This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/collada/collada_utils.cpp
Bastien Montagne 7636e9785d Cleanup: BKE_library: remove 'test' param of id_copy.
This was used in *one* place only... much better to have a dedicated
helper for that kind of things. ;)
2019-02-05 09:49:50 +01:00

1431 lines
36 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file blender/collada/collada_utils.cpp
* \ingroup collada
*/
/* COLLADABU_ASSERT, may be able to remove later */
#include "COLLADABUPlatform.h"
#include "COLLADAFWGeometry.h"
#include "COLLADAFWMeshPrimitive.h"
#include "COLLADAFWMeshVertexData.h"
#include <set>
#include <string>
extern "C" {
#include "DNA_modifier_types.h"
#include "DNA_customdata_types.h"
#include "DNA_key_types.h"
#include "DNA_object_types.h"
#include "DNA_constraint_types.h"
#include "DNA_mesh_types.h"
#include "DNA_scene_types.h"
#include "DNA_armature_types.h"
#include "BLI_math.h"
#include "BLI_linklist.h"
#include "BLI_listbase.h"
#include "BKE_action.h"
#include "BKE_context.h"
#include "BKE_customdata.h"
#include "BKE_constraint.h"
#include "BKE_key.h"
#include "BKE_material.h"
#include "BKE_node.h"
#include "BKE_object.h"
#include "BKE_global.h"
#include "BKE_layer.h"
#include "BKE_library.h"
#include "BKE_mesh.h"
#include "BKE_mesh_runtime.h"
#include "BKE_object.h"
#include "BKE_scene.h"
#include "ED_armature.h"
#include "ED_screen.h"
#include "ED_node.h"
#include "MEM_guardedalloc.h"
#include "WM_api.h" // XXX hrm, see if we can do without this
#include "WM_types.h"
#include "bmesh.h"
#include "bmesh_tools.h"
#include "DEG_depsgraph.h"
#include "DEG_depsgraph_query.h"
#if 0
#include "NOD_common.h"
#endif
}
#include "collada_utils.h"
#include "ExportSettings.h"
#include "BlenderContext.h"
float bc_get_float_value(const COLLADAFW::FloatOrDoubleArray& array, unsigned int index)
{
if (index >= array.getValuesCount())
return 0.0f;
if (array.getType() == COLLADAFW::MeshVertexData::DATA_TYPE_FLOAT)
return array.getFloatValues()->getData()[index];
else
return array.getDoubleValues()->getData()[index];
}
// copied from /editors/object/object_relations.c
int bc_test_parent_loop(Object *par, Object *ob)
{
/* test if 'ob' is a parent somewhere in par's parents */
if (par == NULL) return 0;
if (ob == par) return 1;
return bc_test_parent_loop(par->parent, ob);
}
void bc_get_children(std::vector<Object *> &child_set, Object *ob, ViewLayer *view_layer)
{
Base *base;
for (base = (Base *)view_layer->object_bases.first; base; base = base->next) {
Object *cob = base->object;
if (cob->parent == ob) {
switch (ob->type) {
case OB_MESH:
case OB_CAMERA:
case OB_LAMP:
case OB_EMPTY:
case OB_ARMATURE:
child_set.push_back(cob);
default: break;
}
}
}
}
bool bc_validateConstraints(bConstraint *con)
{
const bConstraintTypeInfo *cti = BKE_constraint_typeinfo_get(con);
/* these we can skip completely (invalid constraints...) */
if (cti == NULL)
return false;
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF))
return false;
/* these constraints can't be evaluated anyway */
if (cti->evaluate_constraint == NULL)
return false;
/* influence == 0 should be ignored */
if (con->enforce == 0.0f)
return false;
/* validation passed */
return true;
}
// a shortened version of parent_set_exec()
// if is_parent_space is true then ob->obmat will be multiplied by par->obmat before parenting
int bc_set_parent(Object *ob, Object *par, bContext *C, bool is_parent_space)
{
Object workob;
Depsgraph *depsgraph = CTX_data_depsgraph(C);
Scene *sce = CTX_data_scene(C);
if (!par || bc_test_parent_loop(par, ob))
return false;
ob->parent = par;
ob->partype = PAROBJECT;
ob->parsubstr[0] = 0;
if (is_parent_space) {
float mat[4][4];
// calc par->obmat
BKE_object_where_is_calc(depsgraph, sce, par);
// move child obmat into world space
mul_m4_m4m4(mat, par->obmat, ob->obmat);
copy_m4_m4(ob->obmat, mat);
}
// apply child obmat (i.e. decompose it into rot/loc/size)
BKE_object_apply_mat4(ob, ob->obmat, 0, 0);
// compute parentinv
BKE_object_workob_calc_parent(depsgraph, sce, ob, &workob);
invert_m4_m4(ob->parentinv, workob.obmat);
DEG_id_tag_update(&ob->id, ID_RECALC_TRANSFORM | ID_RECALC_GEOMETRY);
DEG_id_tag_update(&par->id, ID_RECALC_TRANSFORM);
return true;
}
std::vector<bAction *> bc_getSceneActions(const bContext *C, Object *ob, bool all_actions)
{
std::vector<bAction *> actions;
if (all_actions) {
Main *bmain = CTX_data_main(C);
ID *id;
for (id = (ID *)bmain->action.first; id; id = (ID *)(id->next)) {
bAction *act = (bAction *)id;
/* XXX This currently creates too many actions.
