Rough summary of fixes/changes: - Blender Py API: GameLogic -> bge.logic - Blender Py API: Implemented missing KX_PYATTRIBUTE_TODOs and -DUMMYs. - Fix for [#22924] KX_PolygonMaterial.diffuse does not return expected list[r,g,b] - Py API: Renaming _owner attribute of mathutils classes to owner. - Fix some minor errors in mathutils and blf. - Enabling game engine autoplay again based on a patch by Dalai: * The biggest 3D view in the open scene is used, if there is none, blender opens the file normally and raises an error. * The 3D view are is made fullscreen. * Quad view, header, properties and toolbox panel are all hidden to get the maximum view. * If the game engine full screen setting is set, the game starts in fullscreen. - Fix for ipo conversion on file transition in the game engine.
		
			
				
	
	
		
			1036 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			1036 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * $Id$
 | |
|  *
 | |
|  * ***** BEGIN GPL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * 
 | |
|  * Contributor(s): Joseph Gilbert
 | |
|  *
 | |
|  * ***** END GPL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include "mathutils.h"
 | |
| 
 | |
| #include "BLI_math.h"
 | |
| #include "BKE_utildefines.h"
 | |
| 
 | |
| #define QUAT_SIZE 4
 | |
| 
 | |
| //-----------------------------METHODS------------------------------
 | |
| 
 | |
| /* note: BaseMath_ReadCallback must be called beforehand */
 | |
| static PyObject *Quaternion_ToTupleExt(QuaternionObject *self, int ndigits)
 | |
| {
 | |
| 	PyObject *ret;
 | |
| 	int i;
 | |
| 
 | |
| 	ret= PyTuple_New(QUAT_SIZE);
 | |
| 
 | |
| 	if(ndigits >= 0) {
 | |
| 		for(i= 0; i < QUAT_SIZE; i++) {
 | |
| 			PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(double_round((double)self->quat[i], ndigits)));
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		for(i= 0; i < QUAT_SIZE; i++) {
 | |
| 			PyTuple_SET_ITEM(ret, i, PyFloat_FromDouble(self->quat[i]));
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| static char Quaternion_ToEuler_doc[] =
 | |
| ".. method:: to_euler(order, euler_compat)\n"
 | |
| "\n"
 | |
| "   Return Euler representation of the quaternion.\n"
 | |
| "\n"
 | |
| "   :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
 | |
| "   :type order: string\n"
 | |
| "   :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n"
 | |
| "   :type euler_compat: :class:`Euler`\n"
 | |
| "   :return: Euler representation of the quaternion.\n"
 | |
| "   :rtype: :class:`Euler`\n";
 | |
| 
 | |
| static PyObject *Quaternion_ToEuler(QuaternionObject * self, PyObject *args)
 | |
| {
 | |
| 	float eul[3];
 | |
| 	char *order_str= NULL;
 | |
| 	short order= EULER_ORDER_XYZ;
 | |
| 	EulerObject *eul_compat = NULL;
 | |
| 	
 | |
| 	if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if(order_str) {
 | |
| 		order= euler_order_from_string(order_str, "Matrix.to_euler()");
 | |
| 
 | |
| 		if(order == -1)
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(eul_compat) {
 | |
| 		float mat[3][3];
 | |
| 		
 | |
| 		if(!BaseMath_ReadCallback(eul_compat))
 | |
| 			return NULL;
 | |
| 		
 | |
| 		quat_to_mat3(mat, self->quat);
 | |
| 
 | |
| 		if(order == EULER_ORDER_XYZ)	mat3_to_compatible_eul(eul, eul_compat->eul, mat);
 | |
| 		else							mat3_to_compatible_eulO(eul, eul_compat->eul, order, mat);
 | |
| 	}
 | |
| 	else {
 | |
| 		if(order == EULER_ORDER_XYZ)	quat_to_eul(eul, self->quat);
 | |
| 		else							quat_to_eulO(eul, order, self->quat);
 | |
| 	}
 | |
| 	
 | |
| 	return newEulerObject(eul, order, Py_NEW, NULL);
 | |
| }
 | |
| //----------------------------Quaternion.toMatrix()------------------
 | |
| static char Quaternion_ToMatrix_doc[] =
 | |
| ".. method:: to_matrix()\n"
 | |
| "\n"
 | |
| "   Return a matrix representation of the quaternion.\n"
 | |
| "\n"
 | |
| "   :return: A 3x3 rotation matrix representation of the quaternion.\n"
