This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/Mathutils.h
Joseph Gilbert 7586eb28a1 -rewrite and bugfixes
----------------------------------
Here's my changelog:
-fixed Rand() so that it doesn't seed everytime and should generate better random numbers
- changed a few error return types to something more appropriate
- clean up of uninitialized variables & removal of unneccessary objects
- NMesh returns wrapped vectors now
- World returns wrapped matrices now
- Object.getEuler() and Object.getBoundingBox() return Wrapped data when data is present
- Object.getMatrix() returns wrapped data if it's worldspace, 'localspace' returns a new matrix
- Vector, Euler, Mat, Quat, call all now internally wrap object without destroying internal datablocks
- Removed memory allocation (unneeded) from all methods
- Vector's resize methods are only applicable to new vectors not wrapped data.
- Matrix(), Quat(), Euler(), Vector() now accepts ANY sequence list, including tuples, list, or a self object to copy - matrices accept multiple sequences
- Fixed Slerp() so that it now works correctly values are clamped between 0 and 1
- Euler.rotate does internal rotation now
- Slice assignment now works better for all types
- Vector * Vector and Quat * Quat are defined and return the DOT product
- Mat * Vec and Vec * Mat are defined now
- Moved #includes to .c file from headers. Also fixed prototypes in mathutils
- Added new helper functions for incref'ing to genutils
- Major cleanup of header files includes - include Mathutils.h for access to math types
- matrix.toQuat() and .toEuler() now fixed take appropriate matrix sizes
- Matrix() with no parameters now returns an identity matrix by default not a zero matrix
- printf() now prints with 6 digits instead of 4
- printf() now prints output with object descriptor
- Matrices now support [x][y] assignment (e.g. matrix[x][y] = 5.4)
- Matrix[index] = value now expectes a sequence not an integer. This will now set a ROW of the matrix through a sequence.  index cannot go above the row size of the matrix.
- slice operations on matrices work with sequences now (rows of the matrix) example:  mymatrix[0:2] returns a list of 2 wrapped vectors with access to the matrix data.
- slice assignment will no longer modify the data if the assignment operation fails
- fixed error in matrix * scalar multiplication
- euler.toMatrix(), toQuat() no longer causes "creep" from repeated use
- Wrapped data will generate wrapped objects when toEuler(), toQuat(), toMatrix() is used
- Quats can be created with angle/axis, axis/angle
- 4x4 matrices can be multiplied by 3D vectors (by popular demand :))
- vec *quat / quat * vec is now defined
- vec.magnitude alias for vec.length
- all self, internal methods return a pointer to self now so you can do print vector.internalmethod() or vector.internalmethod().nextmethod() (no more print matrix.inverse() returning 'none')
- these methods have been deprecated (still functioning but suggested to use the corrected functionality):
  * CopyVec() - replaced by Vector() functionality
  * CopyMat() - replaced by Matrix() functionality
  * CopyQuat() - replace by Quaternion() functionality
  * CopyEuler() - replaced by Euler() functionality
  * RotateEuler() - replaced by Euler.rotate() funtionality
  * MatMultVec() - replaced by matrix * vector
  * VecMultMat() - replaced by vector * matrix
-  New struct containers references to python object data or internally allocated blender data for wrapping
* Explaination here:  math structs now function as a 'simple wrapper' or a 'py_object' - data that is created on the fly will now be a 'py_object' with its memory managed by python
*    otherwise if the data is returned by blender's G.main then the math object is a 'simple wrapper' and data can be accessed directly from the struct just like other python objects.
2005-05-20 19:28:04 +00:00

77 lines
3.3 KiB
C++

/*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Joseph Gilbert
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
//Include this file for access to vector, quat, matrix, euler, etc...
#ifndef EXPP_Mathutils_H
#define EXPP_Mathutils_H
#include <Python.h>
#include "vector.h"
#include "matrix.h"
#include "quat.h"
#include "euler.h"
#include "Types.h"
PyObject *Mathutils_Init( void );
PyObject *row_vector_multiplication(VectorObject* vec, MatrixObject * mat);
PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec);
PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args);
PyObject *M_Mathutils_Vector(PyObject * self, PyObject * args);
PyObject *M_Mathutils_CrossVecs(PyObject * self, PyObject * args);
PyObject *M_Mathutils_DotVecs(PyObject * self, PyObject * args);
PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args);
PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args);
PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args);
PyObject *M_Mathutils_Matrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_TranslationMatrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args);
PyObject *M_Mathutils_Quaternion(PyObject * self, PyObject * args);
PyObject *M_Mathutils_CrossQuats(PyObject * self, PyObject * args);
PyObject *M_Mathutils_DotQuats(PyObject * self, PyObject * args);
PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args);
PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args);
PyObject *M_Mathutils_Euler(PyObject * self, PyObject * args);
//DEPRECATED
PyObject *M_Mathutils_CopyMat(PyObject * self, PyObject * args);
PyObject *M_Mathutils_CopyVec(PyObject * self, PyObject * args);
PyObject *M_Mathutils_CopyQuat(PyObject * self, PyObject * args);
PyObject *M_Mathutils_CopyEuler(PyObject * self, PyObject * args);
PyObject *M_Mathutils_RotateEuler(PyObject * self, PyObject * args);
PyObject *M_Mathutils_MatMultVec(PyObject * self, PyObject * args);
PyObject *M_Mathutils_VecMultMat(PyObject * self, PyObject * args);
#endif /* EXPP_Mathutils_H */