x3(self_rmat, self);
 | |
| 	mul_m3_m3m3(rmat, other_rmat, self_rmat);
 | |
| 
 | |
| 	copy_m3_m3((float (*)[3])(self->matrix), rmat);
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| /*---------------------------matrix.decompose() ---------------------*/
 | |
| PyDoc_STRVAR(Matrix_decompose_doc,
 | |
| ".. method:: decompose()\n"
 | |
| "\n"
 | |
| "   Return the location, rotaion and scale components of this matrix.\n"
 | |
| "\n"
 | |
| "   :return: loc, rot, scale triple.\n"
 | |
| "   :rtype: (:class:`Vector`, :class:`Quaternion`, :class:`Vector`)"
 | |
| );
 | |
| static PyObject *Matrix_decompose(MatrixObject *self)
 | |
| {
 | |
| 	PyObject *ret;
 | |
| 	float loc[3];
 | |
| 	float rot[3][3];
 | |
| 	float quat[4];
 | |
| 	float size[3];
 | |
| 
 | |
| 	if (self->num_row != 4 || self->num_col != 4) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.decompose(): "
 | |
| 		                "inappropriate matrix size - expects 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	mat4_to_loc_rot_size(loc, rot, size, (float (*)[4])self->matrix);
 | |
| 	mat3_to_quat(quat, rot);
 | |
| 
 | |
| 	ret = PyTuple_New(3);
 | |
| 	PyTuple_SET_ITEM(ret, 0, Vector_CreatePyObject(loc, 3, Py_NEW, NULL));
 | |
| 	PyTuple_SET_ITEM(ret, 1, Quaternion_CreatePyObject(quat, Py_NEW, NULL));
 | |
| 	PyTuple_SET_ITEM(ret, 2, Vector_CreatePyObject(size, 3, Py_NEW, NULL));
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_lerp_doc,
 | |
| ".. function:: lerp(other, factor)\n"
 | |
| "\n"
 | |
| "   Returns the interpolation of two matrices.\n"
 | |
| "\n"
 | |
| "   :arg other: value to interpolate with.\n"
 | |
| "   :type other: :class:`Matrix`\n"
 | |
| "   :arg factor: The interpolation value in [0.0, 1.0].\n"
 | |
| "   :type factor: float\n"
 | |
| "   :return: The interpolated matrix.\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *Matrix_lerp(MatrixObject *self, PyObject *args)
 | |
| {
 | |
| 	MatrixObject *mat2 = NULL;
 | |
| 	float fac, mat[MATRIX_MAX_DIM * MATRIX_MAX_DIM];
 | |
| 
 | |
| 	if (!PyArg_ParseTuple(args, "O!f:lerp", &matrix_Type, &mat2, &fac))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (self->num_col != mat2->num_col || self->num_row != mat2->num_row) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.lerp(): "
 | |
| 		                "expects both matrix objects of the same dimensions");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1 || BaseMath_ReadCallback(mat2) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/* TODO, different sized matrix */
 | |
| 	if (self->num_col == 4 && self->num_row == 4) {
 | |
| 		blend_m4_m4m4((float (*)[4])mat, (float (*)[4])self->matrix, (float (*)[4])mat2->matrix, fac);
 | |
| 	}
 | |
| 	else if (self->num_col == 3 && self->num_row == 3) {
 | |
| 		blend_m3_m3m3((float (*)[3])mat, (float (*)[3])self->matrix, (float (*)[3])mat2->matrix, fac);
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.lerp(): "
 | |
| 		                "only 3x3 and 4x4 matrices supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return Matrix_CreatePyObject(mat, self->num_col, self->num_row, Py_NEW, Py_TYPE(self));
 | |
| }
 | |
| 
 | |
| /*---------------------------matrix.determinant() ----------------*/
 | |
| PyDoc_STRVAR(Matrix_determinant_doc,
 | |
| ".. method:: determinant()\n"
 | |
| "\n"
 | |
| "   Return the determinant of a matrix.\n"
 | |
| "\n"
 | |
| "   :return: Return a the determinant of a matrix.\n"
 | |
| "   :rtype: float\n"
 | |
| "\n"
 | |
| "   .. seealso:: <http://en.wikipedia.org/wiki/Determinant>\n"
 | |
| );
 | |
| static PyObject *Matrix_determinant(MatrixObject *self)
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (self->num_col != self->num_row) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.determinant(): "
 | |
| 		                "only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return PyFloat_FromDouble((double)matrix_determinant_internal(self));
 | |
| }
 | |
| /*---------------------------matrix.transpose() ------------------*/
 | |
| PyDoc_STRVAR(Matrix_transpose_doc,
 | |
| ".. method:: transpose()\n"
 | |
| "\n"
 | |
| "   Set the matrix to its transpose.\n"
 | |
| "\n"
 | |
| "   .. seealso:: <http://en.wikipedia.org/wiki/Transpose>\n"
 | |
| );
 | |
| static PyObject *Matrix_transpose(MatrixObject *self)
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (self->num_col != self->num_row) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.transpose(d): "
 | |
| 		                "only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (self->num_col == 2) {
 | |
| 		const float t = MATRIX_ITEM(self, 1, 0);
 | |
| 		MATRIX_ITEM(self, 1, 0) = MATRIX_ITEM(self, 0, 1);
 | |
| 		MATRIX_ITEM(self, 0, 1) = t;
 | |
| 	}
 | |
| 	else if (self->num_col == 3) {
 | |
| 		transpose_m3((float (*)[3])self->matrix);
 | |
| 	}
 | |
| 	else {
 | |
| 		transpose_m4((float (*)[4])self->matrix);
 | |
| 	}
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_transposed_doc,
 | |
| ".. method:: transposed()\n"
 | |
| "\n"
 | |
| "   Return a new, transposed matrix.\n"
 | |
| "\n"
 | |
| "   :return: a transposed matrix\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *Matrix_transposed(MatrixObject *self)
 | |
| {
 | |
| 	return matrix__apply_to_copy((PyNoArgsFunction)Matrix_transpose, self);
 | |
| }
 | |
| 
 | |
| /*---------------------------matrix.normalize() ------------------*/
 | |
| PyDoc_STRVAR(Matrix_normalize_doc,
 | |
| ".. method:: normalize()\n"
 | |
| "\n"
 | |
| "   Normalize each of the matrix columns.\n"
 | |
| );
 | |
| static PyObject *Matrix_normalize(MatrixObject *self)
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (self->num_col != self->num_row) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.normalize(): "
 | |
| 		                "only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (self->num_col == 3) {
 | |
| 		normalize_m3((float (*)[3])self->matrix);
 | |
| 	}
 | |
| 	else if (self->num_col == 4) {
 | |
| 		normalize_m4((float (*)[4])self->matrix);
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.normalize(): "
 | |
| 		                "can only use a 3x3 or 4x4 matrix");
 | |
| 	}
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_normalized_doc,
 | |
| ".. method:: normalized()\n"
 | |
| "\n"
 | |
| "   Return a column normalized matrix\n"
 | |
| "\n"
 | |
| "   :return: a column normalized matrix\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *Matrix_normalized(MatrixObject *self)
 | |
| {
 | |
| 	return matrix__apply_to_copy((PyNoArgsFunction)Matrix_normalize, self);
 | |