 | |
| "   :rtype: :class:`Matrix`\n";
 | |
| 
 | |
| static PyObject *Quaternion_ToMatrix(QuaternionObject * self)
 | |
| {
 | |
| 	float mat[9]; /* all values are set */
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	quat_to_mat3( (float (*)[3]) mat,self->quat);
 | |
| 	return newMatrixObject(mat, 3, 3, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| //----------------------------Quaternion.cross(other)------------------
 | |
| static char Quaternion_Cross_doc[] =
 | |
| ".. method:: cross(other)\n"
 | |
| "\n"
 | |
| "   Return the cross product of this quaternion and another.\n"
 | |
| "\n"
 | |
| "   :arg other: The other quaternion to perform the cross product with.\n"
 | |
| "   :type other: :class:`Quaternion`\n"
 | |
| "   :return: The cross product.\n"
 | |
| "   :rtype: :class:`Quaternion`\n";
 | |
| 
 | |
| static PyObject *Quaternion_Cross(QuaternionObject * self, QuaternionObject * value)
 | |
| {
 | |
| 	float quat[QUAT_SIZE];
 | |
| 	
 | |
| 	if (!QuaternionObject_Check(value)) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "quat.cross(value): expected a quaternion argument" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
 | |
| 		return NULL;
 | |
| 
 | |
| 	mul_qt_qtqt(quat, self->quat, value->quat);
 | |
| 	return newQuaternionObject(quat, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| //----------------------------Quaternion.dot(other)------------------
 | |
| static char Quaternion_Dot_doc[] =
 | |
| ".. method:: dot(other)\n"
 | |
| "\n"
 | |
| "   Return the dot product of this quaternion and another.\n"
 | |
| "\n"
 | |
| "   :arg other: The other quaternion to perform the dot product with.\n"
 | |
| "   :type other: :class:`Quaternion`\n"
 | |
| "   :return: The dot product.\n"
 | |
| "   :rtype: :class:`Quaternion`\n";
 | |
| 
 | |
| static PyObject *Quaternion_Dot(QuaternionObject * self, QuaternionObject * value)
 | |
| {
 | |
| 	if (!QuaternionObject_Check(value)) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "quat.dot(value): expected a quaternion argument" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return PyFloat_FromDouble(dot_qtqt(self->quat, value->quat));
 | |
| }
 | |
| 
 | |
| static char Quaternion_Difference_doc[] =
 | |
| ".. function:: difference(other)\n"
 | |
| "\n"
 | |
| "   Returns a quaternion representing the rotational difference.\n"
 | |
| "\n"
 | |
| "   :arg other: second quaternion.\n"
 | |
| "   :type other: :class:`Quaternion`\n"
 | |
| "   :return: the rotational difference between the two quat rotations.\n"
 | |
| "   :rtype: :class:`Quaternion`\n";
 | |
| 
 | |
| static PyObject *Quaternion_Difference(QuaternionObject * self, QuaternionObject * value)
 | |
| {
 | |
| 	float quat[QUAT_SIZE];
 | |
| 
 | |
| 	if (!QuaternionObject_Check(value)) {
 | |
| 		PyErr_SetString( PyExc_TypeError, "quat.difference(value): expected a quaternion argument" );
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
 | |
| 		return NULL;
 | |
| 
 | |
| 	rotation_between_quats_to_quat(quat, self->quat, value->quat);
 | |
| 
 | |
| 	return newQuaternionObject(quat, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| static char Quaternion_Slerp_doc[] =
 | |
| ".. function:: slerp(other, factor)\n"
 | |
| "\n"
 | |
| "   Returns the interpolation of two quaternions.\n"
 | |
| "\n"
 | |
| "   :arg other: value to interpolate with.\n"
 | |
| "   :type other: :class:`Quaternion`\n"
 | |
| "   :arg factor: The interpolation value in [0.0, 1.0].\n"
 | |
| "   :type factor: float\n"
 | |
| "   :return: The interpolated rotation.\n"
 | |
| "   :rtype: :class:`Quaternion`\n";
 | |
| 
 | |
| static PyObject *Quaternion_Slerp(QuaternionObject *self, PyObject *args)
 | |
| {
 | |
| 	QuaternionObject *value;
 | |
| 	float quat[QUAT_SIZE], fac;