TODO Need to check if the action is compatible to the given object
*/
actions.push_back(act);
}
}
else
{
bAction *action = bc_getSceneObjectAction(ob);
actions.push_back(action);
}
return actions;
}
std::string bc_get_action_id(std::string action_name, std::string ob_name, std::string channel_type, std::string axis_name, std::string axis_separator)
{
std::string result = action_name + "_" + channel_type;
if (ob_name.length() > 0)
result = ob_name + "_" + result;
if (axis_name.length() > 0)
result += axis_separator + axis_name;
return translate_id(result);
}
void bc_update_scene(BlenderContext &blender_context, float ctime)
{
Main *bmain = blender_context.get_main();
Scene *scene = blender_context.get_scene();
Depsgraph *depsgraph = blender_context.get_depsgraph();
/*
* See remark in physics_fluid.c lines 395...)
* BKE_scene_update_for_newframe(ev_context, bmain, scene, scene->lay);
*/
BKE_scene_frame_set(scene, ctime);
ED_update_for_newframe(bmain, depsgraph);
}
Object *bc_add_object(Main *bmain, Scene *scene, ViewLayer *view_layer, int type, const char *name)
{
Object *ob = BKE_object_add_only_object(bmain, type, name);
ob->data = BKE_object_obdata_add_from_type(bmain, type, name);
ob->lay = scene->lay;
DEG_id_tag_update(&ob->id, ID_RECALC_TRANSFORM | ID_RECALC_GEOMETRY | ID_RECALC_ANIMATION);
LayerCollection *layer_collection = BKE_layer_collection_get_active(view_layer);
BKE_collection_object_add(bmain, layer_collection->collection, ob);
Base *base = BKE_view_layer_base_find(view_layer, ob);
/* TODO: is setting active needed? */
BKE_view_layer_base_select_and_set_active(view_layer, base);
return ob;
}
Mesh *bc_get_mesh_copy(
BlenderContext &blender_context,
Object *ob,
BC_export_mesh_type export_mesh_type,
bool apply_modifiers,
bool triangulate)
{
CustomDataMask mask = CD_MASK_MESH;
Mesh *tmpmesh = NULL;
if (apply_modifiers) {
#if 0 /* Not supported by new system currently... */
switch (export_mesh_type) {
case BC_MESH_TYPE_VIEW:
{
dm = mesh_create_derived_view(depsgraph, scene, ob, mask);
break;
}
case BC_MESH_TYPE_RENDER:
{
dm = mesh_create_derived_render(depsgraph, scene, ob, mask);
break;
}
}
#else
Depsgraph *depsgraph = blender_context.get_depsgraph();
Scene *scene_eval = blender_context.get_evaluated_scene();
Object *ob_eval = blender_context.get_evaluated_object(ob);
tmpmesh = mesh_get_eval_final(depsgraph, scene_eval, ob_eval, mask);
#endif
}
else {
tmpmesh = (Mesh *)ob->data;
}
BKE_id_copy_ex(NULL, &tmpmesh->id, (ID **)&tmpmesh,
LIB_ID_CREATE_NO_MAIN |
LIB_ID_CREATE_NO_USER_REFCOUNT |
LIB_ID_CREATE_NO_DEG_TAG |
LIB_ID_COPY_NO_PREVIEW);
if (triangulate) {
bc_triangulate_mesh(tmpmesh);
}
BKE_mesh_tessface_ensure(tmpmesh);
return tmpmesh;
}
Object *bc_get_assigned_armature(Object *ob)
{
Object *ob_arm = NULL;
if (ob->parent && ob->partype == PARSKEL && ob->parent->type == OB_ARMATURE) {
ob_arm = ob->parent;
}
else {
ModifierData *mod;
for (mod = (ModifierData *)ob->modifiers.first; mod; mod = mod->next) {
if (mod->type == eModifierType_Armature) {
ob_arm = ((ArmatureModifierData *)mod)->object;
}
}
}
return ob_arm;
}
/*
* Returns the highest selected ancestor
* returns NULL if no ancestor is selected
* IMPORTANT: This function expects that all exported objects have set:
* ob->id.tag & LIB_TAG_DOIT
*/
Object *bc_get_highest_selected_ancestor_or_self(LinkNode *export_set, Object *ob)
{
Object *ancestor = ob;
while (ob->parent && bc_is_marked(ob->parent)) {
ob = ob->parent;
ancestor = ob;
}
return ancestor;
}
bool bc_is_base_node(LinkNode *export_set, Object *ob)
{
Object *root = bc_get_highest_selected_ancestor_or_self(export_set, ob);
return (root == ob);
}
bool bc_is_in_Export_set(LinkNode *export_set, Object *ob, ViewLayer *view_layer)
{
bool to_export = (BLI_linklist_index(export_set, ob) != -1);
if (!to_export)
{
/* Mark this object as to_export even if it is not in the
export list, but it contains children to export */
std::vector<Object *> children;
bc_get_children(children, ob, view_layer);
for (int i = 0; i < children.size(); i++) {
if (bc_is_in_Export_set(export_set, children[i], view_layer)) {
to_export = true;
break;
}
}
}
return to_export;
}
bool bc_has_object_type(LinkNode *export_set, short obtype)
{
LinkNode *node;
for (node = export_set; node; node = node->next) {
Object *ob = (Object *)node->link;
/* XXX - why is this checking for ob->data? - we could be looking for empties */
if (ob->type == obtype && ob->data) {
return true;
}
}
return false;
}
int bc_is_marked(Object *ob)
{
return ob && (ob->id.tag & LIB_TAG_DOIT);
}
void bc_remove_mark(Object *ob)
{
ob->id.tag &= ~LIB_TAG_DOIT;
}
void bc_set_mark(Object *ob)
{
ob->id.tag |= LIB_TAG_DOIT;
}
// Use bubble sort algorithm for sorting the export set
void bc_bubble_sort_by_Object_name(LinkNode *export_set)
{
bool sorted = false;
LinkNode *node;
for (node = export_set; node->next && !sorted; node = node->next) {
sorted = true;
LinkNode *current;
for (current = export_set; current->next; current = current->next) {
Object *a = (Object *)current->link;
Object *b = (Object *)current->next->link;
if (strcmp(a->id.name, b->id.name) > 0) {
current->link = b;
current->next->link = a;
sorted = false;
}
}
}
}
/* Check if a bone is the top most exportable bone in the bone hierarchy.
