This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/cycles/blender/blender_python.cpp

840 lines
24 KiB
C++

/*
* Copyright 2011-2013 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <Python.h>
#include "blender/CCL_api.h"
#include "blender/blender_sync.h"
#include "blender/blender_session.h"
#include "util/util_debug.h"
#include "util/util_foreach.h"
#include "util/util_logging.h"
#include "util/util_md5.h"
#include "util/util_opengl.h"
#include "util/util_path.h"
#include "util/util_string.h"
#include "util/util_types.h"
#ifdef WITH_OSL
#include "render/osl.h"
#include <OSL/oslquery.h>
#include <OSL/oslconfig.h>
#endif
CCL_NAMESPACE_BEGIN
namespace {
/* Flag describing whether debug flags were synchronized from scene. */
bool debug_flags_set = false;
void *pylong_as_voidptr_typesafe(PyObject *object)
{
if(object == Py_None)
return NULL;
return PyLong_AsVoidPtr(object);
}
/* Synchronize debug flags from a given Blender scene.
* Return truth when device list needs invalidation.
*/
bool debug_flags_sync_from_scene(BL::Scene b_scene)
{
DebugFlagsRef flags = DebugFlags();
PointerRNA cscene = RNA_pointer_get(&b_scene.ptr, "cycles");
/* Backup some settings for comparison. */
DebugFlags::OpenCL::DeviceType opencl_device_type = flags.opencl.device_type;
DebugFlags::OpenCL::KernelType opencl_kernel_type = flags.opencl.kernel_type;
/* Synchronize shared flags. */
flags.viewport_static_bvh = get_enum(cscene, "debug_bvh_type");
/* Synchronize CPU flags. */
flags.cpu.avx2 = get_boolean(cscene, "debug_use_cpu_avx2");
flags.cpu.avx = get_boolean(cscene, "debug_use_cpu_avx");
flags.cpu.sse41 = get_boolean(cscene, "debug_use_cpu_sse41");
flags.cpu.sse3 = get_boolean(cscene, "debug_use_cpu_sse3");
flags.cpu.sse2 = get_boolean(cscene, "debug_use_cpu_sse2");
flags.cpu.bvh_layout = (BVHLayout)get_enum(cscene, "debug_bvh_layout");
flags.cpu.split_kernel = get_boolean(cscene, "debug_use_cpu_split_kernel");
/* Synchronize CUDA flags. */
flags.cuda.adaptive_compile = get_boolean(cscene, "debug_use_cuda_adaptive_compile");
flags.cuda.split_kernel = get_boolean(cscene, "debug_use_cuda_split_kernel");
/* Synchronize OpenCL kernel type. */
switch(get_enum(cscene, "debug_opencl_kernel_type")) {
case 0:
flags.opencl.kernel_type = DebugFlags::OpenCL::KERNEL_DEFAULT;
break;
case 1:
flags.opencl.kernel_type = DebugFlags::OpenCL::KERNEL_MEGA;
break;
case 2:
flags.opencl.kernel_type = DebugFlags::OpenCL::KERNEL_SPLIT;
break;
}
/* Synchronize OpenCL device type. */
switch(get_enum(cscene, "debug_opencl_device_type")) {
case 0:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_NONE;
break;
case 1:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_ALL;
break;
case 2:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_DEFAULT;
break;
case 3:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_CPU;
break;
case 4:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_GPU;
break;
case 5:
flags.opencl.device_type = DebugFlags::OpenCL::DEVICE_ACCELERATOR;
break;
}
/* Synchronize other OpenCL flags. */
flags.opencl.debug = get_boolean(cscene, "debug_use_opencl_debug");
flags.opencl.mem_limit = ((size_t)get_int(cscene, "debug_opencl_mem_limit"))*1024*1024;
flags.opencl.single_program = get_boolean(cscene, "debug_opencl_kernel_single_program");
return flags.opencl.device_type != opencl_device_type ||
flags.opencl.kernel_type != opencl_kernel_type;
}
/* Reset debug flags to default values.