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "O!f:slerp", &quaternion_Type, &value, &fac)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "quat.slerp(): expected Quaternion types and float");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self) || !BaseMath_ReadCallback(value))
 | |
| 		return NULL;
 | |
| 
 | |
| 	if(fac > 1.0f || fac < 0.0f) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "quat.slerp(): interpolation factor must be between 0.0 and 1.0");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	interp_qt_qtqt(quat, self->quat, value->quat, fac);
 | |
| 
 | |
| 	return newQuaternionObject(quat, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| //----------------------------Quaternion.normalize()----------------
 | |
| //normalize the axis of rotation of [theta,vector]
 | |
| static char Quaternion_Normalize_doc[] =
 | |
| ".. function:: normalize()\n"
 | |
| "\n"
 | |
| "   Normalize the quaternion.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself.\n"
 | |
| "   :rtype: :class:`Quaternion`\n";
 | |
| 
 | |
| static PyObject *Quaternion_Normalize(QuaternionObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	normalize_qt(self->quat);
 | |
| 
 | |
| 	BaseMath_WriteCallback(self);
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject*)self;
 | |
| }
 | |
| //----------------------------Quaternion.inverse()------------------
 | |
| static char Quaternion_Inverse_doc[] =
 | |
| ".. function:: inverse()\n"
 | |
| "\n"
 | |
| "   Set the quaternion to its inverse.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself.\n"
 | |
| "   :rtype: :class:`Quaternion`\n";
 | |
| 
 | |
| static PyObject *Quaternion_Inverse(QuaternionObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	invert_qt(self->quat);
 | |
| 
 | |
| 	BaseMath_WriteCallback(self);
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject*)self;
 | |
| }
 | |
| //----------------------------Quaternion.identity()-----------------
 | |
| static char Quaternion_Identity_doc[] =
 | |
| ".. function:: identity()\n"
 | |
| "\n"
 | |
| "   Set the quaternion to an identity quaternion.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself.\n"
 | |
| "   :rtype: :class:`Quaternion`\n";
 | |
| 
 | |
| static PyObject *Quaternion_Identity(QuaternionObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	unit_qt(self->quat);
 | |
| 
 | |
| 	BaseMath_WriteCallback(self);
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject*)self;
 | |
| }
 | |
| //----------------------------Quaternion.negate()-------------------
 | |
| static char Quaternion_Negate_doc[] =
 | |
| ".. function:: negate()\n"
 | |
| "\n"
 | |
| "   Set the quaternion to its negative.\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself.\n"
 | |
| "   :rtype: :class:`Quaternion`\n";
 | |
| 
 | |
| static PyObject *Quaternion_Negate(QuaternionObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	mul_qt_fl(self->quat, -1.0f);
 | |
| 
 | |
| 	BaseMath_WriteCallback(self);
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject*)self;
 | |
| }
 | |
| //----------------------------Quaternion.conjugate()----------------
 | |
| static char Quaternion_Conjugate_doc[] =
 | |
| ".. function:: conjugate()\n"
 | |
| "\n"
 | |
| "   Set the quaternion to its conjugate (negate x, y, z).\n"
 | |
| "\n"
 | |
| "   :return: an instance of itself.\n"
 | |
| "   :rtype: :class:`Quaternion`\n";
 | |
| 
 | |
| static PyObject *Quaternion_Conjugate(QuaternionObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	conjugate_qt(self->quat);
 | |
| 
 | |
| 	BaseMath_WriteCallback(self);
 | |
| 	Py_INCREF(self);
 | |
| 	return (PyObject*)self;
 | |
| }
 | |
| //----------------------------Quaternion.copy()----------------
 | |
| static char Quaternion_copy_doc[] =
 | |
| ".. function:: copy()\n"
 | |
| "\n"
 | |
| "   Returns a copy of this quaternion.\n"
 | |
| "\n"
 | |
| "   :return: A copy of the quaternion.\n"
 | |
| "   :rtype: :class:`Quaternion`\n"