| }
 | |
| 
 | |
| /*---------------------------matrix.zero() -----------------------*/
 | |
| PyDoc_STRVAR(Matrix_zero_doc,
 | |
| ".. method:: zero()\n"
 | |
| "\n"
 | |
| "   Set all the matrix values to zero.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *Matrix_zero(MatrixObject *self)
 | |
| {
 | |
| 	fill_vn_fl(self->matrix, self->num_col * self->num_row, 0.0f);
 | |
| 
 | |
| 	if (BaseMath_WriteCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| /*---------------------------matrix.identity(() ------------------*/
 | |
| PyDoc_STRVAR(Matrix_identity_doc,
 | |
| ".. method:: identity()\n"
 | |
| "\n"
 | |
| "   Set the matrix to the identity matrix.\n"
 | |
| "\n"
 | |
| "   .. note:: An object with zero location and rotation, a scale of one,\n"
 | |
| "      will have an identity matrix.\n"
 | |
| "\n"
 | |
| "   .. seealso:: <http://en.wikipedia.org/wiki/Identity_matrix>\n"
 | |
| );
 | |
| static PyObject *Matrix_identity(MatrixObject *self)
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (self->num_col != self->num_row) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix.identity(): "
 | |
| 		                "only square matrices are supported");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (self->num_col == 2) {
 | |
| 		MATRIX_ITEM(self, 0, 0) = 1.0f;
 | |
| 		MATRIX_ITEM(self, 0, 1) = 0.0f;
 | |
| 		MATRIX_ITEM(self, 1, 0) = 0.0f;
 | |
| 		MATRIX_ITEM(self, 1, 1) = 1.0f;
 | |
| 	}
 | |
| 	else if (self->num_col == 3) {
 | |
| 		unit_m3((float (*)[3])self->matrix);
 | |
| 	}
 | |
| 	else {
 | |
| 		unit_m4((float (*)[4])self->matrix);
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_WriteCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	Py_RETURN_NONE;
 | |
| }
 | |
| 
 | |
| /*---------------------------Matrix.copy() ------------------*/
 | |
| PyDoc_STRVAR(Matrix_copy_doc,
 | |
| ".. method:: copy()\n"
 | |
| "\n"
 | |
| "   Returns a copy of this matrix.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself\n"
 | |
| "   :rtype: :class:`Matrix`\n"
 | |
| );
 | |
| static PyObject *Matrix_copy(MatrixObject *self)
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	return Matrix_CreatePyObject((float (*))self->matrix, self->num_col, self->num_row, Py_NEW, Py_TYPE(self));
 | |
| }
 | |
| static PyObject *Matrix_deepcopy(MatrixObject *self, PyObject *args)
 | |
| {
 | |
| 	if (!mathutils_deepcopy_args_check(args))
 | |
| 		return NULL;
 | |
| 	return Matrix_copy(self);
 | |
| }
 | |
| 
 | |
| /*----------------------------print object (internal)-------------*/
 | |
| /* print the object to screen */
 | |
| static PyObject *Matrix_repr(MatrixObject *self)
 | |
| {
 | |
| 	int col, row;
 | |
| 	PyObject *rows[MATRIX_MAX_DIM] = {NULL};
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	for (row = 0; row < self->num_row; row++) {
 | |
| 		rows[row] = PyTuple_New(self->num_col);
 | |
| 		for (col = 0; col < self->num_col; col++) {
 | |
| 			PyTuple_SET_ITEM(rows[row], col, PyFloat_FromDouble(MATRIX_ITEM(self, row, col)));
 | |
| 		}
 | |
| 	}
 | |
| 	switch (self->num_row) {
 | |
| 		case 2: return PyUnicode_FromFormat("Matrix((%R,\n"
 | |
| 		                                    "        %R))", rows[0], rows[1]);
 | |
| 
 | |
| 		case 3: return PyUnicode_FromFormat("Matrix((%R,\n"
 | |
| 		                                    "        %R,\n"
 | |
| 		                                    "        %R))", rows[0], rows[1], rows[2]);
 | |
| 
 | |
| 		case 4: return PyUnicode_FromFormat("Matrix((%R,\n"
 | |
| 		                                    "        %R,\n"
 | |
| 		                                    "        %R,\n"
 | |
| 		                                    "        %R))", rows[0], rows[1], rows[2], rows[3]);
 | |
| 	}
 | |
| 
 | |
| 	Py_FatalError("Matrix(): invalid row size!");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| #ifndef MATH_STANDALONE
 | |
| static PyObject *Matrix_str(MatrixObject *self)
 | |
| {
 | |
| 	DynStr *ds;
 | |
| 
 | |
| 	int maxsize[MATRIX_MAX_DIM];
 | |
| 	int row, col;
 | |
| 
 | |
| 	char dummy_buf[64];
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	ds = BLI_dynstr_new();
 | |
| 
 | |
| 	/* First determine the maximum width for each column */
 | |
| 	for (col = 0; col < self->num_col; col++) {
 | |
| 		maxsize[col] = 0;
 | |
| 		for (row = 0; row < self->num_row; row++) {
 | |
| 			int size = BLI_snprintf(dummy_buf, sizeof(dummy_buf), "%.4f", MATRIX_ITEM(self, row, col));
 | |
| 			maxsize[col] = max_ii(maxsize[col], size);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	/* Now write the unicode string to be printed */
 | |
| 	BLI_dynstr_appendf(ds, "<Matrix %dx%d (", self->num_row, self->num_col);
 | |
| 	for (row = 0; row < self->num_row; row++) {
 | |
| 		for (col = 0; col < self->num_col; col++) {
 | |
| 			BLI_dynstr_appendf(ds, col ? ", %*.4f" : "%*.4f", maxsize[col], MATRIX_ITEM(self, row, col));
 | |
| 		}
 | |
| 		BLI_dynstr_append(ds, row + 1 != self->num_row ? ")\n            (" : ")");
 | |
| 	}
 | |
| 	BLI_dynstr_append(ds, ">");
 | |
| 
 | |
| 	return mathutils_dynstr_to_py(ds); /* frees ds */
 | |
| }
 | |
| #endif
 | |
| 
 | |
| static PyObject *Matrix_richcmpr(PyObject *a, PyObject *b, int op)
 | |
| {
 | |
| 	PyObject *res;
 | |
| 	int ok = -1; /* zero is true */
 | |
| 
 | |
| 	if (MatrixObject_Check(a) && MatrixObject_Check(b)) {
 | |
| 		MatrixObject *matA = (MatrixObject *)a;
 | |
| 		MatrixObject *matB = (MatrixObject *)b;
 | |
| 
 | |
| 		if (BaseMath_ReadCallback(matA) == -1 || BaseMath_ReadCallback(matB) == -1)
 | |
| 			return NULL;
 | |
| 
 | |
| 		ok = ((matA->num_row == matB->num_row) &&
 | |
| 		      (matA->num_col == matB->num_col) &&
 | |
| 		      EXPP_VectorsAreEqual(matA->matrix, matB->matrix, (matA->num_col * matA->num_row), 1)
 | |
| 		      ) ? 0 : -1;
 | |
| 	}
 | |
| 
 | |
| 	switch (op) {
 | |
| 		case Py_NE:
 | |
| 			ok = !ok;
 | |
| 			/* fall-through */
 | |
| 		case Py_EQ:
 | |
| 			res = ok ? Py_False : Py_True;
 | |
| 			break;
 | |
| 
 | |
| 		case Py_LT:
 | |
| 		case Py_LE:
 | |
| 		case Py_GT:
 | |
| 		case Py_GE:
 | |
| 			res = Py_NotImplemented;
 | |
| 			break;
 | |
| 		default:
 | |
| 			PyErr_BadArgument();
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	return Py_INCREF(res), res;
 | |
| }
 | |
| 
 | |
| /*---------------------SEQUENCE PROTOCOLS------------------------
 | |
|  * ----------------------------len(object)------------------------
 | |
|  * sequence length */
 | |
| static int Matrix_len(MatrixObject *self)
 | |
| {
 | |
| 	return self->num_row;
 | |
| }
 | |