* Return truth when device list needs invalidation.
*/
bool debug_flags_reset()
{
DebugFlagsRef flags = DebugFlags();
/* Backup some settings for comparison. */
DebugFlags::OpenCL::DeviceType opencl_device_type = flags.opencl.device_type;
DebugFlags::OpenCL::KernelType opencl_kernel_type = flags.opencl.kernel_type;
flags.reset();
return flags.opencl.device_type != opencl_device_type ||
flags.opencl.kernel_type != opencl_kernel_type;
}
} /* namespace */
void python_thread_state_save(void **python_thread_state)
{
*python_thread_state = (void*)PyEval_SaveThread();
}
void python_thread_state_restore(void **python_thread_state)
{
PyEval_RestoreThread((PyThreadState*)*python_thread_state);
*python_thread_state = NULL;
}
static const char *PyC_UnicodeAsByte(PyObject *py_str, PyObject **coerce)
{
const char *result = _PyUnicode_AsString(py_str);
if(result) {
/* 99% of the time this is enough but we better support non unicode
* chars since blender doesnt limit this.
*/
return result;
}
else {
PyErr_Clear();
if(PyBytes_Check(py_str)) {
return PyBytes_AS_STRING(py_str);
}
else if((*coerce = PyUnicode_EncodeFSDefault(py_str))) {
return PyBytes_AS_STRING(*coerce);
}
else {
/* Clear the error, so Cycles can be at leadt used without
* GPU and OSL support,
*/
PyErr_Clear();
return "";
}
}
}
static PyObject *init_func(PyObject * /*self*/, PyObject *args)
{
PyObject *path, *user_path;
int headless;
if(!PyArg_ParseTuple(args, "OOi", &path, &user_path, &headless)) {
return NULL;
}
PyObject *path_coerce = NULL, *user_path_coerce = NULL;
path_init(PyC_UnicodeAsByte(path, &path_coerce),
PyC_UnicodeAsByte(user_path, &user_path_coerce));
Py_XDECREF(path_coerce);
Py_XDECREF(user_path_coerce);
BlenderSession::headless = headless;
VLOG(2) << "Debug flags initialized to:\n"
<< DebugFlags();
Py_RETURN_NONE;
}
static PyObject *exit_func(PyObject * /*self*/, PyObject * /*args*/)
{
ShaderManager::free_memory();
TaskScheduler::free_memory();
Device::free_memory();
Py_RETURN_NONE;
}
static PyObject *create_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pyengine, *pyuserpref, *pydata, *pyscene, *pyregion, *pyv3d, *pyrv3d;
int preview_osl;
if(!PyArg_ParseTuple(args, "OOOOOOOi", &pyengine, &pyuserpref, &pydata, &pyscene,
&pyregion, &pyv3d, &pyrv3d, &preview_osl))
{
return NULL;
}
/* RNA */
PointerRNA engineptr;
RNA_pointer_create(NULL, &RNA_RenderEngine, (void*)PyLong_AsVoidPtr(pyengine), &engineptr);
BL::RenderEngine engine(engineptr);
PointerRNA userprefptr;
RNA_pointer_create(NULL, &RNA_UserPreferences, (void*)PyLong_AsVoidPtr(pyuserpref), &userprefptr);
BL::UserPreferences userpref(userprefptr);
PointerRNA dataptr;
RNA_main_pointer_create((Main*)PyLong_AsVoidPtr(pydata), &dataptr);
BL::BlendData data(dataptr);
PointerRNA sceneptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyscene), &sceneptr);
BL::Scene scene(sceneptr);
PointerRNA regionptr;
RNA_pointer_create(NULL, &RNA_Region, pylong_as_voidptr_typesafe(pyregion), &regionptr);
BL::Region region(regionptr);
PointerRNA v3dptr;
RNA_pointer_create(NULL, &RNA_SpaceView3D, pylong_as_voidptr_typesafe(pyv3d), &v3dptr);
BL::SpaceView3D v3d(v3dptr);
PointerRNA rv3dptr;