 | |
| "\n"
 | |
| "   .. note:: use this to get a copy of a wrapped quaternion with no reference to the original data.\n";
 | |
| 
 | |
| static PyObject *Quaternion_copy(QuaternionObject * self)
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return newQuaternionObject(self->quat, Py_NEW, Py_TYPE(self));
 | |
| }
 | |
| 
 | |
| //----------------------------print object (internal)--------------
 | |
| //print the object to screen
 | |
| static PyObject *Quaternion_repr(QuaternionObject * self)
 | |
| {
 | |
| 	PyObject *ret, *tuple;
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	tuple= Quaternion_ToTupleExt(self, -1);
 | |
| 
 | |
| 	ret= PyUnicode_FromFormat("Quaternion(%R)", tuple);
 | |
| 
 | |
| 	Py_DECREF(tuple);
 | |
| 	return ret;
 | |
| }
 | |
| 
 | |
| //------------------------tp_richcmpr
 | |
| //returns -1 execption, 0 false, 1 true
 | |
| static PyObject* Quaternion_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
 | |
| {
 | |
| 	QuaternionObject *quatA = NULL, *quatB = NULL;
 | |
| 	int result = 0;
 | |
| 
 | |
| 	if(QuaternionObject_Check(objectA)) {
 | |
| 		quatA = (QuaternionObject*)objectA;
 | |
| 		if(!BaseMath_ReadCallback(quatA))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	if(QuaternionObject_Check(objectB)) {
 | |
| 		quatB = (QuaternionObject*)objectB;
 | |
| 		if(!BaseMath_ReadCallback(quatB))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if (!quatA || !quatB){
 | |
| 		if (comparison_type == Py_NE){
 | |
| 			Py_RETURN_TRUE;
 | |
| 		}else{
 | |
| 			Py_RETURN_FALSE;
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	switch (comparison_type){
 | |
| 		case Py_EQ:
 | |
| 			result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1);
 | |
| 			break;
 | |
| 		case Py_NE:
 | |
| 			result = EXPP_VectorsAreEqual(quatA->quat, quatB->quat, QUAT_SIZE, 1);
 | |
| 			if (result == 0){
 | |
| 				result = 1;
 | |
| 			}else{
 | |
| 				result = 0;
 | |
| 			}
 | |
| 			break;
 | |
| 		default:
 | |
| 			printf("The result of the comparison could not be evaluated");
 | |
| 			break;
 | |
| 	}
 | |
| 	if (result == 1){
 | |
| 		Py_RETURN_TRUE;
 | |
| 	}else{
 | |
| 		Py_RETURN_FALSE;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| //---------------------SEQUENCE PROTOCOLS------------------------
 | |
| //----------------------------len(object)------------------------
 | |
| //sequence length
 | |
| static int Quaternion_len(QuaternionObject * self)
 | |
| {
 | |
| 	return QUAT_SIZE;
 | |
| }
 | |
| //----------------------------object[]---------------------------
 | |
| //sequence accessor (get)
 | |
| static PyObject *Quaternion_item(QuaternionObject * self, int i)
 | |
| {
 | |
| 	if(i<0)	i= QUAT_SIZE-i;
 | |
| 
 | |
| 	if(i < 0 || i >= QUAT_SIZE) {
 | |
| 		PyErr_SetString(PyExc_IndexError, "quaternion[attribute]: array index out of range\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(!BaseMath_ReadIndexCallback(self, i))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return PyFloat_FromDouble(self->quat[i]);
 | |
| 
 | |
| }
 | |
| //----------------------------object[]-------------------------
 | |
| //sequence accessor (set)
 | |
| static int Quaternion_ass_item(QuaternionObject * self, int i, PyObject * ob)
 | |
| {
 | |
| 	float scalar= (float)PyFloat_AsDouble(ob);
 | |
| 	if(scalar==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
 | |
| 		PyErr_SetString(PyExc_TypeError, "quaternion[index] = x: index argument not a number\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	if(i<0)	i= QUAT_SIZE-i;
 | |
| 
 | |
| 	if(i < 0 || i >= QUAT_SIZE){
 | |
| 		PyErr_SetString(PyExc_IndexError, "quaternion[attribute] = x: array assignment index out of range\n");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	self->quat[i] = scalar;
 | |
| 
 | |
| 	if(!BaseMath_WriteIndexCallback(self, i))