* When deform_bones_only == false, then only bones with NO parent
* can be root bones. Otherwise the top most deform bones in the hierarchy
* are root bones.
*/
bool bc_is_root_bone(Bone *aBone, bool deform_bones_only)
{
if (deform_bones_only) {
Bone *root = NULL;
Bone *bone = aBone;
while (bone) {
if (!(bone->flag & BONE_NO_DEFORM))
root = bone;
bone = bone->parent;
}
return (aBone == root);
}
else
return !(aBone->parent);
}
int bc_get_active_UVLayer(Object *ob)
{
Mesh *me = (Mesh *)ob->data;
return CustomData_get_active_layer_index(&me->ldata, CD_MLOOPUV);
}
std::string bc_url_encode(std::string data)
{
/* XXX We probably do not need to do a full encoding.
* But in case that is necessary,then it can be added here.
*/
return bc_replace_string(data,"#", "%23");
}
std::string bc_replace_string(std::string data, const std::string& pattern,
const std::string& replacement)
{
size_t pos = 0;
while ((pos = data.find(pattern, pos)) != std::string::npos) {
data.replace(pos, pattern.length(), replacement);
pos += replacement.length();
}
return data;
}
/**
* Calculate a rescale factor such that the imported scene's scale
* is preserved. I.e. 1 meter in the import will also be
* 1 meter in the current scene.
*/
void bc_match_scale(Object *ob, UnitConverter &bc_unit, bool scale_to_scene)
{
if (scale_to_scene) {
mul_m4_m4m4(ob->obmat, bc_unit.get_scale(), ob->obmat);
}
mul_m4_m4m4(ob->obmat, bc_unit.get_rotation(), ob->obmat);
BKE_object_apply_mat4(ob, ob->obmat, 0, 0);
}
void bc_match_scale(std::vector<Object *> *objects_done,
UnitConverter &bc_unit,
bool scale_to_scene)
{
for (std::vector<Object *>::iterator it = objects_done->begin();
it != objects_done->end();
++it)
{
Object *ob = *it;
if (ob -> parent == NULL) {
bc_match_scale(*it, bc_unit, scale_to_scene);
}
}
}
/*
* Convenience function to get only the needed components of a matrix
*/
void bc_decompose(float mat[4][4], float *loc, float eul[3], float quat[4], float *size)
{
if (size) {
mat4_to_size(size, mat);
}
if (eul) {
mat4_to_eul(eul, mat);
}
if (quat) {
mat4_to_quat(quat, mat);
}
if (loc) {
copy_v3_v3(loc, mat[3]);
}
}
/*
* Create rotation_quaternion from a delta rotation and a reference quat
*
* Input:
* mat_from: The rotation matrix before rotation
* mat_to : The rotation matrix after rotation
* qref : the quat corresponding to mat_from
*
* Output:
* rot : the calculated result (quaternion)
*/
void bc_rotate_from_reference_quat(float quat_to[4], float quat_from[4], float mat_to[4][4])
{
float qd[4];
float matd[4][4];
float mati[4][4];
float mat_from[4][4];
quat_to_mat4(mat_from, quat_from);
// Calculate the difference matrix matd between mat_from and mat_to
invert_m4_m4(mati, mat_from);
mul_m4_m4m4(matd, mati, mat_to);
mat4_to_quat(qd, matd);
mul_qt_qtqt(quat_to, qd, quat_from); // rot is the final rotation corresponding to mat_to
}
void bc_triangulate_mesh(Mesh *me)
{
bool use_beauty = false;
bool tag_only = false;
int quad_method = MOD_TRIANGULATE_QUAD_SHORTEDGE; /* XXX: The triangulation method selection could be offered in the UI */
const struct BMeshCreateParams bm_create_params = {0};
BMesh *bm = BM_mesh_create(
&bm_mesh_allocsize_default,
&bm_create_params);
BMeshFromMeshParams bm_from_me_params = {0};
bm_from_me_params.calc_face_normal = true;
BM_mesh_bm_from_me(bm, me, &bm_from_me_params);
BM_mesh_triangulate(bm, quad_method, use_beauty, tag_only, NULL, NULL, NULL);
BMeshToMeshParams bm_to_me_params = {0};
bm_to_me_params.calc_object_remap = false;
BM_mesh_bm_to_me(NULL, bm, me, &bm_to_me_params);
BM_mesh_free(bm);
}
/*
* A bone is a leaf when it has no children or all children are not connected.
