* Simplify shaperadius() function a bit to avoid castings. * Style cleanup 1.f -> 1.0f, to follow rest of Cycles code.
		
			
				
	
	
		
			1154 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			1154 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
 * Copyright 2011, Blender Foundation.
 | 
						|
 *
 | 
						|
 * This program is free software; you can redistribute it and/or
 | 
						|
 * modify it under the terms of the GNU General Public License
 | 
						|
 * as published by the Free Software Foundation; either version 2
 | 
						|
 * of the License, or (at your option) any later version.
 | 
						|
 *
 | 
						|
 * This program is distributed in the hope that it will be useful,
 | 
						|
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
 * GNU General Public License for more details.
 | 
						|
 *
 | 
						|
 * You should have received a copy of the GNU General Public License
 | 
						|
 * along with this program; if not, write to the Free Software Foundation,
 | 
						|
 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef __OSL__
 | 
						|
#include "osl_shader.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#include "kernel_differential.h"
 | 
						|
#include "kernel_montecarlo.h"
 | 
						|
#include "kernel_projection.h"
 | 
						|
#include "kernel_object.h"
 | 
						|
#include "kernel_triangle.h"
 | 
						|
#include "kernel_curve.h"
 | 
						|
#include "kernel_primitive.h"
 | 
						|
#include "kernel_projection.h"
 | 
						|
#include "kernel_random.h"
 | 
						|
#include "kernel_bvh.h"
 | 
						|
#include "kernel_accumulate.h"
 | 
						|
#include "kernel_camera.h"
 | 
						|
#include "kernel_shader.h"
 | 
						|
#include "kernel_light.h"
 | 
						|
#include "kernel_emission.h"
 | 
						|
#include "kernel_passes.h"
 | 
						|
 | 
						|
#ifdef __SUBSURFACE__
 | 
						|
#include "kernel_subsurface.h"
 | 
						|
#endif
 | 
						|
 | 
						|
CCL_NAMESPACE_BEGIN
 | 
						|
 | 
						|
typedef struct PathState {
 | 
						|
	uint flag;
 | 
						|
	int bounce;
 | 
						|
 | 
						|
	int diffuse_bounce;
 | 
						|
	int glossy_bounce;
 | 
						|
	int transmission_bounce;
 | 
						|
	int transparent_bounce;
 | 
						|
} PathState;
 | 
						|
 | 
						|
__device_inline void path_state_init(PathState *state)
 | 
						|
{
 | 
						|
	state->flag = PATH_RAY_CAMERA|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP;
 | 
						|
	state->bounce = 0;
 | 
						|
	state->diffuse_bounce = 0;
 | 
						|
	state->glossy_bounce = 0;
 | 
						|
	state->transmission_bounce = 0;
 | 
						|
	state->transparent_bounce = 0;
 | 
						|
}
 | 
						|
 | 
						|
__device_inline void path_state_next(KernelGlobals *kg, PathState *state, int label)
 | 
						|
{
 | 
						|
	/* ray through transparent keeps same flags from previous ray and is
 | 
						|
	 * not counted as a regular bounce, transparent has separate max */
 | 
						|
	if(label & LABEL_TRANSPARENT) {
 | 
						|
		state->flag |= PATH_RAY_TRANSPARENT;
 | 
						|
		state->transparent_bounce++;
 | 
						|
 | 
						|
		if(!kernel_data.integrator.transparent_shadows)
 | 
						|
			state->flag |= PATH_RAY_MIS_SKIP;
 | 
						|
 | 
						|
		return;
 | 
						|
	}
 | 
						|
 | 
						|
	state->bounce++;
 | 
						|
 | 
						|
	/* reflection/transmission */
 | 
						|
	if(label & LABEL_REFLECT) {
 | 
						|
		state->flag |= PATH_RAY_REFLECT;
 | 
						|
		state->flag &= ~(PATH_RAY_TRANSMIT|PATH_RAY_CAMERA|PATH_RAY_TRANSPARENT);
 | 
						|
 | 
						|
		if(label & LABEL_DIFFUSE)
 | 
						|
			state->diffuse_bounce++;
 | 
						|
		else
 | 
						|
			state->glossy_bounce++;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		kernel_assert(label & LABEL_TRANSMIT);
 | 
						|
 | 
						|
		state->flag |= PATH_RAY_TRANSMIT;
 | 
						|
		state->flag &= ~(PATH_RAY_REFLECT|PATH_RAY_CAMERA|PATH_RAY_TRANSPARENT);
 | 
						|
 | 
						|
		state->transmission_bounce++;
 | 
						|
	}
 | 
						|
 | 
						|
	/* diffuse/glossy/singular */
 | 
						|
	if(label & LABEL_DIFFUSE) {
 | 
						|
		state->flag |= PATH_RAY_DIFFUSE;
 | 
						|
		state->flag &= ~(PATH_RAY_GLOSSY|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP);
 | 
						|
	}
 | 
						|
	else if(label & LABEL_GLOSSY) {
 | 
						|
		state->flag |= PATH_RAY_GLOSSY;
 | 
						|
		state->flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP);
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		kernel_assert(label & LABEL_SINGULAR);
 | 
						|
 | 
						|
		state->flag |= PATH_RAY_GLOSSY|PATH_RAY_SINGULAR|PATH_RAY_MIS_SKIP;
 | 
						|
		state->flag &= ~PATH_RAY_DIFFUSE;
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
__device_inline uint path_state_ray_visibility(KernelGlobals *kg, PathState *state)
 | 
						|
{
 | 
						|
	uint flag = state->flag;
 | 
						|
 | 
						|
	/* for visibility, diffuse/glossy are for reflection only */
 | 
						|
	if(flag & PATH_RAY_TRANSMIT)
 | 
						|
		flag &= ~(PATH_RAY_DIFFUSE|PATH_RAY_GLOSSY);
 | 
						|
	/* for camera visibility, use render layer flags */
 | 
						|
	if(flag & PATH_RAY_CAMERA)
 | 
						|
		flag |= kernel_data.integrator.layer_flag;
 | 
						|
 | 
						|
	return flag;
 | 
						|
}
 | 
						|
 | 
						|
__device_inline float path_state_terminate_probability(KernelGlobals *kg, PathState *state, const float3 throughput)
 | 
						|
{
 | 
						|
	if(state->flag & PATH_RAY_TRANSPARENT) {
 | 
						|
		/* transparent rays treated separately */
 | 
						|
		if(state->transparent_bounce >= kernel_data.integrator.transparent_max_bounce)
 | 
						|
			return 0.0f;
 | 
						|
		else if(state->transparent_bounce <= kernel_data.integrator.transparent_min_bounce)
 | 
						|
			return 1.0f;
 | 
						|
	}
 | 
						|
	else {
 | 
						|
		/* other rays */
 | 
						|
		if((state->bounce >= kernel_data.integrator.max_bounce) ||
 | 
						|
		   (state->diffuse_bounce >= kernel_data.integrator.max_diffuse_bounce) ||
 | 
						|
		   (state->glossy_bounce >= kernel_data.integrator.max_glossy_bounce) ||
 | 
						|
		   (state->transmission_bounce >= kernel_data.integrator.max_transmission_bounce))
 | 
						|
		{
 | 
						|
			return 0.0f;
 | 
						|
		}
 | 
						|
		else if(state->bounce <= kernel_data.integrator.min_bounce) {
 | 
						|
			return 1.0f;
 | 
						|
		}
 | 
						|
	}
 | 
						|
 | 
						|
	/* probalistic termination */
 | 
						|
	return average(throughput); /* todo: try using max here */
 | 
						|
}
 | 
						|
 | 
						|
__device_inline bool shadow_blocked(KernelGlobals *kg, PathState *state, Ray *ray, float3 *shadow)
 | 
						|
{
 | 
						|
	*shadow = make_float3(1.0f, 1.0f, 1.0f);
 | 
						|
 | 
						|
	if(ray->t == 0.0f)
 | 
						|
		return false;
 | 
						|
	
 | 
						|
	Intersection isect;
 | 
						|
#ifdef __HAIR__
 | 
						|
	bool result = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect, NULL, 0.0f, 0.0f);
 | 
						|
#else
 | 
						|
	bool result = scene_intersect(kg, ray, PATH_RAY_SHADOW_OPAQUE, &isect);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __TRANSPARENT_SHADOWS__
 | 
						|
	if(result && kernel_data.integrator.transparent_shadows) {
 | 
						|
		/* transparent shadows work in such a way to try to minimize overhead
 | 
						|
		 * in cases where we don't need them. after a regular shadow ray is
 | 
						|
		 * cast we check if the hit primitive was potentially transparent, and
 | 
						|
		 * only in that case start marching. this gives on extra ray cast for
 | 
						|
		 * the cases were we do want transparency.