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| //----------------------------object[z:y]------------------------
 | |
| //sequence slice (get)
 | |
| static PyObject *Quaternion_slice(QuaternionObject * self, int begin, int end)
 | |
| {
 | |
| 	PyObject *list = NULL;
 | |
| 	int count;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	CLAMP(begin, 0, QUAT_SIZE);
 | |
| 	if (end<0) end= (QUAT_SIZE + 1) + end;
 | |
| 	CLAMP(end, 0, QUAT_SIZE);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	list = PyList_New(end - begin);
 | |
| 	for(count = begin; count < end; count++) {
 | |
| 		PyList_SetItem(list, count - begin,
 | |
| 				PyFloat_FromDouble(self->quat[count]));
 | |
| 	}
 | |
| 
 | |
| 	return list;
 | |
| }
 | |
| //----------------------------object[z:y]------------------------
 | |
| //sequence slice (set)
 | |
| static int Quaternion_ass_slice(QuaternionObject * self, int begin, int end, PyObject * seq)
 | |
| {
 | |
| 	int i, size;
 | |
| 	float quat[QUAT_SIZE];
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return -1;
 | |
| 
 | |
| 	CLAMP(begin, 0, QUAT_SIZE);
 | |
| 	if (end<0) end= (QUAT_SIZE + 1) + end;
 | |
| 	CLAMP(end, 0, QUAT_SIZE);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	if((size=mathutils_array_parse(quat, 0, QUAT_SIZE, seq, "mathutils.Quaternion[begin:end] = []")) == -1)
 | |
| 		return -1;
 | |
| 	
 | |
| 	if(size != (end - begin)){
 | |
| 		PyErr_SetString(PyExc_TypeError, "quaternion[begin:end] = []: size mismatch in slice assignment");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* parsed well - now set in vector */
 | |
| 	for(i= 0; i < size; i++)
 | |
| 		self->quat[begin + i] = quat[i];
 | |
| 
 | |
| 	BaseMath_WriteCallback(self);
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| 
 | |
| static PyObject *Quaternion_subscript(QuaternionObject *self, PyObject *item)
 | |
| {
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i;
 | |
| 		i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return NULL;
 | |
| 		if (i < 0)
 | |
| 			i += QUAT_SIZE;
 | |
| 		return Quaternion_item(self, i);
 | |
| 	} else if (PySlice_Check(item)) {
 | |
| 		Py_ssize_t start, stop, step, slicelength;
 | |
| 
 | |
| 		if (PySlice_GetIndicesEx((PySliceObject*)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
 | |
| 			return NULL;
 | |
| 
 | |
| 		if (slicelength <= 0) {
 | |
| 			return PyList_New(0);
 | |
| 		}
 | |
| 		else if (step == 1) {
 | |
| 			return Quaternion_slice(self, start, stop);
 | |
| 		}
 | |
| 		else {
 | |
| 			PyErr_SetString(PyExc_TypeError, "slice steps not supported with quaternions");
 | |
| 			return NULL;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 				 "quaternion indices must be integers, not %.200s",
 | |
| 				 item->ob_type->tp_name);
 | |
| 		return NULL;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| static int Quaternion_ass_subscript(QuaternionObject *self, PyObject *item, PyObject *value)
 | |
| {
 | |
| 	if (PyIndex_Check(item)) {
 | |
| 		Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
 | |
| 		if (i == -1 && PyErr_Occurred())
 | |
| 			return -1;
 | |
| 		if (i < 0)
 | |
| 			i += QUAT_SIZE;
 | |
| 		return Quaternion_ass_item(self, i, value);
 | |
| 	}
 | |
| 	else if (PySlice_Check(item)) {
 | |
| 		Py_ssize_t start, stop, step, slicelength;
 | |
| 
 | |
| 		if (PySlice_GetIndicesEx((PySliceObject*)item, QUAT_SIZE, &start, &stop, &step, &slicelength) < 0)
 | |
| 			return -1;
 | |
| 
 | |
| 		if (step == 1)
 | |
| 			return Quaternion_ass_slice(self, start, stop, value);
 | |
| 		else {
 | |
| 			PyErr_SetString(PyExc_TypeError, "slice steps not supported with quaternion");
 | |
| 			return -1;
 | |
| 		}
 | |
| 	}
 | |
| 	else {
 | |
| 		PyErr_Format(PyExc_TypeError,
 | |
| 				 "quaternion indices must be integers, not %.200s",
 | |
| 				 item->ob_type->tp_name);
 | |
| 		return -1;
 | |
| 	}
 | |
| }
 | |
| 
 | |