*/
bool bc_is_leaf_bone(Bone *bone)
{
for (Bone *child = (Bone *)bone->childbase.first; child; child = child->next) {
if (child->flag & BONE_CONNECTED)
return false;
}
return true;
}
EditBone *bc_get_edit_bone(bArmature * armature, char *name) {
EditBone *eBone;
for (eBone = (EditBone *)armature->edbo->first; eBone; eBone = eBone->next) {
if (STREQ(name, eBone->name))
return eBone;
}
return NULL;
}
int bc_set_layer(int bitfield, int layer)
{
return bc_set_layer(bitfield, layer, true); /* enable */
}
int bc_set_layer(int bitfield, int layer, bool enable)
{
int bit = 1u << layer;
if (enable)
bitfield |= bit;
else
bitfield &= ~bit;
return bitfield;
}
/**
* This method creates a new extension map when needed.
* \note The ~BoneExtensionManager destructor takes care
* to delete the created maps when the manager is removed.
*/
BoneExtensionMap &BoneExtensionManager::getExtensionMap(bArmature *armature)
{
std::string key = armature->id.name;
BoneExtensionMap *result = extended_bone_maps[key];
if (result == NULL)
{
result = new BoneExtensionMap();
extended_bone_maps[key] = result;
}
return *result;
}
BoneExtensionManager::~BoneExtensionManager()
{
std::map<std::string, BoneExtensionMap *>::iterator map_it;
for (map_it = extended_bone_maps.begin(); map_it != extended_bone_maps.end(); ++map_it)
{
BoneExtensionMap *extended_bones = map_it->second;
for (BoneExtensionMap::iterator ext_it = extended_bones->begin(); ext_it != extended_bones->end(); ++ext_it) {
if (ext_it->second != NULL)
delete ext_it->second;
}
extended_bones->clear();
delete extended_bones;
}
}
/**
* BoneExtended is a helper class needed for the Bone chain finder
* See ArmatureImporter::fix_leaf_bones()
* and ArmatureImporter::connect_bone_chains()
*/
BoneExtended::BoneExtended(EditBone *aBone)
{
this->set_name(aBone->name);
this->chain_length = 0;
this->is_leaf = false;
this->tail[0] = 0.0f;
this->tail[1] = 0.5f;
this->tail[2] = 0.0f;
this->use_connect = -1;
this->roll = 0;
this->bone_layers = 0;
this->has_custom_tail = false;
this->has_custom_roll = false;
}
char *BoneExtended::get_name()
{
return name;
}
void BoneExtended::set_name(char *aName)
{
BLI_strncpy(name, aName, MAXBONENAME);
}
int BoneExtended::get_chain_length()
{
return chain_length;
}
void BoneExtended::set_chain_length(const int aLength)
{
chain_length = aLength;
}
void BoneExtended::set_leaf_bone(bool state)
{
is_leaf = state;
}
bool BoneExtended::is_leaf_bone()
{
return is_leaf;
}
void BoneExtended::set_roll(float roll)
{
this->roll = roll;
this->has_custom_roll = true;
}
bool BoneExtended::has_roll()
{
return this->has_custom_roll;
}
float BoneExtended::get_roll()
{
return this->roll;
}
void BoneExtended::set_tail(float vec[])
{
this->tail[0] = vec[0];
this->tail[1] = vec[1];
this->tail[2] = vec[2];
this->has_custom_tail = true;
}
bool BoneExtended::has_tail()
{
return this->has_custom_tail;
}
float *BoneExtended::get_tail()
{
return this->tail;
}
inline bool isInteger(const std::string & s)
{
if (s.empty() || ((!isdigit(s[0])) && (s[0] != '-') && (s[0] != '+'))) return false;
char *p;
strtol(s.c_str(), &p, 10);
return (*p == 0);
}
void BoneExtended::set_bone_layers(std::string layerString, std::vector<std::string> &layer_labels)
{
std::stringstream ss(layerString);
std::string layer;
int pos;
while (ss >> layer) {
/* Blender uses numbers to specify layers*/
if (isInteger(layer))
{
pos = atoi(layer.c_str());
if (pos >= 0 && pos < 32) {
this->bone_layers = bc_set_layer(this->bone_layers, pos);
continue;
}
}
/* layer uses labels (not supported by blender). Map to layer numbers:*/
pos = find(layer_labels.begin(), layer_labels.end(), layer) - layer_labels.begin();
if (pos >= layer_labels.size()) {
layer_labels.push_back(layer); /* remember layer number for future usage*/
}
if (pos > 31)
{
fprintf(stderr, "Too many layers in Import. Layer %s mapped to Blender layer 31\n", layer.c_str());
pos = 31;
}
/* If numeric layers and labeled layers are used in parallel (unlikely),
* we get a potential mixup. Just leave as is for now.