 | 
						|
		 *
 | 
						|
		 * also note that for this to work correct, multi close sampling must
 | 
						|
		 * be used, since we don't pass a random number to shader_eval_surface */
 | 
						|
		if(shader_transparent_shadow(kg, &isect)) {
 | 
						|
			float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
 | 
						|
			float3 Pend = ray->P + ray->D*ray->t;
 | 
						|
			int bounce = state->transparent_bounce;
 | 
						|
 | 
						|
			for(;;) {
 | 
						|
				if(bounce >= kernel_data.integrator.transparent_max_bounce) {
 | 
						|
					return true;
 | 
						|
				}
 | 
						|
				else if(bounce >= kernel_data.integrator.transparent_min_bounce) {
 | 
						|
					/* todo: get random number somewhere for probabilistic terminate */
 | 
						|
#if 0
 | 
						|
					float probability = average(throughput);
 | 
						|
					float terminate = 0.0f;
 | 
						|
 | 
						|
					if(terminate >= probability)
 | 
						|
						return true;
 | 
						|
 | 
						|
					throughput /= probability;
 | 
						|
#endif
 | 
						|
				}
 | 
						|
 | 
						|
#ifdef __HAIR__
 | 
						|
				if(!scene_intersect(kg, ray, PATH_RAY_SHADOW_TRANSPARENT, &isect, NULL, 0.0f, 0.0f)) {
 | 
						|
#else
 | 
						|
				if(!scene_intersect(kg, ray, PATH_RAY_SHADOW_TRANSPARENT, &isect)) {
 | 
						|
#endif
 | 
						|
					*shadow *= throughput;
 | 
						|
					return false;
 | 
						|
				}
 | 
						|
 | 
						|
				if(!shader_transparent_shadow(kg, &isect))
 | 
						|
					return true;
 | 
						|
 | 
						|
				ShaderData sd;
 | 
						|
				shader_setup_from_ray(kg, &sd, &isect, ray);
 | 
						|
				shader_eval_surface(kg, &sd, 0.0f, PATH_RAY_SHADOW, SHADER_CONTEXT_SHADOW);
 | 
						|
 | 
						|
				throughput *= shader_bsdf_transparency(kg, &sd);
 | 
						|
 | 
						|
				ray->P = ray_offset(sd.P, -sd.Ng);
 | 
						|
				if(ray->t != FLT_MAX)
 | 
						|
					ray->D = normalize_len(Pend - ray->P, &ray->t);
 | 
						|
 | 
						|
				bounce++;
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	return result;
 | 
						|
}
 | 
						|
 | 
						|
__device float4 kernel_path_progressive(KernelGlobals *kg, RNG *rng, int sample, Ray ray, __global float *buffer)
 | 
						|
{
 | 
						|
	/* initialize */
 | 
						|
	PathRadiance L;
 | 
						|
	float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
 | 
						|
	float L_transparent = 0.0f;
 | 
						|
 | 
						|
	path_radiance_init(&L, kernel_data.film.use_light_pass);
 | 
						|
 | 
						|
	float min_ray_pdf = FLT_MAX;
 | 
						|
	float ray_pdf = 0.0f;
 | 
						|
#ifdef __LAMP_MIS__
 | 
						|
	float ray_t = 0.0f;
 | 
						|
#endif
 | 
						|
	PathState state;
 | 
						|
	int rng_offset = PRNG_BASE_NUM;
 | 
						|
 | 
						|
	path_state_init(&state);
 | 
						|
 | 
						|
	/* path iteration */
 | 
						|
	for(;; rng_offset += PRNG_BOUNCE_NUM) {
 | 
						|
		/* intersect scene */
 | 
						|
		Intersection isect;
 | 
						|
		uint visibility = path_state_ray_visibility(kg, &state);
 | 
						|
 | 
						|
#ifdef __HAIR__
 | 
						|
		float difl = 0.0f, extmax = 0.0f;
 | 
						|
		uint lcg_state = 0;
 | 
						|
 | 
						|
		if(kernel_data.bvh.have_curves) {
 | 
						|
			if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) {	
 | 
						|
				float3 pixdiff = ray.dD.dx + ray.dD.dy;
 | 
						|
				/*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
 | 
						|
				difl = kernel_data.curve_kernel_data.minimum_width * len(pixdiff) * 0.5f;
 | 
						|
			}
 | 
						|
 | 
						|
			extmax = kernel_data.curve_kernel_data.maximum_width;
 | 
						|
			lcg_state = lcg_init(*rng + rng_offset + sample*0x51633e2d);
 | 
						|
		}
 | 
						|
 | 
						|
		bool hit = scene_intersect(kg, &ray, visibility, &isect, &lcg_state, difl, extmax);
 | 
						|
#else
 | 
						|
		bool hit = scene_intersect(kg, &ray, visibility, &isect);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __LAMP_MIS__
 | 
						|
		if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
 | 
						|
			/* ray starting from previous non-transparent bounce */
 | 
						|
			Ray light_ray;
 | 
						|
 | 
						|
			light_ray.P = ray.P - ray_t*ray.D;
 | 
						|
			ray_t += isect.t;
 | 
						|
			light_ray.D = ray.D;
 | 
						|
			light_ray.t = ray_t;
 | 
						|
			light_ray.time = ray.time;
 | 
						|
			light_ray.dD = ray.dD;
 | 
						|
			light_ray.dP = ray.dP;
 | 
						|
 | 
						|
			/* intersect with lamp */
 | 
						|
			float light_t = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT);
 | 
						|
			float3 emission;
 | 
						|
 | 
						|
			if(indirect_lamp_emission(kg, &light_ray, state.flag, ray_pdf, light_t, &emission))
 | 
						|
				path_radiance_accum_emission(&L, throughput, emission, state.bounce);
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
		if(!hit) {
 | 
						|
			/* eval background shader if nothing hit */
 | 
						|
			if(kernel_data.background.transparent && (state.flag & PATH_RAY_CAMERA)) {
 | 
						|
				L_transparent += average(throughput);
 | 
						|
 | 
						|
#ifdef __PASSES__
 | 
						|
				if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
 | 
						|
#endif
 | 
						|
					break;
 | 
						|
			}
 | 
						|
 | 
						|
#ifdef __BACKGROUND__
 | 
						|
			/* sample background shader */
 | 
						|
			float3 L_background = indirect_background(kg, &ray, state.flag, ray_pdf);
 | 
						|
			path_radiance_accum_background(&L, throughput, L_background, state.bounce);
 | 
						|
#endif
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* setup shading */
 | 
						|
		ShaderData sd;
 | 
						|
		shader_setup_from_ray(kg, &sd, &isect, &ray);
 | 
						|