| /*----------------------------object[]---------------------------
 | |
|  * sequence accessor (get)
 | |
|  * the wrapped vector gives direct access to the matrix data */
 | |
| static PyObject *Matrix_item_row(MatrixObject *self, int row)
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (row < 0 || row >= self->num_row) {
 | |
| 		PyErr_SetString(PyExc_IndexError,
 | |
| 		                "matrix[attribute]: "
 | |
| 		                "array index out of range");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return Vector_CreatePyObject_cb((PyObject *)self, self->num_col, mathutils_matrix_row_cb_index, row);
 | |
| }
 | |
| /* same but column access */
 | |
| static PyObject *Matrix_item_col(MatrixObject *self, int col)
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (col < 0 || col >= self->num_col) {
 | |
| 		PyErr_SetString(PyExc_IndexError,
 | |
| 		                "matrix[attribute]: "
 | |
| 		                "array index out of range");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return Vector_CreatePyObject_cb((PyObject *)self, self->num_row, mathutils_matrix_col_cb_index, col);
 | |
| }
 | |
| 
 | |
| /*----------------------------object[]-------------------------
 | |
|  * sequence accessor (set) */
 | |
| 
 | |
| static int Matrix_ass_item_row(MatrixObject *self, int row, PyObject *value)
 | |
| {
 | |
| 	int col;
 | |
| 	float vec[4];
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (row >= self->num_row || row < 0) {
 | |
| 		PyErr_SetString(PyExc_IndexError,
 | |
| 		                "matrix[attribute] = x: bad row");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (mathutils_array_parse(vec, self->num_col, self->num_col, value, "matrix[i] = value assignment") < 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Since we are assigning a row we cannot memcpy */
 | |
| 	for (col = 0; col < self->num_col; col++) {
 | |
| 		MATRIX_ITEM(self, row, col) = vec[col];
 | |
| 	}
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	return 0;
 | |
| }
 | |
| static int Matrix_ass_item_col(MatrixObject *self, int col, PyObject *value)
 | |
| {
 | |
| 	int row;
 | |
| 	float vec[4];
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	if (col >= self->num_col || col < 0) {
 | |
| 		PyErr_SetString(PyExc_IndexError,
 | |
| 		                "matrix[attribute] = x: bad col");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if (mathutils_array_parse(vec, self->num_row, self->num_row, value, "matrix[i] = value assignment") < 0) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* Since we are assigning a row we cannot memcpy */
 | |
| 	for (row = 0; row < self->num_row; row++) {
 | |
| 		MATRIX_ITEM(self, row, col) = vec[row];
 | |
| 	}
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| /*----------------------------object[z:y]------------------------
 | |
|  * sequence slice (get)*/
 | |
| static PyObject *Matrix_slice(MatrixObject *self, int begin, int end)
 | |
| {
 | |
| 
 | |
| 	PyObject *tuple;
 | |
| 	int count;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	CLAMP(begin, 0, self->num_row);
 | |
| 	CLAMP(end, 0, self->num_row);
 | |
| 	begin = MIN2(begin, end);
 | |
| 
 | |
| 	tuple = PyTuple_New(end - begin);
 | |
| 	for (count = begin; count < end; count++) {
 | |
| 		PyTuple_SET_ITEM(tuple, count - begin,
 | |
| 		                 Vector_CreatePyObject_cb((PyObject *)self, self->num_col, mathutils_matrix_row_cb_index, count));
 | |
| 	}
 | |
| 
 | |
| 	return tuple;
 | |
| }
 | |
| /*----------------------------object[z:y]------------------------
 | |
|  * sequence slice (set)*/
 | |
| static int Matrix_ass_slice(MatrixObject *self, int begin, int end, PyObject *value)
 | |
| {
 | |
| 	PyObject *value_fast = NULL;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	CLAMP(begin, 0, self->num_row);
 | |
| 	CLAMP(end, 0, self->num_row);
 | |
| 	begin = MIN2(begin, end);
 | |
| 
 | |
| 	/* non list/tuple cases */
 | |
| 	if (!(value_fast = PySequence_Fast(value, "matrix[begin:end] = value"))) {
 | |
| 		/* PySequence_Fast sets the error */
 | |
| 		return -1;
 | |
| 	}
 | |
| 	else {
 | |
| 		const int size = end - begin;
 | |
| 		int row, col;
 | |
| 		float mat[16];
 | |
| 		float vec[4];
 | |
| 
 | |
| 		if (PySequence_Fast_GET_SIZE(value_fast) != size) {
 | |
| 			Py_DECREF(value_fast);
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 			                "matrix[begin:end] = []: "
 | |
| 			                "size mismatch in slice assignment");
 | |
| 			return -1;
 | |
| 		}
 | |
| 
 | |
| 		memcpy(mat, self->matrix, self->num_col * self->num_row * sizeof(float));
 | |
| 
 | |
| 		/* parse sub items */
 | |
| 		for (row = begin; row < end; row++) {
 | |
| 			/* parse each sub sequence */
 | |
| 			PyObject *item = PySequence_Fast_GET_ITEM(value_fast, row - begin);
 | |
| 
 | |
| 			if (mathutils_array_parse(vec, self->num_col, self->num_col, item,
 | |
| 			                          "matrix[begin:end] = value assignment") < 0)
 | |
| 			{
 | |
| 				return -1;
 | |
| 			}
 | |
| 
 | |
| 			for (col = 0; col < self->num_col; col++) {
 | |
| 				mat[col * self->num_row + row] = vec[col];
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		Py_DECREF(value_fast);
 | |
| 
 | |
| 		/*parsed well - now set in matrix*/
 | |
| 		memcpy(self->matrix, mat, self->num_col * self->num_row * sizeof(float));
 | |
| 
 | |
| 		(void)BaseMath_WriteCallback(self);
 | |
| 		return 0;
 | |
| 	}
 | |
| }
 | |
| /*------------------------NUMERIC PROTOCOLS----------------------
 | |
|  *------------------------obj + obj------------------------------*/
 | |
| static PyObject *Matrix_add(PyObject *m1, PyObject *m2)
 | |
| {
 | |
| 	float mat[16];
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 
 | |
| 	mat1 = (MatrixObject *)m1;
 | |
| 	mat2 = (MatrixObject *)m2;
 | |
| 
 | |
| 	if (!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 		             "Matrix addition: (%s + %s) "
 | |
| 		             "invalid type for this operation",
 | |
| 		             Py_TYPE(m1)->tp_name, Py_TYPE(m2)->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(mat1) == -1 || BaseMath_ReadCallback(mat2) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (mat1->num_col != mat2->num_col || mat1->num_row != mat2->num_row) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix addition: "
 | |
| 		                "matrices must have the same dimensions for this operation");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	add_vn_vnvn(mat, mat1->matrix, mat2->matrix, mat1->num_col * mat1->num_row);
 | |
| 
 | |