RNA_pointer_create(NULL, &RNA_RegionView3D, pylong_as_voidptr_typesafe(pyrv3d), &rv3dptr);
BL::RegionView3D rv3d(rv3dptr);
/* create session */
BlenderSession *session;
if(rv3d) {
/* interactive viewport session */
int width = region.width();
int height = region.height();
session = new BlenderSession(engine, userpref, data, scene, v3d, rv3d, width, height);
}
else {
/* override some settings for preview */
if(engine.is_preview()) {
PointerRNA cscene = RNA_pointer_get(&sceneptr, "cycles");
RNA_boolean_set(&cscene, "shading_system", preview_osl);
RNA_boolean_set(&cscene, "use_progressive_refine", true);
}
/* offline session or preview render */
session = new BlenderSession(engine, userpref, data, scene);
}
python_thread_state_save(&session->python_thread_state);
session->create();
python_thread_state_restore(&session->python_thread_state);
return PyLong_FromVoidPtr(session);
}
static PyObject *free_func(PyObject * /*self*/, PyObject *value)
{
delete (BlenderSession*)PyLong_AsVoidPtr(value);
Py_RETURN_NONE;
}
static PyObject *render_func(PyObject * /*self*/, PyObject *value)
{
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(value);
python_thread_state_save(&session->python_thread_state);
session->render();
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
/* pixel_array and result passed as pointers */
static PyObject *bake_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pysession, *pyobject;
PyObject *pypixel_array, *pyresult;
const char *pass_type;
int num_pixels, depth, object_id, pass_filter;
if(!PyArg_ParseTuple(args, "OOsiiOiiO", &pysession, &pyobject, &pass_type, &pass_filter, &object_id, &pypixel_array, &num_pixels, &depth, &pyresult))
return NULL;
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(pysession);
PointerRNA objectptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyobject), &objectptr);
BL::Object b_object(objectptr);
void *b_result = PyLong_AsVoidPtr(pyresult);
PointerRNA bakepixelptr;
RNA_pointer_create(NULL, &RNA_BakePixel, PyLong_AsVoidPtr(pypixel_array), &bakepixelptr);
BL::BakePixel b_bake_pixel(bakepixelptr);
python_thread_state_save(&session->python_thread_state);
session->bake(b_object, pass_type, pass_filter, object_id, b_bake_pixel, (size_t)num_pixels, depth, (float *)b_result);
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
static PyObject *draw_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pysession, *pyv3d, *pyrv3d;
if(!PyArg_ParseTuple(args, "OOO", &pysession, &pyv3d, &pyrv3d))
return NULL;
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(pysession);
if(PyLong_AsVoidPtr(pyrv3d)) {
/* 3d view drawing */
int viewport[4];
glGetIntegerv(GL_VIEWPORT, viewport);
session->draw(viewport[2], viewport[3]);
}
Py_RETURN_NONE;
}
static PyObject *reset_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pysession, *pydata, *pyscene;
if(!PyArg_ParseTuple(args, "OOO", &pysession, &pydata, &pyscene))
return NULL;
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(pysession);
PointerRNA dataptr;
RNA_main_pointer_create((Main*)PyLong_AsVoidPtr(pydata), &dataptr);
BL::BlendData b_data(dataptr);
PointerRNA sceneptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyscene), &sceneptr);
BL::Scene b_scene(sceneptr);