*/
this->bone_layers = bc_set_layer(this->bone_layers, pos);
}
}
std::string BoneExtended::get_bone_layers(int bitfield)
{
std::string result = "";
std::string sep = "";
int bit = 1u;
std::ostringstream ss;
for (int i = 0; i < 32; i++)
{
if (bit & bitfield)
{
ss << sep << i;
sep = " ";
}
bit = bit << 1;
}
return ss.str();
}
int BoneExtended::get_bone_layers()
{
return (bone_layers == 0) ? 1 : bone_layers; // ensure that the bone is in at least one bone layer!
}
void BoneExtended::set_use_connect(int use_connect)
{
this->use_connect = use_connect;
}
int BoneExtended::get_use_connect()
{
return this->use_connect;
}
/**
* Stores a 4*4 matrix as a custom bone property array of size 16
*/
void bc_set_IDPropertyMatrix(EditBone *ebone, const char *key, float mat[4][4])
{
IDProperty *idgroup = (IDProperty *)ebone->prop;
if (idgroup == NULL)
{
IDPropertyTemplate val = { 0 };
idgroup = IDP_New(IDP_GROUP, &val, "RNA_EditBone ID properties");
ebone->prop = idgroup;
}
IDPropertyTemplate val = { 0 };
val.array.len = 16;
val.array.type = IDP_FLOAT;
IDProperty *data = IDP_New(IDP_ARRAY, &val, key);
float *array = (float *)IDP_Array(data);
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
array[4 * i + j] = mat[i][j];
IDP_AddToGroup(idgroup, data);
}
#if 0
/**
* Stores a Float value as a custom bone property
*
* Note: This function is currently not needed. Keep for future usage
*/
static void bc_set_IDProperty(EditBone *ebone, const char *key, float value)
{
if (ebone->prop == NULL)
{
IDPropertyTemplate val = { 0 };
ebone->prop = IDP_New(IDP_GROUP, &val, "RNA_EditBone ID properties");
}
IDProperty *pgroup = (IDProperty *)ebone->prop;
IDPropertyTemplate val = { 0 };
IDProperty *prop = IDP_New(IDP_FLOAT, &val, key);
IDP_Float(prop) = value;
IDP_AddToGroup(pgroup, prop);
}
#endif
/**
* Get a custom property when it exists.
* This function is also used to check if a property exists.
*/
IDProperty *bc_get_IDProperty(Bone *bone, std::string key)
{
return (bone->prop == NULL) ? NULL : IDP_GetPropertyFromGroup(bone->prop, key.c_str());
}
/**
* Read a custom bone property and convert to float
* Return def if the property does not exist.
*/
float bc_get_property(Bone *bone, std::string key, float def)
{
float result = def;
IDProperty *property = bc_get_IDProperty(bone, key);
if (property) {
switch (property->type) {
case IDP_INT:
result = (float)(IDP_Int(property));
break;
case IDP_FLOAT:
result = (float)(IDP_Float(property));
break;
case IDP_DOUBLE:
result = (float)(IDP_Double(property));
break;
default:
result = def;
}
}
return result;
}
/**
* Read a custom bone property and convert to matrix
* Return true if conversion was successful
*
* Return false if:
* - the property does not exist
* - is not an array of size 16
*/
bool bc_get_property_matrix(Bone *bone, std::string key, float mat[4][4])
{
IDProperty *property = bc_get_IDProperty(bone, key);
if (property && property->type == IDP_ARRAY && property->len == 16) {
float *array = (float *)IDP_Array(property);
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
mat[i][j] = array[4 * i + j];
return true;
}
return false;
}
/**
* get a vector that is stored in 3 custom properties (used in Blender <= 2.78)
*/
void bc_get_property_vector(Bone *bone, std::string key, float val[3], const float def[3])
{
val[0] = bc_get_property(bone, key + "_x", def[0]);
val[1] = bc_get_property(bone, key + "_y", def[1]);
val[2] = bc_get_property(bone, key + "_z", def[2]);
}
/**
* Check if vector exist stored in 3 custom properties (used in Blender <= 2.78)
*/
static bool has_custom_props(Bone *bone, bool enabled, std::string key)
{
if (!enabled)
return false;
return (bc_get_IDProperty(bone, key + "_x")
|| bc_get_IDProperty(bone, key + "_y")
|| bc_get_IDProperty(bone, key + "_z"));
}
void bc_enable_fcurves(bAction *act, char *bone_name)
{
FCurve *fcu;
char prefix[200];
if (bone_name)
BLI_snprintf(prefix, sizeof(prefix), "pose.bones[\"%s\"]", bone_name);
for (fcu = (FCurve *)act->curves.first; fcu; fcu = fcu->next) {
if (bone_name) {
if (STREQLEN(fcu->rna_path, prefix, strlen(prefix)))
fcu->flag &= ~FCURVE_DISABLED;
else
fcu->flag |= FCURVE_DISABLED;
}
else {
fcu->flag &= ~FCURVE_DISABLED;
}
}
}
bool bc_bone_matrix_local_get(Object *ob, Bone *bone, Matrix &mat, bool for_opensim)
{
/* Ok, lets be super cautious and check if the bone exists */
bPose *pose = ob->pose;
bPoseChannel *pchan = BKE_pose_channel_find_name(pose, bone->name);
if (!pchan) {
return false;
}
bAction *action = bc_getSceneObjectAction(ob);
bPoseChannel *parchan = pchan->parent;
bc_enable_fcurves(action, bone->name);
float ipar[4][4];
if (bone->parent) {
invert_m4_m4(ipar, parchan->pose_mat);
mul_m4_m4m4(mat, ipar, pchan->pose_mat);
}
else
copy_m4_m4(mat, pchan->pose_mat);
/* OPEN_SIM_COMPATIBILITY
* AFAIK animation to second life is via BVH, but no
* reason to not have the collada-animation be correct
*/
if (for_opensim) {
float temp[4][4];
copy_m4_m4(temp, bone->arm_mat);
temp[3][0] = temp[3][1] = temp[3][2] = 0.0f;
invert_m4(temp);
mul_m4_m4m4(mat, mat, temp);