		float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF);
 | 
						|
		shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
 | 
						|
 | 
						|
		kernel_write_data_passes(kg, buffer, &L, &sd, sample, state.flag, throughput);
 | 
						|
 | 
						|
		/* blurring of bsdf after bounces, for rays that have a small likelihood
 | 
						|
		 * of following this particular path (diffuse, rough glossy) */
 | 
						|
		if(kernel_data.integrator.filter_glossy != FLT_MAX) {
 | 
						|
			float blur_pdf = kernel_data.integrator.filter_glossy*min_ray_pdf;
 | 
						|
 | 
						|
			if(blur_pdf < 1.0f) {
 | 
						|
				float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
 | 
						|
				shader_bsdf_blur(kg, &sd, blur_roughness);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* holdout */
 | 
						|
#ifdef __HOLDOUT__
 | 
						|
		if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK)) && (state.flag & PATH_RAY_CAMERA)) {
 | 
						|
			if(kernel_data.background.transparent) {
 | 
						|
				float3 holdout_weight;
 | 
						|
				
 | 
						|
				if(sd.flag & SD_HOLDOUT_MASK)
 | 
						|
					holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
 | 
						|
				else
 | 
						|
					holdout_weight = shader_holdout_eval(kg, &sd);
 | 
						|
 | 
						|
				/* any throughput is ok, should all be identical here */
 | 
						|
				L_transparent += average(holdout_weight*throughput);
 | 
						|
			}
 | 
						|
 | 
						|
			if(sd.flag & SD_HOLDOUT_MASK)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __EMISSION__
 | 
						|
		/* emission */
 | 
						|
		if(sd.flag & SD_EMISSION) {
 | 
						|
			/* todo: is isect.t wrong here for transparent surfaces? */
 | 
						|
			float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, ray_pdf);
 | 
						|
			path_radiance_accum_emission(&L, throughput, emission, state.bounce);
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
		/* path termination. this is a strange place to put the termination, it's
 | 
						|
		 * mainly due to the mixed in MIS that we use. gives too many unneeded
 | 
						|
		 * shader evaluations, only need emission if we are going to terminate */
 | 
						|
		float probability = path_state_terminate_probability(kg, &state, throughput);
 | 
						|
		float terminate = path_rng(kg, rng, sample, rng_offset + PRNG_TERMINATE);
 | 
						|
 | 
						|
		if(terminate >= probability)
 | 
						|
			break;
 | 
						|
 | 
						|
		throughput /= probability;
 | 
						|
 | 
						|
#ifdef __SUBSURFACE__
 | 
						|
		/* bssrdf scatter to a different location on the same object, replacing
 | 
						|
		 * the closures with a diffuse BSDF */
 | 
						|
		if(sd.flag & SD_BSSRDF) {
 | 
						|
			float bssrdf_probability;
 | 
						|
			ShaderClosure *sc = subsurface_scatter_pick_closure(kg, &sd, &bssrdf_probability);
 | 
						|
 | 
						|
			/* modify throughput for picking bssrdf or bsdf */
 | 
						|
			throughput *= bssrdf_probability;
 | 
						|
 | 
						|
			/* do bssrdf scatter step if we picked a bssrdf closure */
 | 
						|
			if(sc) {
 | 
						|
				uint lcg_state = lcg_init(*rng + rng_offset + sample*0x68bc21eb);
 | 
						|
				subsurface_scatter_step(kg, &sd, state.flag, sc, &lcg_state, false);
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __AO__
 | 
						|
		/* ambient occlusion */
 | 
						|
		if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
 | 
						|
			/* todo: solve correlation */
 | 
						|
			float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U);
 | 
						|
			float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V);
 | 
						|
 | 
						|
			float ao_factor = kernel_data.background.ao_factor;
 | 
						|
			float3 ao_N;
 | 
						|
			float3 ao_bsdf = shader_bsdf_ao(kg, &sd, ao_factor, &ao_N);
 | 
						|
			float3 ao_D;
 | 
						|
			float ao_pdf;
 | 
						|
 | 
						|
			sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
 | 
						|
 | 
						|
			if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
 | 
						|
				Ray light_ray;
 | 
						|
				float3 ao_shadow;
 | 
						|
 | 
						|
				light_ray.P = ray_offset(sd.P, sd.Ng);
 | 
						|
				light_ray.D = ao_D;
 | 
						|
				light_ray.t = kernel_data.background.ao_distance;
 | 
						|
#ifdef __OBJECT_MOTION__
 | 
						|
				light_ray.time = sd.time;
 | 
						|
#endif
 | 
						|
				light_ray.dP = sd.dP;
 | 
						|
				light_ray.dD = differential3_zero();
 | 
						|
 | 
						|
				if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow))
 | 
						|
					path_radiance_accum_ao(&L, throughput, ao_bsdf, ao_shadow, state.bounce);
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __EMISSION__
 | 
						|
		if(kernel_data.integrator.use_direct_light) {
 | 
						|
			/* sample illumination from lights to find path contribution */
 | 
						|
			if(sd.flag & SD_BSDF_HAS_EVAL) {
 | 
						|
				float light_t = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT);
 | 
						|
				float light_o = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_F);
 | 
						|
				float light_u = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_U);
 | 
						|
				float light_v = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_V);
 | 
						|
 | 
						|
				Ray light_ray;
 | 
						|
				BsdfEval L_light;
 | 
						|
				bool is_lamp;
 | 
						|
 | 
						|
#ifdef __OBJECT_MOTION__
 | 
						|
				light_ray.time = sd.time;
 | 
						|
#endif
 | 
						|
 | 
						|
				if(direct_emission(kg, &sd, -1, light_t, light_o, light_u, light_v, &light_ray, &L_light, &is_lamp)) {
 | 
						|
					/* trace shadow ray */
 | 
						|
					float3 shadow;
 | 
						|
 | 
						|
					if(!shadow_blocked(kg, &state, &light_ray, &shadow)) {