| //------------------------NUMERIC PROTOCOLS----------------------
 | |
| //------------------------obj + obj------------------------------
 | |
| //addition
 | |
| static PyObject *Quaternion_add(PyObject * q1, PyObject * q2)
 | |
| {
 | |
| 	float quat[QUAT_SIZE];
 | |
| 	QuaternionObject *quat1 = NULL, *quat2 = NULL;
 | |
| 
 | |
| 	if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	quat1 = (QuaternionObject*)q1;
 | |
| 	quat2 = (QuaternionObject*)q2;
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
 | |
| 		return NULL;
 | |
| 
 | |
| 	add_qt_qtqt(quat, quat1->quat, quat2->quat, 1.0f);
 | |
| 	return newQuaternionObject(quat, Py_NEW, NULL);
 | |
| }
 | |
| //------------------------obj - obj------------------------------
 | |
| //subtraction
 | |
| static PyObject *Quaternion_sub(PyObject * q1, PyObject * q2)
 | |
| {
 | |
| 	int x;
 | |
| 	float quat[QUAT_SIZE];
 | |
| 	QuaternionObject *quat1 = NULL, *quat2 = NULL;
 | |
| 
 | |
| 	if(!QuaternionObject_Check(q1) || !QuaternionObject_Check(q2)) {
 | |
| 		PyErr_SetString(PyExc_AttributeError, "Quaternion addition: arguments not valid for this operation....\n");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	
 | |
| 	quat1 = (QuaternionObject*)q1;
 | |
| 	quat2 = (QuaternionObject*)q2;
 | |
| 	
 | |
| 	if(!BaseMath_ReadCallback(quat1) || !BaseMath_ReadCallback(quat2))
 | |
| 		return NULL;
 | |
| 
 | |
| 	for(x = 0; x < QUAT_SIZE; x++) {
 | |
| 		quat[x] = quat1->quat[x] - quat2->quat[x];
 | |
| 	}
 | |
| 
 | |
| 	return newQuaternionObject(quat, Py_NEW, NULL);
 | |
| }
 | |
| //------------------------obj * obj------------------------------
 | |
| //mulplication
 | |
| static PyObject *Quaternion_mul(PyObject * q1, PyObject * q2)
 | |
| {
 | |
| 	float quat[QUAT_SIZE], scalar;
 | |
| 	QuaternionObject *quat1 = NULL, *quat2 = NULL;
 | |
| 	VectorObject *vec = NULL;
 | |
| 
 | |
| 	if(QuaternionObject_Check(q1)) {
 | |
| 		quat1 = (QuaternionObject*)q1;
 | |
| 		if(!BaseMath_ReadCallback(quat1))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 	if(QuaternionObject_Check(q2)) {
 | |
| 		quat2 = (QuaternionObject*)q2;
 | |
| 		if(!BaseMath_ReadCallback(quat2))
 | |
| 			return NULL;
 | |
| 	}
 | |
| 
 | |
| 	if(quat1 && quat2) { /* QUAT*QUAT (cross product) */
 | |
| 		mul_qt_qtqt(quat, quat1->quat, quat2->quat);
 | |
| 		return newQuaternionObject(quat, Py_NEW, NULL);
 | |
| 	}
 | |
| 	
 | |
| 	/* the only case this can happen (for a supported type is "FLOAT*QUAT" ) */
 | |
| 	if(!QuaternionObject_Check(q1)) {
 | |
| 		scalar= PyFloat_AsDouble(q1);
 | |
| 		if ((scalar == -1.0 && PyErr_Occurred())==0) { /* FLOAT*QUAT */
 | |
| 			QUATCOPY(quat, quat2->quat);
 | |
| 			mul_qt_fl(quat, scalar);
 | |
| 			return newQuaternionObject(quat, Py_NEW, NULL);
 | |
| 		}
 | |
| 		PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: val * quat, val is not an acceptable type");
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	else { /* QUAT*SOMETHING */
 | |
| 		if(VectorObject_Check(q2)){  /* QUAT*VEC */
 | |
| 			float tvec[3];
 | |
| 			vec = (VectorObject*)q2;
 | |
| 			if(vec->size != 3){
 | |
| 				PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: only 3D vector rotations currently supported\n");
 | |
| 				return NULL;
 | |
| 			}
 | |
| 			if(!BaseMath_ReadCallback(vec)) {
 | |
| 				return NULL;
 | |
| 			}
 | |
| 
 | |
| 			copy_v3_v3(tvec, vec->vec);
 | |
| 			mul_qt_v3(quat1->quat, tvec);
 | |
| 			return newVectorObject(tvec, 3, Py_NEW, NULL);
 | |
| 		}
 | |
| 		
 | |
| 		scalar= PyFloat_AsDouble(q2);
 | |
| 		if ((scalar == -1.0 && PyErr_Occurred())==0) { /* QUAT*FLOAT */
 | |
| 			QUATCOPY(quat, quat1->quat);
 | |
| 			mul_qt_fl(quat, scalar);
 | |
| 			return newQuaternionObject(quat, Py_NEW, NULL);
 | |
| 		}
 | |
| 	}
 | |
| 	
 | |
| 	PyErr_SetString(PyExc_TypeError, "Quaternion multiplication: arguments not acceptable for this operation\n");
 | |
| 	return NULL;