python_thread_state_save(&session->python_thread_state);
session->reset_session(b_data, b_scene);
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
static PyObject *sync_func(PyObject * /*self*/, PyObject *value)
{
BlenderSession *session = (BlenderSession*)PyLong_AsVoidPtr(value);
python_thread_state_save(&session->python_thread_state);
session->synchronize();
python_thread_state_restore(&session->python_thread_state);
Py_RETURN_NONE;
}
static PyObject *available_devices_func(PyObject * /*self*/, PyObject * /*args*/)
{
vector<DeviceInfo>& devices = Device::available_devices();
PyObject *ret = PyTuple_New(devices.size());
for(size_t i = 0; i < devices.size(); i++) {
DeviceInfo& device = devices[i];
string type_name = Device::string_from_type(device.type);
PyObject *device_tuple = PyTuple_New(3);
PyTuple_SET_ITEM(device_tuple, 0, PyUnicode_FromString(device.description.c_str()));
PyTuple_SET_ITEM(device_tuple, 1, PyUnicode_FromString(type_name.c_str()));
PyTuple_SET_ITEM(device_tuple, 2, PyUnicode_FromString(device.id.c_str()));
PyTuple_SET_ITEM(ret, i, device_tuple);
}
return ret;
}
#ifdef WITH_OSL
static PyObject *osl_update_node_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pydata, *pynodegroup, *pynode;
const char *filepath = NULL;
if(!PyArg_ParseTuple(args, "OOOs", &pydata, &pynodegroup, &pynode, &filepath))
return NULL;
/* RNA */
PointerRNA dataptr;
RNA_main_pointer_create((Main*)PyLong_AsVoidPtr(pydata), &dataptr);
BL::BlendData b_data(dataptr);
PointerRNA nodeptr;
RNA_pointer_create((ID*)PyLong_AsVoidPtr(pynodegroup), &RNA_ShaderNodeScript, (void*)PyLong_AsVoidPtr(pynode), &nodeptr);
BL::ShaderNodeScript b_node(nodeptr);
/* update bytecode hash */
string bytecode = b_node.bytecode();
if(!bytecode.empty()) {
MD5Hash md5;
md5.append((const uint8_t*)bytecode.c_str(), bytecode.size());
b_node.bytecode_hash(md5.get_hex().c_str());
}
else
b_node.bytecode_hash("");
/* query from file path */
OSL::OSLQuery query;
if(!OSLShaderManager::osl_query(query, filepath))
Py_RETURN_FALSE;
/* add new sockets from parameters */
set<void*> used_sockets;
for(int i = 0; i < query.nparams(); i++) {
const OSL::OSLQuery::Parameter *param = query.getparam(i);
/* skip unsupported types */
if(param->varlenarray || param->isstruct || param->type.arraylen > 1)
continue;
/* determine socket type */
string socket_type;
BL::NodeSocket::type_enum data_type = BL::NodeSocket::type_VALUE;
float4 default_float4 = make_float4(0.0f, 0.0f, 0.0f, 1.0f);
float default_float = 0.0f;
int default_int = 0;
string default_string = "";
if(param->isclosure) {
socket_type = "NodeSocketShader";
data_type = BL::NodeSocket::type_SHADER;
}
else if(param->type.vecsemantics == TypeDesc::COLOR) {
socket_type = "NodeSocketColor";
data_type = BL::NodeSocket::type_RGBA;
if(param->validdefault) {
default_float4[0] = param->fdefault[0];
default_float4[1] = param->fdefault[1];
default_float4[2] = param->fdefault[2];
}
}
else if(param->type.vecsemantics == TypeDesc::POINT ||
param->type.vecsemantics == TypeDesc::VECTOR ||
param->type.vecsemantics == TypeDesc::NORMAL)
{
socket_type = "NodeSocketVector";
data_type = BL::NodeSocket::type_VECTOR;
if(param->validdefault) {