if (bone->parent) {
copy_m4_m4(temp, bone->parent->arm_mat);
temp[3][0] = temp[3][1] = temp[3][2] = 0.0f;
mul_m4_m4m4(mat, temp, mat);
}
}
bc_enable_fcurves(action, NULL);
return true;
}
bool bc_is_animated(BCMatrixSampleMap &values)
{
static float MIN_DISTANCE = 0.00001;
if (values.size() < 2)
return false; // need at least 2 entries to be not flat
BCMatrixSampleMap::iterator it;
const BCMatrix *refmat = NULL;
for (it = values.begin(); it != values.end(); ++it) {
const BCMatrix *matrix = it->second;
if (refmat == NULL) {
refmat = matrix;
continue;
}
if (!matrix->in_range(*refmat, MIN_DISTANCE))
return true;
}
return false;
}
bool bc_has_animations(Object *ob)
{
/* Check for object,lamp and camera transform animations */
if ((bc_getSceneObjectAction(ob) && bc_getSceneObjectAction(ob)->curves.first) ||
(bc_getSceneLampAction(ob) && bc_getSceneLampAction(ob)->curves.first) ||
(bc_getSceneCameraAction(ob) && bc_getSceneCameraAction(ob)->curves.first))
return true;
//Check Material Effect parameter animations.
for (int a = 0; a < ob->totcol; a++) {
Material *ma = give_current_material(ob, a + 1);
if (!ma) continue;
if (ma->adt && ma->adt->action && ma->adt->action->curves.first)
return true;
}
Key *key = BKE_key_from_object(ob);
if ((key && key->adt && key->adt->action) && key->adt->action->curves.first)
return true;
return false;
}
bool bc_has_animations(Scene *sce, LinkNode &export_set)
{
LinkNode *node;
for (node = &export_set; node; node = node->next) {
Object *ob = (Object *)node->link;
if (bc_has_animations(ob))
return true;
}
return false;
}
/**
* Check if custom information about bind matrix exists and modify the from_mat
* accordingly.
*
* Note: This is old style for Blender <= 2.78 only kept for compatibility
*/
void bc_create_restpose_mat(const ExportSettings *export_settings, Bone *bone, float to_mat[4][4], float from_mat[4][4], bool use_local_space)
{
float loc[3];
float rot[3];
float scale[3];
static const float V0[3] = { 0, 0, 0 };
if (!has_custom_props(bone, export_settings->keep_bind_info, "restpose_loc") &&
!has_custom_props(bone, export_settings->keep_bind_info, "restpose_rot") &&
!has_custom_props(bone, export_settings->keep_bind_info, "restpose_scale"))
{
/* No need */
copy_m4_m4(to_mat, from_mat);
return;
}
bc_decompose(from_mat, loc, rot, NULL, scale);
loc_eulO_size_to_mat4(to_mat, loc, rot, scale, 6);
if (export_settings->keep_bind_info) {
bc_get_property_vector(bone, "restpose_loc", loc, loc);
if (use_local_space && bone->parent) {
Bone *b = bone;
while (b->parent) {
b = b->parent;
float ploc[3];
bc_get_property_vector(b, "restpose_loc", ploc, V0);
loc[0] += ploc[0];
loc[1] += ploc[1];
loc[2] += ploc[2];
}
}
}
if (export_settings->keep_bind_info) {
if (bc_get_IDProperty(bone, "restpose_rot_x"))
rot[0] = DEG2RADF(bc_get_property(bone, "restpose_rot_x", 0));
if (bc_get_IDProperty(bone, "restpose_rot_y"))
rot[1] = DEG2RADF(bc_get_property(bone, "restpose_rot_y", 0));
if (bc_get_IDProperty(bone, "restpose_rot_z"))
rot[2] = DEG2RADF(bc_get_property(bone, "restpose_rot_z", 0));
}
if (export_settings->keep_bind_info) {
bc_get_property_vector(bone, "restpose_scale", scale, scale);
}
loc_eulO_size_to_mat4(to_mat, loc, rot, scale, 6);
}
/*
* Make 4*4 matrices better readable
*/
void bc_sanitize_mat(float mat[4][4], int precision)
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++) {
double val = (double)mat[i][j];
val = double_round(val, precision);
mat[i][j] = (float)val;
}
}
void bc_sanitize_v3(float v[3], int precision)
{
for (int i = 0; i < 3; i++) {
double val = (double)v[i];
val = double_round(val, precision);
v[i] = (float)val;
}
}
void bc_sanitize_mat(double mat[4][4], int precision)
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
mat[i][j] = double_round(mat[i][j], precision);
}
void bc_sanitize_v3(double v[3], int precision)
{
for (int i = 0; i < 3; i++) {
v[i] = double_round(v[i], precision);
}
}
void bc_copy_m4_farray(float r[4][4], float *a)
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
r[i][j] = *a++;
}
void bc_copy_farray_m4(float *r, float a[4][4])
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
*r++ = a[i][j];
}
void bc_copy_darray_m4d(double *r, double a[4][4])
{
for (int i = 0; i < 4; i++)
for (int j = 0; j < 4; j++)
*r++ = a[i][j];
}
void bc_copy_v44_m4d(std::vector<std::vector<double>> &r, double(&a)[4][4])
{
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
r[i][j] = a[i][j];
}
}
}
void bc_copy_m4d_v44(double (&r)[4][4], std::vector<std::vector<double>> &a)
{
for (int i = 0; i < 4; i++) {
for (int j = 0; j < 4; j++) {
r[i][j] = a[i][j];
}
}
}
/**
* Returns name of Active UV Layer or empty String if no active UV Layer defined
*/
std::string bc_get_active_uvlayer_name(Mesh *me)
{
int num_layers = CustomData_number_of_layers(&me->ldata, CD_MLOOPUV);
if (num_layers) {
char *layer_name = bc_CustomData_get_active_layer_name(&me->ldata, CD_MLOOPUV);
if (layer_name) {
return std::string(layer_name);
}
}
return "";
}
/**
* Returns name of Active UV Layer or empty String if no active UV Layer defined.