 | |
| }
 | |
| 
 | |
| //-----------------PROTOCOL DECLARATIONS--------------------------
 | |
| static PySequenceMethods Quaternion_SeqMethods = {
 | |
| 	(lenfunc) Quaternion_len,				/* sq_length */
 | |
| 	(binaryfunc) NULL,						/* sq_concat */
 | |
| 	(ssizeargfunc) NULL,					/* sq_repeat */
 | |
| 	(ssizeargfunc) Quaternion_item,			/* sq_item */
 | |
| 	(ssizessizeargfunc) NULL,				/* sq_slice, deprecated */
 | |
| 	(ssizeobjargproc) Quaternion_ass_item,	/* sq_ass_item */
 | |
| 	(ssizessizeobjargproc) NULL,			/* sq_ass_slice, deprecated */
 | |
| 	(objobjproc) NULL,						/* sq_contains */
 | |
| 	(binaryfunc) NULL,						/* sq_inplace_concat */
 | |
| 	(ssizeargfunc) NULL,					/* sq_inplace_repeat */
 | |
| };
 | |
| 
 | |
| static PyMappingMethods Quaternion_AsMapping = {
 | |
| 	(lenfunc)Quaternion_len,
 | |
| 	(binaryfunc)Quaternion_subscript,
 | |
| 	(objobjargproc)Quaternion_ass_subscript
 | |
| };
 | |
| 
 | |
| static PyNumberMethods Quaternion_NumMethods = {
 | |
| 	(binaryfunc)	Quaternion_add,	/*nb_add*/
 | |
| 	(binaryfunc)	Quaternion_sub,	/*nb_subtract*/
 | |
| 	(binaryfunc)	Quaternion_mul,	/*nb_multiply*/
 | |
| 	0,							/*nb_remainder*/
 | |
| 	0,							/*nb_divmod*/
 | |
| 	0,							/*nb_power*/
 | |
| 	(unaryfunc) 	0,	/*nb_negative*/
 | |
| 	(unaryfunc) 	0,	/*tp_positive*/
 | |
| 	(unaryfunc) 	0,	/*tp_absolute*/
 | |
| 	(inquiry)	0,	/*tp_bool*/
 | |
| 	(unaryfunc)	0,	/*nb_invert*/
 | |
| 	0,				/*nb_lshift*/
 | |
| 	(binaryfunc)0,	/*nb_rshift*/
 | |
| 	0,				/*nb_and*/
 | |
| 	0,				/*nb_xor*/
 | |
| 	0,				/*nb_or*/
 | |
| 	0,				/*nb_int*/
 | |
| 	0,				/*nb_reserved*/
 | |
| 	0,				/*nb_float*/
 | |
| 	0,				/* nb_inplace_add */
 | |
| 	0,				/* nb_inplace_subtract */
 | |
| 	0,				/* nb_inplace_multiply */
 | |
| 	0,				/* nb_inplace_remainder */
 | |
| 	0,				/* nb_inplace_power */
 | |
| 	0,				/* nb_inplace_lshift */
 | |
| 	0,				/* nb_inplace_rshift */
 | |
| 	0,				/* nb_inplace_and */
 | |
| 	0,				/* nb_inplace_xor */
 | |
| 	0,				/* nb_inplace_or */
 | |
| 	0,				/* nb_floor_divide */
 | |
| 	0,				/* nb_true_divide */
 | |
| 	0,				/* nb_inplace_floor_divide */
 | |
| 	0,				/* nb_inplace_true_divide */
 | |
| 	0,				/* nb_index */
 | |
| };
 | |
| 
 | |
| static PyObject *Quaternion_getAxis( QuaternionObject * self, void *type )
 | |
| {
 | |
| 	return Quaternion_item(self, GET_INT_FROM_POINTER(type));
 | |
| }
 | |
| 
 | |
| static int Quaternion_setAxis( QuaternionObject * self, PyObject * value, void * type )
 | |
| {
 | |
| 	return Quaternion_ass_item(self, GET_INT_FROM_POINTER(type), value);
 | |
| }
 | |
| 
 | |
| static PyObject *Quaternion_getMagnitude( QuaternionObject * self, void *type )
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return PyFloat_FromDouble(sqrt(dot_qtqt(self->quat, self->quat)));
 | |
| }
 | |
| 
 | |
| static PyObject *Quaternion_getAngle( QuaternionObject * self, void *type )
 | |
| {
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 
 | |
| 	return PyFloat_FromDouble(2.0 * (saacos(self->quat[0])));
 | |
| }
 | |
| 
 | |
| static int Quaternion_setAngle(QuaternionObject * self, PyObject * value, void * type)
 | |
| {
 | |
| 	float axis[3];
 | |
| 	float angle;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return -1;
 | |
| 
 | |
| 	quat_to_axis_angle(axis, &angle, self->quat);
 | |
| 
 | |
| 	angle = PyFloat_AsDouble(value);
 | |
| 
 | |
| 	if(angle==-1.0f && PyErr_Occurred()) { /* parsed item not a number */
 | |
| 		PyErr_SetString(PyExc_TypeError, "quaternion.angle = value: float expected");
 | |
| 		return -1;
 | |
| 	}
 | |
| 
 | |
| 	/* If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations */
 | |
| 	if( EXPP_FloatsAreEqual(axis[0], 0.0f, 10) &&
 | |
| 		EXPP_FloatsAreEqual(axis[1], 0.0f, 10) &&
 | |
| 		EXPP_FloatsAreEqual(axis[2], 0.0f, 10)
 | |
| 	) {
 | |
| 		axis[0] = 1.0f;
 | |
| 	}
 | |
| 	
 | |