default_float4[0] = param->fdefault[0];
default_float4[1] = param->fdefault[1];
default_float4[2] = param->fdefault[2];
}
}
else if(param->type.aggregate == TypeDesc::SCALAR) {
if(param->type.basetype == TypeDesc::INT) {
socket_type = "NodeSocketInt";
data_type = BL::NodeSocket::type_INT;
if(param->validdefault)
default_int = param->idefault[0];
}
else if(param->type.basetype == TypeDesc::FLOAT) {
socket_type = "NodeSocketFloat";
data_type = BL::NodeSocket::type_VALUE;
if(param->validdefault)
default_float = param->fdefault[0];
}
else if(param->type.basetype == TypeDesc::STRING) {
socket_type = "NodeSocketString";
data_type = BL::NodeSocket::type_STRING;
if(param->validdefault)
default_string = param->sdefault[0];
}
else
continue;
}
else
continue;
/* find socket socket */
BL::NodeSocket b_sock(PointerRNA_NULL);
if(param->isoutput) {
b_sock = b_node.outputs[param->name.string()];
/* remove if type no longer matches */
if(b_sock && b_sock.bl_idname() != socket_type) {
b_node.outputs.remove(b_data, b_sock);
b_sock = BL::NodeSocket(PointerRNA_NULL);
}
}
else {
b_sock = b_node.inputs[param->name.string()];
/* remove if type no longer matches */
if(b_sock && b_sock.bl_idname() != socket_type) {
b_node.inputs.remove(b_data, b_sock);
b_sock = BL::NodeSocket(PointerRNA_NULL);
}
}
if(!b_sock) {
/* create new socket */
if(param->isoutput)
b_sock = b_node.outputs.create(b_data, socket_type.c_str(), param->name.c_str(), param->name.c_str());
else
b_sock = b_node.inputs.create(b_data, socket_type.c_str(), param->name.c_str(), param->name.c_str());
/* set default value */
if(data_type == BL::NodeSocket::type_VALUE) {
set_float(b_sock.ptr, "default_value", default_float);
}
else if(data_type == BL::NodeSocket::type_INT) {
set_int(b_sock.ptr, "default_value", default_int);
}
else if(data_type == BL::NodeSocket::type_RGBA) {
set_float4(b_sock.ptr, "default_value", default_float4);
}
else if(data_type == BL::NodeSocket::type_VECTOR) {
set_float3(b_sock.ptr, "default_value", float4_to_float3(default_float4));
}
else if(data_type == BL::NodeSocket::type_STRING) {
set_string(b_sock.ptr, "default_value", default_string);
}
}
used_sockets.insert(b_sock.ptr.data);
}
/* remove unused parameters */
bool removed;
do {
BL::Node::inputs_iterator b_input;
BL::Node::outputs_iterator b_output;
removed = false;
for(b_node.inputs.begin(b_input); b_input != b_node.inputs.end(); ++b_input) {
if(used_sockets.find(b_input->ptr.data) == used_sockets.end()) {
b_node.inputs.remove(b_data, *b_input);
removed = true;
break;
}
}
for(b_node.outputs.begin(b_output); b_output != b_node.outputs.end(); ++b_output) {
if(used_sockets.find(b_output->ptr.data) == used_sockets.end()) {
b_node.outputs.remove(b_data, *b_output);
removed = true;
break;
}
}
} while(removed);
Py_RETURN_TRUE;
}
static PyObject *osl_compile_func(PyObject * /*self*/, PyObject *args)
{
const char *inputfile = NULL, *outputfile = NULL;
if(!PyArg_ParseTuple(args, "ss", &inputfile, &outputfile))
return NULL;
/* return */
if(!OSLShaderManager::osl_compile(inputfile, outputfile))
Py_RETURN_FALSE;
Py_RETURN_TRUE;
}
#endif
static PyObject *system_info_func(PyObject * /*self*/, PyObject * /*value*/)
{
