Apply clang format as proposed in T53211. For details on usage and instructions for migrating branches without conflicts, see: https://wiki.blender.org/wiki/Tools/ClangFormat
235 lines
7.3 KiB
C++
235 lines
7.3 KiB
C++
// Adopted from OpenSubdiv with the following license:
|
|
//
|
|
// Copyright 2015 Pixar
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "Apache License")
|
|
// with the following modification; you may not use this file except in
|
|
// compliance with the Apache License and the following modification to it:
|
|
// Section 6. Trademarks. is deleted and replaced with:
|
|
//
|
|
// 6. Trademarks. This License does not grant permission to use the trade
|
|
// names, trademarks, service marks, or product names of the Licensor
|
|
// and its affiliates, except as required to comply with Section 4(c) of
|
|
// the License and to reproduce the content of the NOTICE file.
|
|
//
|
|
// You may obtain a copy of the Apache License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the Apache License with the above modification is
|
|
// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
|
|
// KIND, either express or implied. See the Apache License for the specific
|
|
// language governing permissions and limitations under the Apache License.
|
|
|
|
#ifdef OPENSUBDIV_HAS_CUDA
|
|
|
|
# ifdef _MSC_VER
|
|
# include <iso646.h>
|
|
# endif
|
|
|
|
# include "opensubdiv_device_context_cuda.h"
|
|
|
|
# if defined(_WIN32)
|
|
# include <windows.h>
|
|
# elif defined(__APPLE__)
|
|
# include <OpenGL/OpenGL.h>
|
|
# else
|
|
# include <GL/glx.h>
|
|
# include <X11/Xlib.h>
|
|
# endif
|
|
|
|
# include <cuda.h>
|
|
# include <cuda_gl_interop.h>
|
|
# include <cuda_runtime_api.h>
|
|
# include <cstdio>
|
|
|
|
# include "internal/opensubdiv_util.h"
|
|
|
|
# define message(fmt, ...)
|
|
// #define message(fmt, ...) fprintf(stderr, fmt, __VA_ARGS__)
|
|
# define error(fmt, ...) fprintf(stderr, fmt, __VA_ARGS__)
|
|
|
|
namespace {
|
|
|
|
int getCudaDeviceForCurrentGLContext()
|
|
{
|
|
// Find and use the CUDA device for the current GL context
|
|
unsigned int interop_device_count = 0;
|
|
int interopDevices[1];
|
|
cudaError_t status = cudaGLGetDevices(
|
|
&interop_device_count, interopDevices, 1, cudaGLDeviceListCurrentFrame);
|
|
if (status == cudaErrorNoDevice || interop_device_count != 1) {
|
|
message("CUDA no interop devices found.\n");
|
|
return 0;
|
|
}
|
|
int device = interopDevices[0];
|
|
# if defined(_WIN32)
|
|
return device;
|
|
# elif defined(__APPLE__)
|
|
return device;
|
|
# else // X11
|
|
Display *display = glXGetCurrentDisplay();
|
|
int screen = DefaultScreen(display);
|
|
if (device != screen) {
|
|
error(
|
|
"The CUDA interop device (%d) does not match "
|
|
"the screen used by the current GL context (%d), "
|
|
"which may cause slow performance on systems "
|
|
"with multiple GPU devices.",
|
|
device,
|
|
screen);
|
|
}
|
|
message("CUDA init using device for current GL context: %d\n", device);
|
|
return device;
|
|
# endif
|
|
}
|
|
|
|
// Beginning of GPU Architecture definitions.
|
|
int convertSMVer2Cores_local(int major, int minor)
|
|
{
|
|
// Defines for GPU Architecture types (using the SM version to determine
|
|
// the # of cores per SM
|
|
typedef struct {
|
|
int SM; // 0xMm (hexidecimal notation),
|
|
// M = SM Major version,
|
|
// and m = SM minor version
|
|
int Cores;
|
|
} sSMtoCores;
|
|
|
|
sSMtoCores nGpuArchCoresPerSM[] = {{0x10, 8}, // Tesla Generation (SM 1.0) G80 class.
|
|
{0x11, 8}, // Tesla Generation (SM 1.1) G8x class.
|
|
{0x12, 8}, // Tesla Generation (SM 1.2) G9x class.
|
|
{0x13, 8}, // Tesla Generation (SM 1.3) GT200 class.
|
|
{0x20, 32}, // Fermi Generation (SM 2.0) GF100 class.
|
|
{0x21, 48}, // Fermi Generation (SM 2.1) GF10x class.
|
|
{0x30, 192}, // Fermi Generation (SM 3.0) GK10x class.
|
|
{-1, -1}};
|
|
int index = 0;
|
|
while (nGpuArchCoresPerSM[index].SM != -1) {
|
|
if (nGpuArchCoresPerSM[index].SM == ((major << 4) + minor)) {
|
|
return nGpuArchCoresPerSM[index].Cores;
|
|
}
|
|
index++;
|
|
}
|
|
printf("MapSMtoCores undefined SMversion %d.%d!\n", major, minor);
|
|
return -1;
|
|
}
|
|
|
|
// This function returns the best GPU (with maximum GFLOPS).