 | 
						|
						/* accumulate */
 | 
						|
						path_radiance_accum_light(&L, throughput, &L_light, shadow, 1.0f, state.bounce, is_lamp);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
		/* no BSDF? we can stop here */
 | 
						|
		if(!(sd.flag & SD_BSDF))
 | 
						|
			break;
 | 
						|
 | 
						|
		/* sample BSDF */
 | 
						|
		float bsdf_pdf;
 | 
						|
		BsdfEval bsdf_eval;
 | 
						|
		float3 bsdf_omega_in;
 | 
						|
		differential3 bsdf_domega_in;
 | 
						|
		float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U);
 | 
						|
		float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V);
 | 
						|
		int label;
 | 
						|
 | 
						|
		label = shader_bsdf_sample(kg, &sd, bsdf_u, bsdf_v, &bsdf_eval,
 | 
						|
			&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
 | 
						|
 | 
						|
		if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
 | 
						|
			break;
 | 
						|
 | 
						|
		/* modify throughput */
 | 
						|
		path_radiance_bsdf_bounce(&L, &throughput, &bsdf_eval, bsdf_pdf, state.bounce, label);
 | 
						|
 | 
						|
		/* set labels */
 | 
						|
		if(!(label & LABEL_TRANSPARENT)) {
 | 
						|
			ray_pdf = bsdf_pdf;
 | 
						|
#ifdef __LAMP_MIS__
 | 
						|
			ray_t = 0.0f;
 | 
						|
#endif
 | 
						|
			min_ray_pdf = fminf(bsdf_pdf, min_ray_pdf);
 | 
						|
		}
 | 
						|
 | 
						|
		/* update path state */
 | 
						|
		path_state_next(kg, &state, label);
 | 
						|
 | 
						|
		/* setup ray */
 | 
						|
		ray.P = ray_offset(sd.P, (label & LABEL_TRANSMIT)? -sd.Ng: sd.Ng);
 | 
						|
		ray.D = bsdf_omega_in;
 | 
						|
 | 
						|
		if(state.bounce == 0)
 | 
						|
			ray.t -= sd.ray_length; /* clipping works through transparent */
 | 
						|
		else
 | 
						|
			ray.t = FLT_MAX;
 | 
						|
 | 
						|
#ifdef __RAY_DIFFERENTIALS__
 | 
						|
		ray.dP = sd.dP;
 | 
						|
		ray.dD = bsdf_domega_in;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
 | 
						|
	float3 L_sum = path_radiance_sum(kg, &L);
 | 
						|
 | 
						|
#ifdef __CLAMP_SAMPLE__
 | 
						|
	path_radiance_clamp(&L, &L_sum, kernel_data.integrator.sample_clamp);
 | 
						|
#endif
 | 
						|
 | 
						|
	kernel_write_light_passes(kg, buffer, &L, sample);
 | 
						|
 | 
						|
	return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
 | 
						|
}
 | 
						|
 | 
						|
#ifdef __NON_PROGRESSIVE__
 | 
						|
 | 
						|
__device void kernel_path_indirect(KernelGlobals *kg, RNG *rng, int sample, Ray ray, __global float *buffer,
 | 
						|
	float3 throughput, float num_samples_adjust,
 | 
						|
	float min_ray_pdf, float ray_pdf, PathState state, int rng_offset, PathRadiance *L)
 | 
						|
{
 | 
						|
#ifdef __LAMP_MIS__
 | 
						|
	float ray_t = 0.0f;
 | 
						|
#endif
 | 
						|
 | 
						|
	/* path iteration */
 | 
						|
	for(;; rng_offset += PRNG_BOUNCE_NUM) {
 | 
						|
		/* intersect scene */
 | 
						|
		Intersection isect;
 | 
						|
		uint visibility = path_state_ray_visibility(kg, &state);
 | 
						|
#ifdef __HAIR__
 | 
						|
		bool hit = scene_intersect(kg, &ray, visibility, &isect, NULL, 0.0f, 0.0f);
 | 
						|
#else
 | 
						|
		bool hit = scene_intersect(kg, &ray, visibility, &isect);
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __LAMP_MIS__
 | 
						|
		if(kernel_data.integrator.use_lamp_mis && !(state.flag & PATH_RAY_CAMERA)) {
 | 
						|
			/* ray starting from previous non-transparent bounce */
 | 
						|
			Ray light_ray;
 | 
						|
 | 
						|
			light_ray.P = ray.P - ray_t*ray.D;
 | 
						|
			ray_t += isect.t;
 | 
						|
			light_ray.D = ray.D;
 | 
						|
			light_ray.t = ray_t;
 | 
						|
			light_ray.time = ray.time;
 | 
						|
			light_ray.dD = ray.dD;
 | 
						|
			light_ray.dP = ray.dP;
 | 
						|
 | 
						|
			/* intersect with lamp */
 | 
						|
			float light_t = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT);
 | 
						|
			float3 emission;
 | 
						|
 | 
						|
			if(indirect_lamp_emission(kg, &light_ray, state.flag, ray_pdf, light_t, &emission))
 | 
						|
				path_radiance_accum_emission(L, throughput, emission, state.bounce);
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
		if(!hit) {
 | 
						|
#ifdef __BACKGROUND__
 | 
						|
			/* sample background shader */
 | 
						|
			float3 L_background = indirect_background(kg, &ray, state.flag, ray_pdf);
 | 
						|
			path_radiance_accum_background(L, throughput, L_background, state.bounce);
 | 
						|
#endif
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* setup shading */
 | 
						|
		ShaderData sd;
 | 
						|
		shader_setup_from_ray(kg, &sd, &isect, &ray);
 | 
						|
		float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF);
 | 
						|
		shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_INDIRECT);
 | 
						|
		shader_merge_closures(kg, &sd);
 | 
						|
 | 
						|
		/* blurring of bsdf after bounces, for rays that have a small likelihood
 | 
						|
		 * of following this particular path (diffuse, rough glossy) */
 | 
						|
		if(kernel_data.integrator.filter_glossy != FLT_MAX) {
 | 
						|
			float blur_pdf = kernel_data.integrator.filter_glossy*min_ray_pdf;
 | 
						|
 | 
						|
			if(blur_pdf < 1.0f) {
 | 
						|
				float blur_roughness = sqrtf(1.0f - blur_pdf)*0.5f;
 | 
						|
				shader_bsdf_blur(kg, &sd, blur_roughness);
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
#ifdef __EMISSION__
 | 
						|
		/* emission */
 | 
						|
		if(sd.flag & SD_EMISSION) {
 | 
						|
			float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, ray_pdf);
 | 
						|
			path_radiance_accum_emission(L, throughput, emission, state.bounce);