| 	return Matrix_CreatePyObject(mat, mat1->num_col, mat1->num_row, Py_NEW, Py_TYPE(mat1));
 | |
| }
 | |
| /*------------------------obj - obj------------------------------
 | |
|  * subtraction */
 | |
| static PyObject *Matrix_sub(PyObject *m1, PyObject *m2)
 | |
| {
 | |
| 	float mat[16];
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 
 | |
| 	mat1 = (MatrixObject *)m1;
 | |
| 	mat2 = (MatrixObject *)m2;
 | |
| 
 | |
| 	if (!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 		             "Matrix subtraction: (%s - %s) "
 | |
| 		             "invalid type for this operation",
 | |
| 		             Py_TYPE(m1)->tp_name, Py_TYPE(m2)->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(mat1) == -1 || BaseMath_ReadCallback(mat2) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	if (mat1->num_col != mat2->num_col || mat1->num_row != mat2->num_row) {
 | |
| 		PyErr_SetString(PyExc_ValueError,
 | |
| 		                "Matrix addition: "
 | |
| 		                "matrices must have the same dimensions for this operation");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	sub_vn_vnvn(mat, mat1->matrix, mat2->matrix, mat1->num_col * mat1->num_row);
 | |
| 
 | |
| 	return Matrix_CreatePyObject(mat, mat1->num_col, mat1->num_row, Py_NEW, Py_TYPE(mat1));
 | |
| }
 | |
| /*------------------------obj * obj------------------------------
 | |
|  * multiplication */
 | |
| static PyObject *matrix_mul_float(MatrixObject *mat, const float scalar)
 | |
| {
 | |
| 	float tmat[16];
 | |
| 	mul_vn_vn_fl(tmat, mat->matrix, mat->num_col * mat->num_row, scalar);
 | |
| 	return Matrix_CreatePyObject(tmat, mat->num_col, mat->num_row, Py_NEW, Py_TYPE(mat));
 | |
| }
 | |
| 
 | |
| static PyObject *Matrix_mul(PyObject *m1, PyObject *m2)
 | |
| {
 | |
| 	float scalar;
 | |
| 	int vec_size;
 | |
| 
 | |
| 	MatrixObject *mat1 = NULL, *mat2 = NULL;
 | |
| 
 | |
| 	if (MatrixObject_Check(m1)) {
 | |
| 		mat1 = (MatrixObject *)m1;
 | |
| 		if (BaseMath_ReadCallback(mat1) == -1)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	if (MatrixObject_Check(m2)) {
 | |
| 		mat2 = (MatrixObject *)m2;
 | |
| 		if (BaseMath_ReadCallback(mat2) == -1)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (mat1 && mat2) {
 | |
| 		/* MATRIX * MATRIX */
 | |
| 		float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		                 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		                 0.0f, 0.0f, 0.0f, 0.0f,
 | |
| 		                 0.0f, 0.0f, 0.0f, 1.0f};
 | |
| 
 | |
| 		int col, row, item;
 | |
| 
 | |
| 		if (mat1->num_col != mat2->num_row) {
 | |
| 			PyErr_SetString(PyExc_ValueError,
 | |
| 			                "matrix1 * matrix2: matrix1 number of columns "
 | |
| 			                "and the matrix2 number of rows must be the same");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 
 | |
| 		for (col = 0; col < mat2->num_col; col++) {
 | |
| 			for (row = 0; row < mat1->num_row; row++) {
 | |
| 				double dot = 0.0f;
 | |
| 				for (item = 0; item < mat1->num_col; item++) {
 | |
| 					dot += (double)(MATRIX_ITEM(mat1, row, item) * MATRIX_ITEM(mat2, item, col));
 | |
| 				}
 | |
| 				mat[(col * mat1->num_row) + row] = (float)dot;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 		return Matrix_CreatePyObject(mat, mat2->num_col, mat1->num_row, Py_NEW, Py_TYPE(mat1));
 | |
| 	}
 | |
| 	else if (mat2) {
 | |
| 		/*FLOAT/INT * MATRIX */
 | |
| 		if (((scalar = PyFloat_AsDouble(m1)) == -1.0f && PyErr_Occurred()) == 0) {
 | |
| 			return matrix_mul_float(mat2, scalar);
 | |
| 		}
 | |
| 	}
 | |
| 	else if (mat1) {
 | |
| 		/* MATRIX * VECTOR */
 | |
| 		if (VectorObject_Check(m2)) {
 | |
| 			VectorObject *vec2 = (VectorObject *)m2;
 | |
| 			float tvec[4];
 | |
| 			if (BaseMath_ReadCallback(vec2) == -1)
 | |
| 				return NULL;
 | |
| 			if (column_vector_multiplication(tvec, vec2, mat1) == -1) {
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 			if (mat1->num_col == 4 && vec2->size == 3) {
 | |
| 				vec_size = 3;
 | |
| 			}
 | |
| 			else {
 | |
| 				vec_size = mat1->num_row;
 | |
| 			}
 | |
| 
 | |
| 			return Vector_CreatePyObject(tvec, vec_size, Py_NEW, Py_TYPE(m2));
 | |
| 		}
 | |
| 		/*FLOAT/INT * MATRIX */
 | |
| 		else if (((scalar = PyFloat_AsDouble(m2)) == -1.0f && PyErr_Occurred()) == 0) {
 | |
| 			return matrix_mul_float(mat1, scalar);
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		BLI_assert(!"internal error");
 | |
| 	}
 | |
| 
 | |
| 	PyErr_Format(PyExc_TypeError,
 | |
| 	             "Matrix multiplication: "
 | |
| 	             "not supported between '%.200s' and '%.200s' types",
 | |
| 	             Py_TYPE(m1)->tp_name, Py_TYPE(m2)->tp_name);
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| /*-----------------PROTOCOL DECLARATIONS--------------------------*/
 | |
| static PySequenceMethods Matrix_SeqMethods = {
 | |
| 	(lenfunc) Matrix_len,                       /* sq_length */
 | |
| 	(binaryfunc) NULL,                          /* sq_concat */
 | |
| 	(ssizeargfunc) NULL,                        /* sq_repeat */
 | |
| 	(ssizeargfunc) Matrix_item_row,             /* sq_item */
 | |
| 	(ssizessizeargfunc) NULL,                   /* sq_slice, deprecated */
 | |
| 	(ssizeobjargproc) Matrix_ass_item_row,      /* sq_ass_item */
 | |
| 	(ssizessizeobjargproc) NULL,                /* sq_ass_slice, deprecated */
 | |
| 	(objobjproc) NULL,                          /* sq_contains */
 | |
| 	(binaryfunc) NULL,                          /* sq_inplace_concat */
 | |
| 	(ssizeargfunc) NULL,                        /* sq_inplace_repeat */
 | |
| };
 | |
| 
 | |
| 
 | |
| static PyObject *Matrix_subscript(MatrixObject *self, PyObject *item)
 | |
| {
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i;
 | |
| 		i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 		if (i < 0)
 | |
| 			i += self->num_row;
 | |
| 		return Matrix_item_row(self, i);
 | |
| 	}
 | |
| 	else if (PySlice_Check(item)) {
 | |
| 		Py_ssize_t start, stop, step, slicelength;
 | |
| 
 | |
| 		if (PySlice_GetIndicesEx(item, self->num_row, &start, &stop, &step, &slicelength) < 0)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (slicelength <= 0) {
 | |
| 			return PyTuple_New(0);
 | |
| 		}
 | |
| 		else if (step == 1) {
 | |
| 			return Matrix_slice(self, start, stop);
 | |
| 		}
 | |
| 		else {
 | |
| 			PyErr_SetString(PyExc_IndexError,
 | |
| 			                "slice steps not supported with matrices");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 		             "matrix indices must be integers, not %.200s",
 | |