string system_info = Device::device_capabilities();
return PyUnicode_FromString(system_info.c_str());
}
#ifdef WITH_OPENCL
static PyObject *opencl_disable_func(PyObject * /*self*/, PyObject * /*value*/)
{
VLOG(2) << "Disabling OpenCL platform.";
DebugFlags().opencl.device_type = DebugFlags::OpenCL::DEVICE_NONE;
Py_RETURN_NONE;
}
#endif
static PyObject *debug_flags_update_func(PyObject * /*self*/, PyObject *args)
{
PyObject *pyscene;
if(!PyArg_ParseTuple(args, "O", &pyscene)) {
return NULL;
}
PointerRNA sceneptr;
RNA_id_pointer_create((ID*)PyLong_AsVoidPtr(pyscene), &sceneptr);
BL::Scene b_scene(sceneptr);
if(debug_flags_sync_from_scene(b_scene)) {
VLOG(2) << "Tagging device list for update.";
Device::tag_update();
}
VLOG(2) << "Debug flags set to:\n"
<< DebugFlags();
debug_flags_set = true;
Py_RETURN_NONE;
}
static PyObject *debug_flags_reset_func(PyObject * /*self*/, PyObject * /*args*/)
{
if(debug_flags_reset()) {
VLOG(2) << "Tagging device list for update.";
Device::tag_update();
}
if(debug_flags_set) {
VLOG(2) << "Debug flags reset to:\n"
<< DebugFlags();
debug_flags_set = false;
}
Py_RETURN_NONE;
}
static PyObject *set_resumable_chunk_func(PyObject * /*self*/, PyObject *args)
{
int num_resumable_chunks, current_resumable_chunk;
if(!PyArg_ParseTuple(args, "ii",
&num_resumable_chunks,
&current_resumable_chunk)) {
Py_RETURN_NONE;
}
if(num_resumable_chunks <= 0) {
fprintf(stderr, "Cycles: Bad value for number of resumable chunks.\n");
abort();
Py_RETURN_NONE;
}
if(current_resumable_chunk < 1 ||
current_resumable_chunk > num_resumable_chunks)
{
fprintf(stderr, "Cycles: Bad value for current resumable chunk number.\n");
abort();
Py_RETURN_NONE;
}
VLOG(1) << "Initialized resumable render: "
<< "num_resumable_chunks=" << num_resumable_chunks << ", "
<< "current_resumable_chunk=" << current_resumable_chunk;
BlenderSession::num_resumable_chunks = num_resumable_chunks;
BlenderSession::current_resumable_chunk = current_resumable_chunk;
printf("Cycles: Will render chunk %d of %d\n",
current_resumable_chunk,
num_resumable_chunks);
Py_RETURN_NONE;
}
static PyObject *set_resumable_chunk_range_func(PyObject * /*self*/, PyObject *args)
{
int num_chunks, start_chunk, end_chunk;
if(!PyArg_ParseTuple(args, "iii",
&num_chunks,
&start_chunk,
&end_chunk)) {
Py_RETURN_NONE;
}
if(num_chunks <= 0) {
fprintf(stderr, "Cycles: Bad value for number of resumable chunks.\n");
abort();
Py_RETURN_NONE;
}
if(start_chunk < 1 || start_chunk > num_chunks) {
fprintf(stderr, "Cycles: Bad value for start chunk number.\n");
abort();
Py_RETURN_NONE;
}
if(end_chunk < 1 || end_chunk > num_chunks) {
fprintf(stderr, "Cycles: Bad value for start chunk number.\n");
abort();
Py_RETURN_NONE;
}
if(start_chunk > end_chunk) {
fprintf(stderr, "Cycles: End chunk should be higher than start one.\n");
abort();
Py_RETURN_NONE;
}
VLOG(1) << "Initialized resumable render: "
<< "num_resumable_chunks=" << num_chunks << ", "
<< "start_resumable_chunk=" << start_chunk
<< "end_resumable_chunk=" << end_chunk;
BlenderSession::num_resumable_chunks = num_chunks;
BlenderSession::start_resumable_chunk = start_chunk;
BlenderSession::end_resumable_chunk = end_chunk;
printf("Cycles: Will render chunks %d to %d of %d\n",