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
		/* path termination. this is a strange place to put the termination, it's
 | 
						|
		 * mainly due to the mixed in MIS that we use. gives too many unneeded
 | 
						|
		 * shader evaluations, only need emission if we are going to terminate */
 | 
						|
		float probability = path_state_terminate_probability(kg, &state, throughput*num_samples_adjust);
 | 
						|
		float terminate = path_rng(kg, rng, sample, rng_offset + PRNG_TERMINATE);
 | 
						|
 | 
						|
		if(terminate >= probability)
 | 
						|
			break;
 | 
						|
 | 
						|
		throughput /= probability;
 | 
						|
 | 
						|
#ifdef __SUBSURFACE__
 | 
						|
		/* bssrdf scatter to a different location on the same object, replacing
 | 
						|
		 * the closures with a diffuse BSDF */
 | 
						|
		if(sd.flag & SD_BSSRDF) {
 | 
						|
			float bssrdf_probability;
 | 
						|
			ShaderClosure *sc = subsurface_scatter_pick_closure(kg, &sd, &bssrdf_probability);
 | 
						|
 | 
						|
			/* modify throughput for picking bssrdf or bsdf */
 | 
						|
			throughput *= bssrdf_probability;
 | 
						|
 | 
						|
			/* do bssrdf scatter step if we picked a bssrdf closure */
 | 
						|
			if(sc) {
 | 
						|
				uint lcg_state = lcg_init(*rng + rng_offset + sample*0x68bc21eb);
 | 
						|
				subsurface_scatter_step(kg, &sd, state.flag, sc, &lcg_state, false);
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __AO__
 | 
						|
		/* ambient occlusion */
 | 
						|
		if(kernel_data.integrator.use_ambient_occlusion || (sd.flag & SD_AO)) {
 | 
						|
			/* todo: solve correlation */
 | 
						|
			float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U);
 | 
						|
			float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V);
 | 
						|
 | 
						|
			float ao_factor = kernel_data.background.ao_factor;
 | 
						|
			float3 ao_N;
 | 
						|
			float3 ao_bsdf = shader_bsdf_ao(kg, &sd, ao_factor, &ao_N);
 | 
						|
			float3 ao_D;
 | 
						|
			float ao_pdf;
 | 
						|
 | 
						|
			sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
 | 
						|
 | 
						|
			if(dot(sd.Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
 | 
						|
				Ray light_ray;
 | 
						|
				float3 ao_shadow;
 | 
						|
 | 
						|
				light_ray.P = ray_offset(sd.P, sd.Ng);
 | 
						|
				light_ray.D = ao_D;
 | 
						|
				light_ray.t = kernel_data.background.ao_distance;
 | 
						|
#ifdef __OBJECT_MOTION__
 | 
						|
				light_ray.time = sd.time;
 | 
						|
#endif
 | 
						|
				light_ray.dP = sd.dP;
 | 
						|
				light_ray.dD = differential3_zero();
 | 
						|
 | 
						|
				if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow))
 | 
						|
					path_radiance_accum_ao(L, throughput, ao_bsdf, ao_shadow, state.bounce);
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __EMISSION__
 | 
						|
		if(kernel_data.integrator.use_direct_light) {
 | 
						|
			/* sample illumination from lights to find path contribution */
 | 
						|
			if(sd.flag & SD_BSDF_HAS_EVAL) {
 | 
						|
				float light_t = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT);
 | 
						|
				float light_o = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_F);
 | 
						|
				float light_u = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_U);
 | 
						|
				float light_v = path_rng(kg, rng, sample, rng_offset + PRNG_LIGHT_V);
 | 
						|
 | 
						|
				Ray light_ray;
 | 
						|
				BsdfEval L_light;
 | 
						|
				bool is_lamp;
 | 
						|
 | 
						|
#ifdef __OBJECT_MOTION__
 | 
						|
				light_ray.time = sd.time;
 | 
						|
#endif
 | 
						|
 | 
						|
				/* sample random light */
 | 
						|
				if(direct_emission(kg, &sd, -1, light_t, light_o, light_u, light_v, &light_ray, &L_light, &is_lamp)) {
 | 
						|
					/* trace shadow ray */
 | 
						|
					float3 shadow;
 | 
						|
 | 
						|
					if(!shadow_blocked(kg, &state, &light_ray, &shadow)) {
 | 
						|
						/* accumulate */
 | 
						|
						path_radiance_accum_light(L, throughput, &L_light, shadow, 1.0f, state.bounce, is_lamp);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
		/* no BSDF? we can stop here */
 | 
						|
		if(!(sd.flag & SD_BSDF))
 | 
						|
			break;
 | 
						|
 | 
						|
		/* sample BSDF */
 | 
						|
		float bsdf_pdf;
 | 
						|
		BsdfEval bsdf_eval;
 | 
						|
		float3 bsdf_omega_in;
 | 
						|
		differential3 bsdf_domega_in;
 | 
						|
		float bsdf_u = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_U);
 | 
						|
		float bsdf_v = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF_V);
 | 
						|
		int label;
 | 
						|
 | 
						|
		label = shader_bsdf_sample(kg, &sd, bsdf_u, bsdf_v, &bsdf_eval,
 | 
						|
			&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
 | 
						|
 | 
						|
		if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
 | 
						|
			break;
 | 
						|
 | 
						|
		/* modify throughput */
 | 
						|
		path_radiance_bsdf_bounce(L, &throughput, &bsdf_eval, bsdf_pdf, state.bounce, label);
 | 
						|
 | 
						|
		/* set labels */
 | 
						|
		if(!(label & LABEL_TRANSPARENT)) {
 | 
						|
			ray_pdf = bsdf_pdf;
 | 
						|
#ifdef __LAMP_MIS__
 | 
						|
			ray_t = 0.0f;
 | 
						|
#endif
 | 
						|
			min_ray_pdf = fminf(bsdf_pdf, min_ray_pdf);
 | 
						|
		}
 | 
						|
 | 
						|
		/* update path state */
 | 
						|
		path_state_next(kg, &state, label);
 | 
						|
 | 
						|
		/* setup ray */
 | 
						|
		ray.P = ray_offset(sd.P, (label & LABEL_TRANSMIT)? -sd.Ng: sd.Ng);
 | 
						|
		ray.D = bsdf_omega_in;
 | 
						|
		ray.t = FLT_MAX;
 | 
						|
#ifdef __RAY_DIFFERENTIALS__
 | 
						|
		ray.dP = sd.dP;
 | 
						|
		ray.dD = bsdf_domega_in;