| 		             Py_TYPE(item)->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int Matrix_ass_subscript(MatrixObject *self, PyObject *item, PyObject *value)
 | |
| {
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return -1;
 | |
| 		if (i < 0)
 | |
| 			i += self->num_row;
 | |
| 		return Matrix_ass_item_row(self, i, value);
 | |
| 	}
 | |
| 	else if (PySlice_Check(item)) {
 | |
| 		Py_ssize_t start, stop, step, slicelength;
 | |
| 
 | |
| 		if (PySlice_GetIndicesEx(item, self->num_row, &start, &stop, &step, &slicelength) < 0)
 | |
| 			return -1;
 | |
| 
 | |
| 		if (step == 1)
 | |
| 			return Matrix_ass_slice(self, start, stop, value);
 | |
| 		else {
 | |
| 			PyErr_SetString(PyExc_IndexError,
 | |
| 			                "slice steps not supported with matrices");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 		             "matrix indices must be integers, not %.200s",
 | |
| 		             Py_TYPE(item)->tp_name);
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static PyMappingMethods Matrix_AsMapping = {
 | |
| 	(lenfunc)Matrix_len,
 | |
| 	(binaryfunc)Matrix_subscript,
 | |
| 	(objobjargproc)Matrix_ass_subscript
 | |
| };
 | |
| 
 | |
| 
 | |
| static PyNumberMethods Matrix_NumMethods = {
 | |
| 	(binaryfunc)    Matrix_add,     /*nb_add*/
 | |
| 	(binaryfunc)    Matrix_sub,     /*nb_subtract*/
 | |
| 	(binaryfunc)    Matrix_mul,     /*nb_multiply*/
 | |
| 	NULL,                               /*nb_remainder*/
 | |
| 	NULL,                               /*nb_divmod*/
 | |
| 	NULL,                               /*nb_power*/
 | |
| 	(unaryfunc)     0,      /*nb_negative*/
 | |
| 	(unaryfunc)     0,      /*tp_positive*/
 | |
| 	(unaryfunc)     0,      /*tp_absolute*/
 | |
| 	(inquiry)   0,      /*tp_bool*/
 | |
| 	(unaryfunc) Matrix_inverted,        /*nb_invert*/
 | |
| 	NULL,                   /*nb_lshift*/
 | |
| 	(binaryfunc)0,      /*nb_rshift*/
 | |
| 	NULL,                   /*nb_and*/
 | |
| 	NULL,                   /*nb_xor*/
 | |
| 	NULL,                   /*nb_or*/
 | |
| 	NULL,                   /*nb_int*/
 | |
| 	NULL,                   /*nb_reserved*/
 | |
| 	NULL,                   /*nb_float*/
 | |
| 	NULL,                   /* nb_inplace_add */
 | |
| 	NULL,                   /* nb_inplace_subtract */
 | |
| 	NULL,                   /* nb_inplace_multiply */
 | |
| 	NULL,                   /* nb_inplace_remainder */
 | |
| 	NULL,                   /* nb_inplace_power */
 | |
| 	NULL,                   /* nb_inplace_lshift */
 | |
| 	NULL,                   /* nb_inplace_rshift */
 | |
| 	NULL,                   /* nb_inplace_and */
 | |
| 	NULL,                   /* nb_inplace_xor */
 | |
| 	NULL,                   /* nb_inplace_or */
 | |
| 	NULL,                   /* nb_floor_divide */
 | |
| 	NULL,                   /* nb_true_divide */
 | |
| 	NULL,                   /* nb_inplace_floor_divide */
 | |
| 	NULL,                   /* nb_inplace_true_divide */
 | |
| 	NULL,                   /* nb_index */
 | |
| };
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_translation_doc,
 | |
| "The translation component of the matrix.\n\n:type: Vector"
 | |
| );
 | |
| static PyObject *Matrix_translation_get(MatrixObject *self, void *UNUSED(closure))
 | |
| {
 | |
| 	PyObject *ret;
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*must be 4x4 square matrix*/
 | |
| 	if (self->num_row != 4 || self->num_col != 4) {
 | |
| 		PyErr_SetString(PyExc_AttributeError,
 | |
| 		                "Matrix.translation: "
 | |
| 		                "inappropriate matrix size, must be 4x4");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	ret = (PyObject *)Vector_CreatePyObject_cb((PyObject *)self, 3, mathutils_matrix_translation_cb_index, 3);
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static int Matrix_translation_set(MatrixObject *self, PyObject *value, void *UNUSED(closure))
 | |
| {
 | |
| 	float tvec[3];
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return -1;
 | |
| 
 | |
| 	/*must be 4x4 square matrix*/
 | |
| 	if (self->num_row != 4 || self->num_col != 4) {
 | |
| 		PyErr_SetString(PyExc_AttributeError,
 | |
| 		                "Matrix.translation: "
 | |
| 		                "inappropriate matrix size, must be 4x4");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if ((mathutils_array_parse(tvec, 3, 3, value, "Matrix.translation")) == -1) {
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	copy_v3_v3(((float (*)[4])self->matrix)[3], tvec);
 | |
| 
 | |
| 	(void)BaseMath_WriteCallback(self);
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_row_doc,
 | |
| "Access the matix by rows (default), (read-only).\n\n:type: Matrix Access"
 | |
| );
 | |
| static PyObject *Matrix_row_get(MatrixObject *self, void *UNUSED(closure))
 | |
| {
 | |
| 	return MatrixAccess_CreatePyObject(self, MAT_ACCESS_ROW);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_col_doc,
 | |
| "Access the matix by colums, 3x3 and 4x4 only, (read-only).\n\n:type: Matrix Access"
 | |
| );
 | |
| static PyObject *Matrix_col_get(MatrixObject *self, void *UNUSED(closure))
 | |
| {
 | |
| 	return MatrixAccess_CreatePyObject(self, MAT_ACCESS_COL);
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_median_scale_doc,
 | |
| "The average scale applied to each axis (read-only).\n\n:type: float"
 | |
| );
 | |
| static PyObject *Matrix_median_scale_get(MatrixObject *self, void *UNUSED(closure))
 | |
| {
 | |
| 	float mat[3][3];
 | |
| 
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if ((self->num_row < 3) || (self->num_col < 3)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError,
 | |
| 		                "Matrix.median_scale: "
 | |
| 		                "inappropriate matrix size, 3x3 minimum");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	matrix_as_3x3(mat, self);
 | |
| 
 | |
| 	return PyFloat_FromDouble(mat3_to_scale(mat));
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_is_negative_doc,
 | |
| "True if this matrix results in a negative scale, 3x3 and 4x4 only, (read-only).\n\n:type: bool"
 | |
| );
 | |
| static PyObject *Matrix_is_negative_get(MatrixObject *self, void *UNUSED(closure))
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if (self->num_row == 4 && self->num_col == 4)
 | |
| 		return PyBool_FromLong(is_negative_m4((float (*)[4])self->matrix));
 | |
| 	else if (self->num_row == 3 && self->num_col == 3)
 | |
| 		return PyBool_FromLong(is_negative_m3((float (*)[3])self->matrix));
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_AttributeError,
 | |
| 		                "Matrix.is_negative: "