|
|
int cutGetMaxGflopsDeviceId()
|
|
{
|
|
int current_device = 0, sm_per_multiproc = 0;
|
|
int max_compute_perf = 0, max_perf_device = -1;
|
|
int device_count = 0, best_SM_arch = 0;
|
|
int compat_major, compat_minor;
|
|
cuDeviceGetCount(&device_count);
|
|
// Find the best major SM Architecture GPU device.
|
|
while (current_device < device_count) {
|
|
cuDeviceComputeCapability(&compat_major, &compat_minor, current_device);
|
|
if (compat_major > 0 && compat_major < 9999) {
|
|
best_SM_arch = max(best_SM_arch, compat_major);
|
|
}
|
|
current_device++;
|
|
}
|
|
// Find the best CUDA capable GPU device.
|
|
current_device = 0;
|
|
while (current_device < device_count) {
|
|
cuDeviceComputeCapability(&compat_major, &compat_minor, current_device);
|
|
if (compat_major == 9999 && compat_minor == 9999) {
|
|
sm_per_multiproc = 1;
|
|
}
|
|
else {
|
|
sm_per_multiproc = convertSMVer2Cores_local(compat_major, compat_minor);
|
|
}
|
|
int multi_processor_count;
|
|
cuDeviceGetAttribute(
|
|
&multi_processor_count, CU_DEVICE_ATTRIBUTE_MULTIPROCESSOR_COUNT, current_device);
|
|
int clock_rate;
|
|
cuDeviceGetAttribute(&clock_rate, CU_DEVICE_ATTRIBUTE_CLOCK_RATE, current_device);
|
|
int compute_perf = multi_processor_count * sm_per_multiproc * clock_rate;
|
|
if (compute_perf > max_compute_perf) {
|
|
/* If we find GPU with SM major > 2, search only these */
|
|
if (best_SM_arch > 2) {
|
|
/* If our device==dest_SM_arch, choose this, or else pass. */
|
|
if (compat_major == best_SM_arch) {
|
|
max_compute_perf = compute_perf;
|
|
max_perf_device = current_device;
|
|
}
|
|
}
|
|
else {
|
|
max_compute_perf = compute_perf;
|
|
max_perf_device = current_device;
|
|
}
|
|
}
|
|
++current_device;
|
|
}
|
|
return max_perf_device;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
bool CudaDeviceContext::HAS_CUDA_VERSION_4_0()
|
|
{
|
|
# ifdef OPENSUBDIV_HAS_CUDA
|
|
static bool cuda_initialized = false;
|
|
static bool cuda_load_success = true;
|
|
if (!cuda_initialized) {
|
|
cuda_initialized = true;
|
|
|
|
# ifdef OPENSUBDIV_HAS_CUEW
|
|
cuda_load_success = cuewInit(CUEW_INIT_CUDA) == CUEW_SUCCESS;
|
|
if (!cuda_load_success) {
|
|
fprintf(stderr, "Loading CUDA failed.\n");
|
|
}
|
|
# endif
|
|
// Need to initialize CUDA here so getting device
|
|
// with the maximum FPLOS works fine.
|
|
if (cuInit(0) == CUDA_SUCCESS) {
|
|
// This is to deal with cases like NVidia Optimus,
|
|
// when there might be CUDA library installed but
|
|
// NVidia card is not being active.
|
|
if (cutGetMaxGflopsDeviceId() < 0) {
|
|
cuda_load_success = false;
|
|
}
|
|
}
|
|
else {
|
|
cuda_load_success = false;
|
|
}
|
|
}
|
|
return cuda_load_success;
|
|
# else
|
|
return false;
|
|
# endif
|
|
}
|
|
|
|
CudaDeviceContext::CudaDeviceContext() : initialized_(false)
|
|
{
|
|
}
|
|
|
|
CudaDeviceContext::~CudaDeviceContext()
|
|
{
|
|
cudaDeviceReset();
|
|
}
|
|
|
|
bool CudaDeviceContext::Initialize()
|
|
{
|
|
// See if any cuda device is available.
|
|
int device_count = 0;
|
|
cudaGetDeviceCount(&device_count);
|
|
message("CUDA device count: %d\n", device_count);
|
|
if (device_count <= 0) {
|
|
return false;
|
|
}
|
|
cudaGLSetGLDevice(getCudaDeviceForCurrentGLContext());
|
|
initialized_ = true;
|
|
return true;
|
|
}
|
|
|
|
bool CudaDeviceContext::IsInitialized() const
|
|
{
|
|
return initialized_;
|
|
}
|
|
|
|
#endif // OPENSUBDIV_HAS_CUDA
|