 | 
						|
#endif
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
__device_noinline void kernel_path_non_progressive_lighting(KernelGlobals *kg, RNG *rng, int sample,
 | 
						|
	ShaderData *sd, float3 throughput, float num_samples_adjust,
 | 
						|
	float min_ray_pdf, float ray_pdf, PathState state,
 | 
						|
	int rng_offset, PathRadiance *L, __global float *buffer)
 | 
						|
{
 | 
						|
#ifdef __AO__
 | 
						|
	/* ambient occlusion */
 | 
						|
	if(kernel_data.integrator.use_ambient_occlusion || (sd->flag & SD_AO)) {
 | 
						|
		int num_samples = ceil(kernel_data.integrator.ao_samples*num_samples_adjust);
 | 
						|
		float num_samples_inv = num_samples_adjust/num_samples;
 | 
						|
		float ao_factor = kernel_data.background.ao_factor;
 | 
						|
		float3 ao_N;
 | 
						|
		float3 ao_bsdf = shader_bsdf_ao(kg, sd, ao_factor, &ao_N);
 | 
						|
 | 
						|
		for(int j = 0; j < num_samples; j++) {
 | 
						|
			/* todo: solve correlation */
 | 
						|
			float bsdf_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_U);
 | 
						|
			float bsdf_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_V);
 | 
						|
 | 
						|
			float3 ao_D;
 | 
						|
			float ao_pdf;
 | 
						|
 | 
						|
			sample_cos_hemisphere(ao_N, bsdf_u, bsdf_v, &ao_D, &ao_pdf);
 | 
						|
 | 
						|
			if(dot(sd->Ng, ao_D) > 0.0f && ao_pdf != 0.0f) {
 | 
						|
				Ray light_ray;
 | 
						|
				float3 ao_shadow;
 | 
						|
 | 
						|
				light_ray.P = ray_offset(sd->P, sd->Ng);
 | 
						|
				light_ray.D = ao_D;
 | 
						|
				light_ray.t = kernel_data.background.ao_distance;
 | 
						|
#ifdef __OBJECT_MOTION__
 | 
						|
				light_ray.time = sd->time;
 | 
						|
#endif
 | 
						|
				light_ray.dP = sd->dP;
 | 
						|
				light_ray.dD = differential3_zero();
 | 
						|
 | 
						|
				if(!shadow_blocked(kg, &state, &light_ray, &ao_shadow))
 | 
						|
					path_radiance_accum_ao(L, throughput*num_samples_inv, ao_bsdf, ao_shadow, state.bounce);
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
#ifdef __EMISSION__
 | 
						|
	/* sample illumination from lights to find path contribution */
 | 
						|
	if(sd->flag & SD_BSDF_HAS_EVAL) {
 | 
						|
		Ray light_ray;
 | 
						|
		BsdfEval L_light;
 | 
						|
		bool is_lamp;
 | 
						|
 | 
						|
#ifdef __OBJECT_MOTION__
 | 
						|
		light_ray.time = sd->time;
 | 
						|
#endif
 | 
						|
 | 
						|
		/* lamp sampling */
 | 
						|
		for(int i = 0; i < kernel_data.integrator.num_all_lights; i++) {
 | 
						|
			int num_samples = ceil(num_samples_adjust*light_select_num_samples(kg, i));
 | 
						|
			float num_samples_inv = num_samples_adjust/(num_samples*kernel_data.integrator.num_all_lights);
 | 
						|
 | 
						|
			if(kernel_data.integrator.pdf_triangles != 0.0f)
 | 
						|
				num_samples_inv *= 0.5f;
 | 
						|
 | 
						|
			for(int j = 0; j < num_samples; j++) {
 | 
						|
				float light_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_U);
 | 
						|
				float light_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_V);
 | 
						|
 | 
						|
				if(direct_emission(kg, sd, i, 0.0f, 0.0f, light_u, light_v, &light_ray, &L_light, &is_lamp)) {
 | 
						|
					/* trace shadow ray */
 | 
						|
					float3 shadow;
 | 
						|
 | 
						|
					if(!shadow_blocked(kg, &state, &light_ray, &shadow)) {
 | 
						|
						/* accumulate */
 | 
						|
						path_radiance_accum_light(L, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, state.bounce, is_lamp);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
 | 
						|
		/* mesh light sampling */
 | 
						|
		if(kernel_data.integrator.pdf_triangles != 0.0f) {
 | 
						|
			int num_samples = ceil(num_samples_adjust*kernel_data.integrator.mesh_light_samples);
 | 
						|
			float num_samples_inv = num_samples_adjust/num_samples;
 | 
						|
 | 
						|
			if(kernel_data.integrator.num_all_lights)
 | 
						|
				num_samples_inv *= 0.5f;
 | 
						|
 | 
						|
			for(int j = 0; j < num_samples; j++) {
 | 
						|
				float light_t = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT);
 | 
						|
				float light_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_U);
 | 
						|
				float light_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_LIGHT_V);
 | 
						|
 | 
						|
				/* only sample triangle lights */
 | 
						|
				if(kernel_data.integrator.num_all_lights)
 | 
						|
					light_t = 0.5f*light_t;
 | 
						|
 | 
						|
				if(direct_emission(kg, sd, -1, light_t, 0.0f, light_u, light_v, &light_ray, &L_light, &is_lamp)) {
 | 
						|
					/* trace shadow ray */
 | 
						|
					float3 shadow;
 | 
						|
 | 
						|
					if(!shadow_blocked(kg, &state, &light_ray, &shadow)) {
 | 
						|
						/* accumulate */
 | 
						|
						path_radiance_accum_light(L, throughput*num_samples_inv, &L_light, shadow, num_samples_inv, state.bounce, is_lamp);
 | 
						|
					}
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
	}
 | 
						|
#endif
 | 
						|
 | 
						|
	for(int i = 0; i< sd->num_closure; i++) {
 | 
						|
		const ShaderClosure *sc = &sd->closure[i];
 | 
						|
 | 
						|
		if(!CLOSURE_IS_BSDF(sc->type))
 | 
						|
			continue;
 | 
						|
		/* transparency is not handled here, but in outer loop */
 | 
						|
		if(sc->type == CLOSURE_BSDF_TRANSPARENT_ID)
 | 
						|
			continue;
 | 
						|
 | 
						|
		int num_samples;
 | 
						|
 | 
						|
		if(CLOSURE_IS_BSDF_DIFFUSE(sc->type))
 | 
						|
			num_samples = kernel_data.integrator.diffuse_samples;
 | 
						|
		else if(CLOSURE_IS_BSDF_GLOSSY(sc->type))
 | 
						|
			num_samples = kernel_data.integrator.glossy_samples;
 | 
						|
		else
 | 
						|