 | |
| 		                "inappropriate matrix size - expects 3x3 or 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_is_orthogonal_doc,
 | |
| "True if this matrix is orthogonal, 3x3 and 4x4 only, (read-only).\n\n:type: bool"
 | |
| );
 | |
| static PyObject *Matrix_is_orthogonal_get(MatrixObject *self, void *UNUSED(closure))
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if (self->num_row == 4 && self->num_col == 4)
 | |
| 		return PyBool_FromLong(is_orthonormal_m4((float (*)[4])self->matrix));
 | |
| 	else if (self->num_row == 3 && self->num_col == 3)
 | |
| 		return PyBool_FromLong(is_orthonormal_m3((float (*)[3])self->matrix));
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_AttributeError,
 | |
| 		                "Matrix.is_orthogonal: "
 | |
| 		                "inappropriate matrix size - expects 3x3 or 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| PyDoc_STRVAR(Matrix_is_orthogonal_axis_vectors_doc,
 | |
| "True if this matrix has got orthogonal axis vectors, 3x3 and 4x4 only, (read-only).\n\n:type: bool"
 | |
| );
 | |
| static PyObject *Matrix_is_orthogonal_axis_vectors_get(MatrixObject *self, void *UNUSED(closure))
 | |
| {
 | |
| 	if (BaseMath_ReadCallback(self) == -1)
 | |
| 		return NULL;
 | |
| 
 | |
| 	/*must be 3-4 cols, 3-4 rows, square matrix*/
 | |
| 	if (self->num_row == 4 && self->num_col == 4)
 | |
| 		return PyBool_FromLong(is_orthogonal_m4((float (*)[4])self->matrix));
 | |
| 	else if (self->num_row == 3 && self->num_col == 3)
 | |
| 		return PyBool_FromLong(is_orthogonal_m3((float (*)[3])self->matrix));
 | |
| 	else {
 | |
| 		PyErr_SetString(PyExc_AttributeError,
 | |
| 		                "Matrix.is_orthogonal_axis_vectors: "
 | |
| 		                "inappropriate matrix size - expects 3x3 or 4x4 matrix");
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Python attributes get/set structure:                                      */
 | |
| /*****************************************************************************/
 | |
| static PyGetSetDef Matrix_getseters[] = {
 | |
| 	{(char *)"median_scale", (getter)Matrix_median_scale_get, (setter)NULL, Matrix_median_scale_doc, NULL},
 | |
| 	{(char *)"translation", (getter)Matrix_translation_get, (setter)Matrix_translation_set, Matrix_translation_doc, NULL},
 | |
| 	{(char *)"row", (getter)Matrix_row_get, (setter)NULL, Matrix_row_doc, NULL},
 | |
| 	{(char *)"col", (getter)Matrix_col_get, (setter)NULL, Matrix_col_doc, NULL},
 | |
| 	{(char *)"is_negative", (getter)Matrix_is_negative_get, (setter)NULL, Matrix_is_negative_doc, NULL},
 | |
| 	{(char *)"is_orthogonal", (getter)Matrix_is_orthogonal_get, (setter)NULL, Matrix_is_orthogonal_doc, NULL},
 | |
| 	{(char *)"is_orthogonal_axis_vectors", (getter)Matrix_is_orthogonal_axis_vectors_get, (setter)NULL, Matrix_is_orthogonal_axis_vectors_doc, NULL},
 | |
| 	{(char *)"is_wrapped", (getter)BaseMathObject_is_wrapped_get, (setter)NULL, BaseMathObject_is_wrapped_doc, NULL},
 | |
| 	{(char *)"owner", (getter)BaseMathObject_owner_get, (setter)NULL, BaseMathObject_owner_doc, NULL},
 | |
| 	{NULL, NULL, NULL, NULL, NULL}  /* Sentinel */
 | |
| };
 | |
| 
 | |
| /*-----------------------METHOD DEFINITIONS ----------------------*/
 | |
| static struct PyMethodDef Matrix_methods[] = {
 | |
| 	/* derived values */
 | |
| 	{"determinant", (PyCFunction) Matrix_determinant, METH_NOARGS, Matrix_determinant_doc},
 | |
| 	{"decompose", (PyCFunction) Matrix_decompose, METH_NOARGS, Matrix_decompose_doc},
 | |
| 
 | |
| 	/* in place only */
 | |
| 	{"zero", (PyCFunction) Matrix_zero, METH_NOARGS, Matrix_zero_doc},
 | |
| 	{"identity", (PyCFunction) Matrix_identity, METH_NOARGS, Matrix_identity_doc},
 | |
| 
 | |
| 	/* operate on original or copy */
 | |
| 	{"transpose", (PyCFunction) Matrix_transpose, METH_NOARGS, Matrix_transpose_doc},
 | |
| 	{"transposed", (PyCFunction) Matrix_transposed, METH_NOARGS, Matrix_transposed_doc},
 | |
| 	{"normalize", (PyCFunction) Matrix_normalize, METH_NOARGS, Matrix_normalize_doc},
 | |
| 	{"normalized", (PyCFunction) Matrix_normalized, METH_NOARGS, Matrix_normalized_doc},
 | |
| 	{"invert", (PyCFunction) Matrix_invert, METH_NOARGS, Matrix_invert_doc},
 | |
| 	{"inverted", (PyCFunction) Matrix_inverted, METH_NOARGS, Matrix_inverted_doc},
 | |
| 	{"adjugate", (PyCFunction) Matrix_adjugate, METH_NOARGS, Matrix_adjugate_doc},
 | |
| 	{"adjugated", (PyCFunction) Matrix_adjugated, METH_NOARGS, Matrix_adjugated_doc},
 | |
| 	{"to_3x3", (PyCFunction) Matrix_to_3x3, METH_NOARGS, Matrix_to_3x3_doc},
 | |
| 	/* TODO. {"resize_3x3", (PyCFunction) Matrix_resize3x3, METH_NOARGS, Matrix_resize3x3_doc}, */
 | |
| 	{"to_4x4", (PyCFunction) Matrix_to_4x4, METH_NOARGS, Matrix_to_4x4_doc},
 | |
| 	{"resize_4x4", (PyCFunction) Matrix_resize_4x4, METH_NOARGS, Matrix_resize_4x4_doc},
 | |
| 	{"rotate", (PyCFunction) Matrix_rotate, METH_O, Matrix_rotate_doc},
 | |
| 
 | |
| 	/* return converted representation */
 | |
| 	{"to_euler", (PyCFunction) Matrix_to_euler, METH_VARARGS, Matrix_to_euler_doc},
 | |
| 	{"to_quaternion", (PyCFunction) Matrix_to_quaternion, METH_NOARGS, Matrix_to_quaternion_doc},
 | |
| 	{"to_scale", (PyCFunction) Matrix_to_scale, METH_NOARGS, Matrix_to_scale_doc},
 | |
| 	{"to_translation", (PyCFunction) Matrix_to_translation, METH_NOARGS, Matrix_to_translation_doc},
 | |
| 
 | |
| 	/* operation between 2 or more types  */
 | |
| 	{"lerp", (PyCFunction) Matrix_lerp, METH_VARARGS, Matrix_lerp_doc},
 | |
| 	{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
 | |
| 	{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
 | |
| 	{"__deepcopy__", (PyCFunction) Matrix_deepcopy, METH_VARARGS, Matrix_copy_doc},
 | |
| 
 | |
| 	/* class methods */
 | |
| 	{"Identity", (PyCFunction) C_Matrix_Identity, METH_VARARGS | METH_CLASS, C_Matrix_Identity_doc},
 | |
| 	{"Rotation", (PyCFunction) C_Matrix_Rotation, METH_VARARGS | METH_CLASS, C_Matrix_Rotation_doc},
 | |
| 	{"Scale", (PyCFunction) C_Matrix_Scale, METH_VARARGS | METH_CLASS, C_Matrix_Scale_doc},
 | |
| 	{"Shear", (PyCFunction) C_Matrix_Shear, METH_VARARGS | METH_CLASS, C_Matrix_Shear_doc},
 | |
| 	{"Translation", (PyCFunction) C_Matrix_Translation, METH_O | METH_CLASS, C_Matrix_Translation_doc},
 | |
| 	{"OrthoProjection", (PyCFunction) C_Matrix_OrthoProjection,  METH_VARARGS | METH_CLASS, C_Matrix_OrthoProjection_doc},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| 
 | |
| /*------------------PY_OBECT DEFINITION--------------------------*/
 | |
| PyDoc_STRVAR(matrix_doc,
 | |
| "This object gives access to Matrices in Blender."