* Assuming the Object is of type MESH
*/
std::string bc_get_active_uvlayer_name(Object *ob)
{
Mesh *me = (Mesh *)ob->data;
return bc_get_active_uvlayer_name(me);
}
/**
* Returns UV Layer name or empty string if layer index is out of range
*/
std::string bc_get_uvlayer_name(Mesh *me, int layer)
{
int num_layers = CustomData_number_of_layers(&me->ldata, CD_MLOOPUV);
if (num_layers && layer < num_layers) {
char *layer_name = bc_CustomData_get_layer_name(&me->ldata, CD_MLOOPUV, layer);
if (layer_name) {
return std::string(layer_name);
}
}
return "";
}
std::string bc_find_bonename_in_path(std::string path, std::string probe)
{
std::string result;
char *boneName = BLI_str_quoted_substrN(path.c_str(), probe.c_str());
if (boneName) {
result = std::string(boneName);
MEM_freeN(boneName);
}
return result;
}
static bNodeTree *prepare_material_nodetree(Material *ma)
{
if (ma->nodetree == NULL) {
ma->nodetree = ntreeAddTree(NULL, "Shader Nodetree", "ShaderNodeTree");
ma->use_nodes = true;
}
return ma->nodetree;
}
bNode *bc_add_node(bContext *C, bNodeTree *ntree, int node_type, int locx, int locy, std::string label)
{
bNode *node = nodeAddStaticNode(C, ntree, node_type);
if (node) {
if (label.length() > 0) {
strcpy(node->label, label.c_str());
}
node->locx = locx;
node->locy = locy;
node->flag |= NODE_SELECT;
}
return node;
}
bNode *bc_add_node(bContext *C, bNodeTree *ntree, int node_type, int locx, int locy)
{
return bc_add_node(C, ntree, node_type, locx, locy, "");
}
#if 0
// experimental, probably not used
static bNodeSocket *bc_group_add_input_socket(bNodeTree *ntree, bNode *to_node, int to_index, std::string label)
{
bNodeSocket *to_socket = (bNodeSocket *)BLI_findlink(&to_node->inputs, to_index);
//bNodeSocket *socket = ntreeAddSocketInterfaceFromSocket(ntree, to_node, to_socket);
//return socket;
bNodeSocket *gsock = ntreeAddSocketInterfaceFromSocket(ntree, to_node, to_socket);
bNode *inputGroup = ntreeFindType(ntree, NODE_GROUP_INPUT);
node_group_input_verify(ntree, inputGroup, (ID *)ntree);
bNodeSocket *newsock = node_group_input_find_socket(inputGroup, gsock->identifier);
nodeAddLink(ntree, inputGroup, newsock, to_node, to_socket);
strcpy(newsock->name, label.c_str());
return newsock;
}
static bNodeSocket *bc_group_add_output_socket(bNodeTree *ntree, bNode *from_node, int from_index, std::string label)
{
bNodeSocket *from_socket = (bNodeSocket *)BLI_findlink(&from_node->outputs, from_index);
//bNodeSocket *socket = ntreeAddSocketInterfaceFromSocket(ntree, to_node, to_socket);
//return socket;
bNodeSocket *gsock = ntreeAddSocketInterfaceFromSocket(ntree, from_node, from_socket);
bNode *outputGroup = ntreeFindType(ntree, NODE_GROUP_OUTPUT);
node_group_output_verify(ntree, outputGroup, (ID *)ntree);
bNodeSocket *newsock = node_group_output_find_socket(outputGroup, gsock->identifier);
nodeAddLink(ntree, from_node, from_socket, outputGroup, newsock);
strcpy(newsock->name, label.c_str());
return newsock;
}
void bc_make_group(bContext *C, bNodeTree *ntree, std::map<std::string, bNode *> nmap)
{
bNode *gnode = node_group_make_from_selected(C, ntree, "ShaderNodeGroup", "ShaderNodeTree");
bNodeTree *gtree = (bNodeTree *)gnode->id;
bc_group_add_input_socket(gtree, nmap["main"], 0, "Diffuse");
bc_group_add_input_socket(gtree, nmap["emission"], 0, "Emission");
bc_group_add_input_socket(gtree, nmap["mix"], 0, "Transparency");
bc_group_add_input_socket(gtree, nmap["emission"], 1, "Emission");
bc_group_add_input_socket(gtree, nmap["main"], 4, "Metallic");