start_chunk,
end_chunk,
num_chunks);
Py_RETURN_NONE;
}
static PyObject *get_device_types_func(PyObject * /*self*/, PyObject * /*args*/)
{
vector<DeviceInfo>& devices = Device::available_devices();
bool has_cuda = false, has_opencl = false;
for(int i = 0; i < devices.size(); i++) {
has_cuda |= (devices[i].type == DEVICE_CUDA);
has_opencl |= (devices[i].type == DEVICE_OPENCL);
}
PyObject *list = PyTuple_New(2);
PyTuple_SET_ITEM(list, 0, PyBool_FromLong(has_cuda));
PyTuple_SET_ITEM(list, 1, PyBool_FromLong(has_opencl));
return list;
}
static PyMethodDef methods[] = {
{"init", init_func, METH_VARARGS, ""},
{"exit", exit_func, METH_VARARGS, ""},
{"create", create_func, METH_VARARGS, ""},
{"free", free_func, METH_O, ""},
{"render", render_func, METH_O, ""},
{"bake", bake_func, METH_VARARGS, ""},
{"draw", draw_func, METH_VARARGS, ""},
{"sync", sync_func, METH_O, ""},
{"reset", reset_func, METH_VARARGS, ""},
#ifdef WITH_OSL
{"osl_update_node", osl_update_node_func, METH_VARARGS, ""},
{"osl_compile", osl_compile_func, METH_VARARGS, ""},
#endif
{"available_devices", available_devices_func, METH_NOARGS, ""},
{"system_info", system_info_func, METH_NOARGS, ""},
#ifdef WITH_OPENCL
{"opencl_disable", opencl_disable_func, METH_NOARGS, ""},
#endif
/* Debugging routines */
{"debug_flags_update", debug_flags_update_func, METH_VARARGS, ""},
{"debug_flags_reset", debug_flags_reset_func, METH_NOARGS, ""},
/* Resumable render */
{"set_resumable_chunk", set_resumable_chunk_func, METH_VARARGS, ""},
{"set_resumable_chunk_range", set_resumable_chunk_range_func, METH_VARARGS, ""},
/* Compute Device selection */
{"get_device_types", get_device_types_func, METH_VARARGS, ""},
{NULL, NULL, 0, NULL},
};
static struct PyModuleDef module = {
PyModuleDef_HEAD_INIT,
"_cycles",
"Blender cycles render integration",
-1,
methods,
NULL, NULL, NULL, NULL
};
CCL_NAMESPACE_END
void *CCL_python_module_init()
{
PyObject *mod = PyModule_Create(&ccl::module);
#ifdef WITH_OSL
/* TODO(sergey): This gives us library we've been linking against.
* In theory with dynamic OSL library it might not be
* accurate, but there's nothing in OSL API which we
* might use to get version in runtime.
*/
int curversion = OSL_LIBRARY_VERSION_CODE;
PyModule_AddObject(mod, "with_osl", Py_True);
Py_INCREF(Py_True);
PyModule_AddObject(mod, "osl_version",
Py_BuildValue("(iii)",
curversion / 10000, (curversion / 100) % 100, curversion % 100));
PyModule_AddObject(mod, "osl_version_string",
PyUnicode_FromFormat("%2d, %2d, %2d",
curversion / 10000, (curversion / 100) % 100, curversion % 100));
#else
PyModule_AddObject(mod, "with_osl", Py_False);
Py_INCREF(Py_False);
PyModule_AddStringConstant(mod, "osl_version", "unknown");
PyModule_AddStringConstant(mod, "osl_version_string", "unknown");
#endif
#ifdef WITH_CYCLES_DEBUG
PyModule_AddObject(mod, "with_cycles_debug", Py_True);
Py_INCREF(Py_True);
#else
PyModule_AddObject(mod, "with_cycles_debug", Py_False);
Py_INCREF(Py_False);
#endif
#ifdef WITH_NETWORK
PyModule_AddObject(mod, "with_network", Py_True);
Py_INCREF(Py_True);
#else /* WITH_NETWORK */
PyModule_AddObject(mod, "with_network", Py_False);
Py_INCREF(Py_False);
#endif /* WITH_NETWORK */
return (void*)mod;
}