 | |
| );
 | |
| PyTypeObject matrix_Type = {
 | |
| 	PyVarObject_HEAD_INIT(NULL, 0)
 | |
| 	"Matrix",                           /*tp_name*/
 | |
| 	sizeof(MatrixObject),               /*tp_basicsize*/
 | |
| 	0,                                  /*tp_itemsize*/
 | |
| 	(destructor)BaseMathObject_dealloc, /*tp_dealloc*/
 | |
| 	NULL,                               /*tp_print*/
 | |
| 	NULL,                               /*tp_getattr*/
 | |
| 	NULL,                               /*tp_setattr*/
 | |
| 	NULL,                               /*tp_compare*/
 | |
| 	(reprfunc) Matrix_repr,             /*tp_repr*/
 | |
| 	&Matrix_NumMethods,                 /*tp_as_number*/
 | |
| 	&Matrix_SeqMethods,                 /*tp_as_sequence*/
 | |
| 	&Matrix_AsMapping,                  /*tp_as_mapping*/
 | |
| 	NULL,                               /*tp_hash*/
 | |
| 	NULL,                               /*tp_call*/
 | |
| #ifndef MATH_STANDALONE
 | |
| 	(reprfunc) Matrix_str,              /*tp_str*/
 | |
| #else
 | |
| 	NULL,                               /*tp_str*/
 | |
| #endif
 | |
| 	NULL,                               /*tp_getattro*/
 | |
| 	NULL,                               /*tp_setattro*/
 | |
| 	NULL,                               /*tp_as_buffer*/
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, /*tp_flags*/
 | |
| 	matrix_doc,                         /*tp_doc*/
 | |
| 	(traverseproc)BaseMathObject_traverse,  /* tp_traverse */
 | |
| 	(inquiry)BaseMathObject_clear,      /*tp_clear*/
 | |
| 	(richcmpfunc)Matrix_richcmpr,       /*tp_richcompare*/
 | |
| 	0,                                  /*tp_weaklistoffset*/
 | |
| 	NULL,                               /*tp_iter*/
 | |
| 	NULL,                               /*tp_iternext*/
 | |
| 	Matrix_methods,                     /*tp_methods*/
 | |
| 	NULL,                               /*tp_members*/
 | |
| 	Matrix_getseters,                   /*tp_getset*/
 | |
| 	NULL,                               /*tp_base*/
 | |
| 	NULL,                               /*tp_dict*/
 | |
| 	NULL,                               /*tp_descr_get*/
 | |
| 	NULL,                               /*tp_descr_set*/
 | |
| 	0,                                  /*tp_dictoffset*/
 | |
| 	NULL,                               /*tp_init*/
 | |
| 	NULL,                               /*tp_alloc*/
 | |
| 	Matrix_new,                         /*tp_new*/
 | |
| 	NULL,                               /*tp_free*/
 | |
| 	NULL,                               /*tp_is_gc*/
 | |
| 	NULL,                               /*tp_bases*/
 | |
| 	NULL,                               /*tp_mro*/
 | |
| 	NULL,                               /*tp_cache*/
 | |
| 	NULL,                               /*tp_subclasses*/
 | |
| 	NULL,                               /*tp_weaklist*/
 | |
| 	NULL                                /*tp_del*/
 | |
| };
 | |
| 
 | |
| /* pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | |
|  * (i.e. it was allocated elsewhere by MEM_mallocN())
 | |
|  * pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | |
|  * (i.e. it must be created here with PyMEM_malloc()) */
 | |
| PyObject *Matrix_CreatePyObject(float *mat,
 | |
|                                 const unsigned short num_col, const unsigned short num_row,
 | |
|                                 int type, PyTypeObject *base_type)
 | |
| {
 | |
| 	MatrixObject *self;
 | |
| 
 | |
| 	/* matrix objects can be any 2-4row x 2-4col matrix */
 | |
| 	if (num_col < 2 || num_col > 4 || num_row < 2 || num_row > 4) {
 | |
| 		PyErr_SetString(PyExc_RuntimeError,
 | |
| 		                "Matrix(): "
 | |
| 		                "row and column sizes must be between 2 and 4");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	self = base_type ? (MatrixObject *)base_type->tp_alloc(base_type, 0) :
 | |
| 	                   (MatrixObject *)PyObject_GC_New(MatrixObject, &matrix_Type);
 | |
| 
 | |
| 	if (self) {
 | |
| 		self->num_col = num_col;
 | |
| 		self->num_row = num_row;
 | |
| 
 | |
| 		/* init callbacks as NULL */
 | |
| 		self->cb_user = NULL;
 | |
| 		self->cb_type = self->cb_subtype = 0;
 | |
| 
 | |
| 		if (type == Py_WRAP) {
 | |
| 			self->matrix = mat;
 | |
| 			self->wrapped = Py_WRAP;
 | |
| 		}
 | |
| 		else if (type == Py_NEW) {
 | |
| 			self->matrix = PyMem_Malloc(num_col * num_row * sizeof(float));
 | |
| 			if (self->matrix == NULL) { /*allocation failure*/
 | |
| 				PyErr_SetString(PyExc_MemoryError,
 | |
| 				                "Matrix(): "
 | |
| 				                "problem allocating pointer space");
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 			if (mat) {  /*if a float array passed*/
 | |
| 				memcpy(self->matrix, mat, num_col * num_row * sizeof(float));
 | |
| 			}
 | |
| 			else if (num_col == num_row) {
 | |
| 				/* or if no arguments are passed return identity matrix for square matrices */
 | |
| 				PyObject *ret_dummy = Matrix_identity(self);
 | |
| 				Py_DECREF(ret_dummy);
 | |
| 			}
 | |
| 			else {
 | |
| 				/* otherwise zero everything */
 | |
| 				memset(self->matrix, 0, num_col * num_row * sizeof(float));
 | |
| 			}
 | |
| 			self->wrapped = Py_NEW;
 | |
| 		}
 | |
| 		else {
 | |
| 			Py_FatalError("Matrix(): invalid type!");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 | |
| 
 | |
| PyObject *Matrix_CreatePyObject_cb(PyObject *cb_user,
 | |
|                                    const unsigned short num_col, const unsigned short num_row,
 | |
|                                    unsigned char cb_type, unsigned char cb_subtype)
 | |
| {
 | |
| 	MatrixObject *self = (MatrixObject *)Matrix_CreatePyObject(NULL, num_col, num_row, Py_NEW, NULL);
 | |
| 	if (self) {
 | |
| 		Py_INCREF(cb_user);
 | |
| 		self->cb_user         = cb_user;
 | |
| 		self->cb_type         = cb_type;
 | |
| 		self->cb_subtype      = cb_subtype;
 | |
| 		PyObject_GC_Track(self);
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 | |
| 
 | |
| 
 | |
| /* ----------------------------------------------------------------------------
 | |
|  * special type for alternate access */
 | |
| 
 | |
| typedef struct {
 | |
| 	PyObject_HEAD /* required python macro   */
 | |
| 	MatrixObject *matrix_user;
 | |
| 	eMatrixAccess_t type;
 | |
| } MatrixAccessObject;
 | |
| 
 | |
| static int MatrixAccess_traverse(MatrixAccessObject *self, visitproc visit, void *arg)
 | |
| {
 | |
| 	Py_VISIT(self->matrix_user);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static int MatrixAccess_clear(MatrixAccessObject *self)
 | |
| {
 | |
| 	Py_CLEAR(self->matrix_user);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static void MatrixAccess_dealloc(MatrixAccessObject *self)
 | |
| {
 | |
| 	if (self->matrix_user) {
 | |
| 		PyObject_GC_UnTrack(self);
 | |
| 		MatrixAccess_clear(self);
 | |
| 	}
 | |
| 
 | |
| 	Py_TYPE(self)->tp_free(self);
 | |
| }
 | |
| 
 | |
| /* sequence access */
 | |
| 
 | |
| static int MatrixAccess_len(MatrixAccessObject *self)
 | |
| {
 | |
| 	return (self->type == MAT_ACCESS_ROW) ?