			num_samples = kernel_data.integrator.transmission_samples;
 | 
						|
 | 
						|
		num_samples = ceil(num_samples_adjust*num_samples);
 | 
						|
 | 
						|
		float num_samples_inv = num_samples_adjust/num_samples;
 | 
						|
 | 
						|
		for(int j = 0; j < num_samples; j++) {
 | 
						|
			/* sample BSDF */
 | 
						|
			float bsdf_pdf;
 | 
						|
			BsdfEval bsdf_eval;
 | 
						|
			float3 bsdf_omega_in;
 | 
						|
			differential3 bsdf_domega_in;
 | 
						|
			float bsdf_u = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_U);
 | 
						|
			float bsdf_v = path_rng(kg, rng, sample*num_samples + j, rng_offset + PRNG_BSDF_V);
 | 
						|
			int label;
 | 
						|
 | 
						|
			label = shader_bsdf_sample_closure(kg, sd, sc, bsdf_u, bsdf_v, &bsdf_eval,
 | 
						|
				&bsdf_omega_in, &bsdf_domega_in, &bsdf_pdf);
 | 
						|
 | 
						|
			if(bsdf_pdf == 0.0f || bsdf_eval_is_zero(&bsdf_eval))
 | 
						|
				continue;
 | 
						|
 | 
						|
			/* modify throughput */
 | 
						|
			float3 tp = throughput;
 | 
						|
			path_radiance_bsdf_bounce(L, &tp, &bsdf_eval, bsdf_pdf, state.bounce, label);
 | 
						|
 | 
						|
			/* set labels */
 | 
						|
			float min_ray_pdf = FLT_MAX;
 | 
						|
 | 
						|
			if(!(label & LABEL_TRANSPARENT))
 | 
						|
				min_ray_pdf = fminf(bsdf_pdf, min_ray_pdf);
 | 
						|
 | 
						|
			/* modify path state */
 | 
						|
			PathState ps = state;
 | 
						|
			path_state_next(kg, &ps, label);
 | 
						|
 | 
						|
			/* setup ray */
 | 
						|
			Ray bsdf_ray;
 | 
						|
 | 
						|
			bsdf_ray.P = ray_offset(sd->P, (label & LABEL_TRANSMIT)? -sd->Ng: sd->Ng);
 | 
						|
			bsdf_ray.D = bsdf_omega_in;
 | 
						|
			bsdf_ray.t = FLT_MAX;
 | 
						|
#ifdef __RAY_DIFFERENTIALS__
 | 
						|
			bsdf_ray.dP = sd->dP;
 | 
						|
			bsdf_ray.dD = bsdf_domega_in;
 | 
						|
#endif
 | 
						|
#ifdef __OBJECT_MOTION__
 | 
						|
			bsdf_ray.time = sd->time;
 | 
						|
#endif
 | 
						|
 | 
						|
			kernel_path_indirect(kg, rng, sample*num_samples + j, bsdf_ray, buffer,
 | 
						|
				tp*num_samples_inv, num_samples,
 | 
						|
				min_ray_pdf, bsdf_pdf, ps, rng_offset+PRNG_BOUNCE_NUM, L);
 | 
						|
 | 
						|
			/* for render passes, sum and reset indirect light pass variables
 | 
						|
			 * for the next samples */
 | 
						|
			path_radiance_sum_indirect(L);
 | 
						|
			path_radiance_reset_indirect(L);
 | 
						|
		}
 | 
						|
	}
 | 
						|
}
 | 
						|
 | 
						|
__device float4 kernel_path_non_progressive(KernelGlobals *kg, RNG *rng, int sample, Ray ray, __global float *buffer)
 | 
						|
{
 | 
						|
	/* initialize */
 | 
						|
	PathRadiance L;
 | 
						|
	float3 throughput = make_float3(1.0f, 1.0f, 1.0f);
 | 
						|
	float L_transparent = 0.0f;
 | 
						|
 | 
						|
	path_radiance_init(&L, kernel_data.film.use_light_pass);
 | 
						|
 | 
						|
	float ray_pdf = 0.0f;
 | 
						|
	PathState state;
 | 
						|
	int rng_offset = PRNG_BASE_NUM;
 | 
						|
 | 
						|
	path_state_init(&state);
 | 
						|
 | 
						|
	for(;; rng_offset += PRNG_BOUNCE_NUM) {
 | 
						|
		/* intersect scene */
 | 
						|
		Intersection isect;
 | 
						|
		uint visibility = path_state_ray_visibility(kg, &state);
 | 
						|
 | 
						|
#ifdef __HAIR__
 | 
						|
		float difl = 0.0f, extmax = 0.0f;
 | 
						|
		uint lcg_state = 0;
 | 
						|
 | 
						|
		if(kernel_data.bvh.have_curves) {
 | 
						|
			if((kernel_data.cam.resolution == 1) && (state.flag & PATH_RAY_CAMERA)) {	
 | 
						|
				float3 pixdiff = ray.dD.dx + ray.dD.dy;
 | 
						|
				/*pixdiff = pixdiff - dot(pixdiff, ray.D)*ray.D;*/
 | 
						|
				difl = kernel_data.curve_kernel_data.minimum_width * len(pixdiff) * 0.5f;
 | 
						|
			}
 | 
						|
 | 
						|
			extmax = kernel_data.curve_kernel_data.maximum_width;
 | 
						|
			lcg_state = lcg_init(*rng + rng_offset + sample*0x51633e2d);
 | 
						|
		}
 | 
						|
 | 
						|
		if(!scene_intersect(kg, &ray, visibility, &isect, &lcg_state, difl, extmax)) {
 | 
						|
#else
 | 
						|
		if(!scene_intersect(kg, &ray, visibility, &isect)) {
 | 
						|
#endif
 | 
						|
			/* eval background shader if nothing hit */
 | 
						|
			if(kernel_data.background.transparent) {
 | 
						|
				L_transparent += average(throughput);
 | 
						|
 | 
						|
#ifdef __PASSES__
 | 
						|
				if(!(kernel_data.film.pass_flag & PASS_BACKGROUND))
 | 
						|
#endif
 | 
						|
					break;
 | 
						|
			}
 | 
						|
 | 
						|
#ifdef __BACKGROUND__
 | 
						|
			/* sample background shader */
 | 
						|
			float3 L_background = indirect_background(kg, &ray, state.flag, ray_pdf);
 | 
						|
			path_radiance_accum_background(&L, throughput, L_background, state.bounce);
 | 
						|
#endif
 | 
						|
 | 
						|
			break;
 | 
						|
		}
 | 
						|
 | 
						|
		/* setup shading */
 | 
						|
		ShaderData sd;
 | 
						|
		shader_setup_from_ray(kg, &sd, &isect, &ray);
 | 
						|
		float rbsdf = path_rng(kg, rng, sample, rng_offset + PRNG_BSDF);
 | 
						|
		shader_eval_surface(kg, &sd, rbsdf, state.flag, SHADER_CONTEXT_MAIN);
 | 
						|
		shader_merge_closures(kg, &sd);
 | 
						|
 | 
						|
		kernel_write_data_passes(kg, buffer, &L, &sd, sample, state.flag, throughput);
 | 
						|
 | 
						|
		/* holdout */
 | 
						|
#ifdef __HOLDOUT__
 | 
						|
		if((sd.flag & (SD_HOLDOUT|SD_HOLDOUT_MASK))) {
 | 
						|
			if(kernel_data.background.transparent) {
 | 
						|
				float3 holdout_weight;
 | 
						|
				
 | 
						|
				if(sd.flag & SD_HOLDOUT_MASK)
 | 
						|
					holdout_weight = make_float3(1.0f, 1.0f, 1.0f);
 | 
						|
				else
 | 
						|
					holdout_weight = shader_holdout_eval(kg, &sd);
 | 