bc_group_add_input_socket(gtree, nmap["main"], 5, "Specular");
bc_group_add_output_socket(gtree, nmap["mix"], 0, "Shader");
}
#endif
static void bc_node_add_link(bNodeTree *ntree, bNode *from_node, int from_index, bNode *to_node, int to_index)
{
bNodeSocket *from_socket = (bNodeSocket *)BLI_findlink(&from_node->outputs, from_index);
bNodeSocket *to_socket = (bNodeSocket *)BLI_findlink(&to_node->inputs, to_index);
nodeAddLink(ntree, from_node, from_socket, to_node, to_socket);
}
void bc_add_default_shader(bContext *C, Material *ma)
{
bNodeTree *ntree = prepare_material_nodetree(ma);
std::map<std::string, bNode *> nmap;
#if 0
nmap["main"] = bc_add_node(C, ntree, SH_NODE_BSDF_PRINCIPLED, -300, 300);
nmap["emission"] = bc_add_node(C, ntree, SH_NODE_EMISSION, -300, 500, "emission");
nmap["add"] = bc_add_node(C, ntree, SH_NODE_ADD_SHADER, 100, 400);
nmap["transparent"] = bc_add_node(C, ntree, SH_NODE_BSDF_TRANSPARENT, 100, 200);
nmap["mix"] = bc_add_node(C, ntree, SH_NODE_MIX_SHADER, 400, 300, "transparency");
nmap["out"] = bc_add_node(C, ntree, SH_NODE_OUTPUT_MATERIAL, 600, 300);
nmap["out"]->flag &= ~NODE_SELECT;
bc_node_add_link(ntree, nmap["emission"], 0, nmap["add"], 0);
bc_node_add_link(ntree, nmap["main"], 0, nmap["add"], 1);
bc_node_add_link(ntree, nmap["add"], 0, nmap["mix"], 1);
bc_node_add_link(ntree, nmap["transparent"], 0, nmap["mix"], 2);
bc_node_add_link(ntree, nmap["mix"], 0, nmap["out"], 0);
// experimental, probably not used.
bc_make_group(C, ntree, nmap);
#else
nmap["main"] = bc_add_node(C, ntree, SH_NODE_BSDF_PRINCIPLED, 0, 300);
nmap["out"] = bc_add_node(C, ntree, SH_NODE_OUTPUT_MATERIAL, 300, 300);
bc_node_add_link(ntree, nmap["main"], 0, nmap["out"], 0);
#endif
}
COLLADASW::ColorOrTexture bc_get_base_color(Material *ma)
{
bNode *master_shader = bc_get_master_shader(ma);
if (master_shader) {
return bc_get_base_color(master_shader);
}
else {
return bc_get_cot(ma->r, ma->g, ma->b, ma->alpha);
}
}
COLLADASW::ColorOrTexture bc_get_specular_color(Material *ma, bool use_fallback)
{
bNode *master_shader = bc_get_master_shader(ma);
if (master_shader) {
return bc_get_specular_color(master_shader);
}
else if (use_fallback) {
return bc_get_cot(ma->specr * ma->spec, ma->specg * ma->spec, ma->specb * ma->spec, 1.0f);
}
else {
return bc_get_cot(0.0, 0.0, 0.0, 1.0); // no specular
}
}
COLLADASW::ColorOrTexture bc_get_base_color(bNode *shader)
{
bNodeSocket *socket = nodeFindSocket(shader, SOCK_IN, "Base Color");
if (socket)
{
bNodeSocketValueRGBA *dcol = (bNodeSocketValueRGBA *)socket->default_value;
float* col = dcol->value;
return bc_get_cot(col[0], col[1], col[2], col[3]);
}
else {
return bc_get_cot(0.8, 0.8, 0.8, 1.0); //default white
}
}
COLLADASW::ColorOrTexture bc_get_specular_color(bNode *shader)
{
bNodeSocket *socket = nodeFindSocket(shader, SOCK_IN, "Specular");
if (socket)
{
bNodeSocketValueRGBA *dcol = (bNodeSocketValueRGBA *)socket->default_value;
float* col = dcol->value;
return bc_get_cot(col[0], col[1], col[2], col[3]);
}
else {
return bc_get_cot(0.8, 0.8, 0.8, 1.0); //default white
}
}
bNode *bc_get_master_shader(Material *ma)
{
bNodeTree *nodetree = ma->nodetree;
if (nodetree) {
for (bNode *node = (bNode *)nodetree->nodes.first; node; node = node->next) {
if (node->typeinfo->type == SH_NODE_BSDF_PRINCIPLED) {
return node;
}
}
}
return NULL;
}
COLLADASW::ColorOrTexture bc_get_cot(float r, float g, float b, float a)
{
COLLADASW::Color color(r, g, b, a);
COLLADASW::ColorOrTexture cot(color);
return cot;
}