 | |
| 	       self->matrix_user->num_row :
 | |
| 	       self->matrix_user->num_col;
 | |
| }
 | |
| 
 | |
| static PyObject *MatrixAccess_slice(MatrixAccessObject *self, int begin, int end)
 | |
| {
 | |
| 	PyObject *tuple;
 | |
| 	int count;
 | |
| 
 | |
| 	/* row/col access */
 | |
| 	MatrixObject *matrix_user = self->matrix_user;
 | |
| 	int matrix_access_len;
 | |
| 	PyObject *(*Matrix_item_new)(MatrixObject *, int);
 | |
| 
 | |
| 	if (self->type == MAT_ACCESS_ROW) {
 | |
| 		matrix_access_len = matrix_user->num_row;
 | |
| 		Matrix_item_new = Matrix_item_row;
 | |
| 	}
 | |
| 	else { /* MAT_ACCESS_ROW */
 | |
| 		matrix_access_len = matrix_user->num_col;
 | |
| 		Matrix_item_new = Matrix_item_col;
 | |
| 	}
 | |
| 
 | |
| 	CLAMP(begin, 0, matrix_access_len);
 | |
| 	if (end < 0) end = (matrix_access_len + 1) + end;
 | |
| 	CLAMP(end, 0, matrix_access_len);
 | |
| 	begin = MIN2(begin, end);
 | |
| 
 | |
| 	tuple = PyTuple_New(end - begin);
 | |
| 	for (count = begin; count < end; count++) {
 | |
| 		PyTuple_SET_ITEM(tuple, count - begin, Matrix_item_new(matrix_user, count));
 | |
| 	}
 | |
| 
 | |
| 	return tuple;
 | |
| }
 | |
| 
 | |
| static PyObject *MatrixAccess_subscript(MatrixAccessObject *self, PyObject *item)
 | |
| {
 | |
| 	MatrixObject *matrix_user = self->matrix_user;
 | |
| 
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i;
 | |
| 		i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 		if (self->type == MAT_ACCESS_ROW) {
 | |
| 			if (i < 0)
 | |
| 				i += matrix_user->num_row;
 | |
| 			return Matrix_item_row(matrix_user, i);
 | |
| 		}
 | |
| 		else { /* MAT_ACCESS_ROW */
 | |
| 			if (i < 0)
 | |
| 				i += matrix_user->num_col;
 | |
| 			return Matrix_item_col(matrix_user, i);
 | |
| 		}
 | |
| 	}
 | |
| 	else if (PySlice_Check(item)) {
 | |
| 		Py_ssize_t start, stop, step, slicelength;
 | |
| 
 | |
| 		if (PySlice_GetIndicesEx(item, MatrixAccess_len(self), &start, &stop, &step, &slicelength) < 0)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (slicelength <= 0) {
 | |
| 			return PyTuple_New(0);
 | |
| 		}
 | |
| 		else if (step == 1) {
 | |
| 			return MatrixAccess_slice(self, start, stop);
 | |
| 		}
 | |
| 		else {
 | |
| 			PyErr_SetString(PyExc_IndexError,
 | |
| 			                "slice steps not supported with matrix accessors");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 		             "matrix indices must be integers, not %.200s",
 | |
| 		             Py_TYPE(item)->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static int MatrixAccess_ass_subscript(MatrixAccessObject *self, PyObject *item, PyObject *value)
 | |
| {
 | |
| 	MatrixObject *matrix_user = self->matrix_user;
 | |
| 
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return -1;
 | |
| 
 | |
| 		if (self->type == MAT_ACCESS_ROW) {
 | |
| 			if (i < 0)
 | |
| 				i += matrix_user->num_row;
 | |
| 			return Matrix_ass_item_row(matrix_user, i, value);
 | |
| 		}
 | |
| 		else { /* MAT_ACCESS_ROW */
 | |
| 			if (i < 0)
 | |
| 				i += matrix_user->num_col;
 | |
| 			return Matrix_ass_item_col(matrix_user, i, value);
 | |
| 		}
 | |
| 
 | |
| 	}
 | |
| 	/* TODO, slice */
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 		             "matrix indices must be integers, not %.200s",
 | |
| 		             Py_TYPE(item)->tp_name);
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| static PyObject *MatrixAccess_iter(MatrixAccessObject *self)
 | |
| {
 | |
| 	/* Try get values from a collection */
 | |
| 	PyObject *ret;
 | |
| 	PyObject *iter = NULL;
 | |
| 	ret = MatrixAccess_slice(self, 0, MATRIX_MAX_DIM);
 | |
| 
 | |
| 	/* we know this is a tuple so no need to PyIter_Check
 | |
| 	 * otherwise it could be NULL (unlikely) if conversion failed */
 | |
| 	if (ret) {
 | |
| 		iter = PyObject_GetIter(ret);
 | |
| 		Py_DECREF(ret);
 | |
| 	}
 | |
| 
 | |
| 	return iter;
 | |
| }
 | |
| 
 | |
| static PyMappingMethods MatrixAccess_AsMapping = {
 | |
| 	(lenfunc)MatrixAccess_len,
 | |
| 	(binaryfunc)MatrixAccess_subscript,
 | |
| 	(objobjargproc) MatrixAccess_ass_subscript
 | |
| };
 | |
| 
 | |
| PyTypeObject matrix_access_Type = {
 | |
| 	PyVarObject_HEAD_INIT(NULL, 0)
 | |
| 	"MatrixAccess",                     /*tp_name*/
 | |
| 	sizeof(MatrixAccessObject),         /*tp_basicsize*/
 | |
| 	0,                                  /*tp_itemsize*/
 | |
| 	(destructor)MatrixAccess_dealloc,   /*tp_dealloc*/
 | |
| 	NULL,                               /*tp_print*/
 | |
| 	NULL,                               /*tp_getattr*/
 | |
| 	NULL,                               /*tp_setattr*/
 | |
| 	NULL,                               /*tp_compare*/
 | |
| 	NULL,                               /*tp_repr*/
 | |
| 	NULL,                               /*tp_as_number*/
 | |
| 	NULL /*&MatrixAccess_SeqMethods*/ /* TODO */,           /*tp_as_sequence*/
 | |
| 	&MatrixAccess_AsMapping,            /*tp_as_mapping*/
 | |
| 	NULL,                               /*tp_hash*/
 | |
| 	NULL,                               /*tp_call*/
 | |
| 	NULL,                               /*tp_str*/
 | |
| 	NULL,                               /*tp_getattro*/
 | |
| 	NULL,                               /*tp_setattro*/
 | |
| 	NULL,                               /*tp_as_buffer*/
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_HAVE_GC, /*tp_flags*/
 | |
| 	NULL,                               /*tp_doc*/
 | |
| 	(traverseproc)MatrixAccess_traverse,/*tp_traverse*/
 | |
| 	(inquiry)MatrixAccess_clear,        /*tp_clear*/
 | |
| 	NULL /* (richcmpfunc)MatrixAccess_richcmpr */ /* TODO*/, /*tp_richcompare*/
 | |
| 	0,                                  /*tp_weaklistoffset*/
 | |
| 	(getiterfunc)MatrixAccess_iter, /* getiterfunc tp_iter; */
 | |
| };
 | |
| 
 | |
| static PyObject *MatrixAccess_CreatePyObject(MatrixObject *matrix, const eMatrixAccess_t type)
 | |
| {
 | |
| 	MatrixAccessObject *matrix_access = (MatrixAccessObject *)PyObject_GC_New(MatrixObject, &matrix_access_Type);
 | |
| 
 | |
| 	matrix_access->matrix_user = matrix;
 | |
| 	Py_INCREF(matrix);
 | |
| 
 | |
| 	matrix_access->type = type;
 | |
| 
 | |
| 	return (PyObject *)matrix_access;
 | |
| }
 | |
| 
 | |
| /* end special access
 | |
|  * -------------------------------------------------------------------------- */
 |