						|
 | 
						|
				/* any throughput is ok, should all be identical here */
 | 
						|
				L_transparent += average(holdout_weight*throughput);
 | 
						|
			}
 | 
						|
 | 
						|
			if(sd.flag & SD_HOLDOUT_MASK)
 | 
						|
				break;
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __EMISSION__
 | 
						|
		/* emission */
 | 
						|
		if(sd.flag & SD_EMISSION) {
 | 
						|
			float3 emission = indirect_primitive_emission(kg, &sd, isect.t, state.flag, ray_pdf);
 | 
						|
			path_radiance_accum_emission(&L, throughput, emission, state.bounce);
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
		/* transparency termination */
 | 
						|
		if(state.flag & PATH_RAY_TRANSPARENT) {
 | 
						|
			/* path termination. this is a strange place to put the termination, it's
 | 
						|
			 * mainly due to the mixed in MIS that we use. gives too many unneeded
 | 
						|
			 * shader evaluations, only need emission if we are going to terminate */
 | 
						|
			float probability = path_state_terminate_probability(kg, &state, throughput);
 | 
						|
			float terminate = path_rng(kg, rng, sample, rng_offset + PRNG_TERMINATE);
 | 
						|
 | 
						|
			if(terminate >= probability)
 | 
						|
				break;
 | 
						|
 | 
						|
			throughput /= probability;
 | 
						|
		}
 | 
						|
 | 
						|
#ifdef __SUBSURFACE__
 | 
						|
		/* bssrdf scatter to a different location on the same object */
 | 
						|
		if(sd.flag & SD_BSSRDF) {
 | 
						|
			for(int i = 0; i< sd.num_closure; i++) {
 | 
						|
				ShaderClosure *sc = &sd.closure[i];
 | 
						|
 | 
						|
				if(!CLOSURE_IS_BSSRDF(sc->type))
 | 
						|
					continue;
 | 
						|
 | 
						|
				/* set up random number generator */
 | 
						|
				uint lcg_state = lcg_init(*rng + rng_offset + sample*0x68bc21eb);
 | 
						|
				int num_samples = kernel_data.integrator.subsurface_samples;
 | 
						|
				float num_samples_inv = 1.0f/num_samples;
 | 
						|
 | 
						|
				/* do subsurface scatter step with copy of shader data, this will
 | 
						|
				 * replace the BSSRDF with a diffuse BSDF closure */
 | 
						|
				for(int j = 0; j < num_samples; j++) {
 | 
						|
					ShaderData bssrdf_sd = sd;
 | 
						|
					subsurface_scatter_step(kg, &bssrdf_sd, state.flag, sc, &lcg_state, true);
 | 
						|
 | 
						|
					/* compute lighting with the BSDF closure */
 | 
						|
					kernel_path_non_progressive_lighting(kg, rng, sample*num_samples + j,
 | 
						|
						&bssrdf_sd, throughput, num_samples_inv,
 | 
						|
						ray_pdf, ray_pdf, state, rng_offset, &L, buffer);
 | 
						|
				}
 | 
						|
			}
 | 
						|
		}
 | 
						|
#endif
 | 
						|
 | 
						|
		/* lighting */
 | 
						|
		kernel_path_non_progressive_lighting(kg, rng, sample, &sd, throughput,
 | 
						|
			1.0f, ray_pdf, ray_pdf, state, rng_offset, &L, buffer);
 | 
						|
 | 
						|
		/* continue in case of transparency */
 | 
						|
		throughput *= shader_bsdf_transparency(kg, &sd);
 | 
						|
 | 
						|
		if(is_zero(throughput))
 | 
						|
			break;
 | 
						|
 | 
						|
		path_state_next(kg, &state, LABEL_TRANSPARENT);
 | 
						|
		ray.P = ray_offset(sd.P, -sd.Ng);
 | 
						|
		ray.t -= sd.ray_length; /* clipping works through transparent */
 | 
						|
	}
 | 
						|
 | 
						|
	float3 L_sum = path_radiance_sum(kg, &L);
 | 
						|
 | 
						|
#ifdef __CLAMP_SAMPLE__
 | 
						|
	path_radiance_clamp(&L, &L_sum, kernel_data.integrator.sample_clamp);
 | 
						|
#endif
 | 
						|
 | 
						|
	kernel_write_light_passes(kg, buffer, &L, sample);
 | 
						|
 | 
						|
	return make_float4(L_sum.x, L_sum.y, L_sum.z, 1.0f - L_transparent);
 | 
						|
}
 | 
						|
 | 
						|
#endif
 | 
						|
 | 
						|
__device void kernel_path_trace(KernelGlobals *kg,
 | 
						|
	__global float *buffer, __global uint *rng_state,
 | 
						|
	int sample, int x, int y, int offset, int stride)
 | 
						|
{
 | 
						|
	/* buffer offset */
 | 
						|
	int index = offset + x + y*stride;
 | 
						|
	int pass_stride = kernel_data.film.pass_stride;
 | 
						|
 | 
						|
	rng_state += index;
 | 
						|
	buffer += index*pass_stride;
 | 
						|
 | 
						|
	/* initialize random numbers */
 | 
						|
	RNG rng;
 | 
						|
 | 
						|
	float filter_u;
 | 
						|
	float filter_v;
 | 
						|
 | 
						|
	path_rng_init(kg, rng_state, sample, &rng, x, y, &filter_u, &filter_v);
 | 
						|
 | 
						|
	/* sample camera ray */
 | 
						|
	Ray ray;
 | 
						|
 | 
						|
	float lens_u = path_rng(kg, &rng, sample, PRNG_LENS_U);
 | 
						|
	float lens_v = path_rng(kg, &rng, sample, PRNG_LENS_V);
 | 
						|
 | 
						|
#ifdef __CAMERA_MOTION__
 | 
						|
	float time = path_rng(kg, &rng, sample, PRNG_TIME);
 | 
						|
#else
 | 
						|
	float time = 0.0f;
 | 
						|
#endif
 | 
						|
 | 
						|
	camera_sample(kg, x, y, filter_u, filter_v, lens_u, lens_v, time, &ray);
 | 
						|
 | 
						|
	/* integrate */
 | 
						|
	float4 L;
 | 
						|
 | 
						|
	if (ray.t != 0.0f) {
 | 
						|
#ifdef __NON_PROGRESSIVE__
 | 
						|
		if(kernel_data.integrator.progressive)
 | 
						|
#endif
 | 
						|
			L = kernel_path_progressive(kg, &rng, sample, ray, buffer);
 | 
						|
#ifdef __NON_PROGRESSIVE__
 | 
						|
		else
 | 
						|
			L = kernel_path_non_progressive(kg, &rng, sample, ray, buffer);
 | 
						|
#endif
 | 
						|
	}
 | 
						|
	else
 | 
						|
		L = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
 | 
						|
 | 
						|
	/* accumulate result in output buffer */
 | 
						|
	kernel_write_pass_float4(buffer, sample, L);
 | 
						|
 | 
						|
	path_rng_end(kg, rng_state, rng);
 | 
						|
}
 | 
						|
 | 
						|
CCL_NAMESPACE_END
 | 
						|
 |