| 	axis_angle_to_quat(self->quat, axis, angle);
 | |
| 
 | |
| 	if(!BaseMath_WriteCallback(self))
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| static PyObject *Quaternion_getAxisVec(QuaternionObject *self, void *type)
 | |
| {
 | |
| 	float axis[3];
 | |
| 	float angle;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return NULL;
 | |
| 	
 | |
| 	quat_to_axis_angle(axis, &angle, self->quat);
 | |
| 
 | |
| 	/* If the axis of rotation is 0,0,0 set it to 1,0,0 - for zero-degree rotations */
 | |
| 	if( EXPP_FloatsAreEqual(axis[0], 0.0f, 10) &&
 | |
| 		EXPP_FloatsAreEqual(axis[1], 0.0f, 10) &&
 | |
| 		EXPP_FloatsAreEqual(axis[2], 0.0f, 10)
 | |
| 	) {
 | |
| 		axis[0] = 1.0f;
 | |
| 	}
 | |
| 
 | |
| 	return (PyObject *) newVectorObject(axis, 3, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| static int Quaternion_setAxisVec(QuaternionObject *self, PyObject *value, void *type)
 | |
| {
 | |
| 	float axis[3];
 | |
| 	float angle;
 | |
| 	
 | |
| 	VectorObject *vec;
 | |
| 
 | |
| 	if(!BaseMath_ReadCallback(self))
 | |
| 		return -1;
 | |
| 
 | |
| 	quat_to_axis_angle(axis, &angle, self->quat);
 | |
| 
 | |
| 	if(!VectorObject_Check(value)) {
 | |
| 		PyErr_SetString(PyExc_TypeError, "quaternion.axis = value: expected a 3D Vector");
 | |
| 		return -1;
 | |
| 	}
 | |
| 	
 | |
| 	vec= (VectorObject *)value;
 | |
| 	if(!BaseMath_ReadCallback(vec))
 | |
| 		return -1;
 | |
| 
 | |
| 	axis_angle_to_quat(self->quat, vec->vec, angle);
 | |
| 
 | |
| 	if(!BaseMath_WriteCallback(self))
 | |
| 		return -1;
 | |
| 
 | |
| 	return 0;
 | |
| }
 | |
| 
 | |
| //----------------------------------mathutils.Quaternion() --------------
 | |
| static PyObject *Quaternion_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
 | |
| {
 | |
| 	PyObject *seq= NULL;
 | |
| 	float angle = 0.0f;
 | |
| 	float quat[QUAT_SIZE]= {0.0f, 0.0f, 0.0f, 0.0f};
 | |
| 
 | |
| 	if(!PyArg_ParseTuple(args, "|Of:mathutils.Quaternion", &seq, &angle))
 | |
| 		return NULL;
 | |
| 
 | |
| 	switch(PyTuple_GET_SIZE(args)) {
 | |
| 	case 0:
 | |
| 		break;
 | |
| 	case 1:
 | |
| 		if (mathutils_array_parse(quat, QUAT_SIZE, QUAT_SIZE, seq, "mathutils.Quaternion()") == -1)
 | |
| 			return NULL;
 | |
| 		break;
 | |
| 	case 2:
 | |
| 		if (mathutils_array_parse(quat, 3, 3, seq, "mathutils.Quaternion()") == -1)
 | |
| 			return NULL;
 | |
| 
 | |
| 		axis_angle_to_quat(quat, quat, angle);
 | |
| 		break;
 | |
| 	/* PyArg_ParseTuple assures no more then 2 */
 | |
| 	}
 | |
| 	return newQuaternionObject(quat, Py_NEW, NULL);
 | |
| }
 | |
| 
 | |
| 
 | |
| //-----------------------METHOD DEFINITIONS ----------------------
 | |
| static struct PyMethodDef Quaternion_methods[] = {
 | |
| 	{"identity", (PyCFunction) Quaternion_Identity, METH_NOARGS, Quaternion_Identity_doc},
 | |
| 	{"negate", (PyCFunction) Quaternion_Negate, METH_NOARGS, Quaternion_Negate_doc},
 | |
| 	{"conjugate", (PyCFunction) Quaternion_Conjugate, METH_NOARGS, Quaternion_Conjugate_doc},
 | |
| 	{"inverse", (PyCFunction) Quaternion_Inverse, METH_NOARGS, Quaternion_Inverse_doc},
 | |
| 	{"normalize", (PyCFunction) Quaternion_Normalize, METH_NOARGS, Quaternion_Normalize_doc},
 | |
| 	{"to_euler", (PyCFunction) Quaternion_ToEuler, METH_VARARGS, Quaternion_ToEuler_doc},
 | |
| 	{"to_matrix", (PyCFunction) Quaternion_ToMatrix, METH_NOARGS, Quaternion_ToMatrix_doc},
 | |
| 	{"cross", (PyCFunction) Quaternion_Cross, METH_O, Quaternion_Cross_doc},
 | |
| 	{"dot", (PyCFunction) Quaternion_Dot, METH_O, Quaternion_Dot_doc},
 | |
| 	{"difference", (PyCFunction) Quaternion_Difference, METH_O, Quaternion_Difference_doc},
 | |
| 	{"slerp", (PyCFunction) Quaternion_Slerp, METH_VARARGS, Quaternion_Slerp_doc},
 | |
| 	{"__copy__", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
 | |
| 	{"copy", (PyCFunction) Quaternion_copy, METH_NOARGS, Quaternion_copy_doc},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| 
 | |
| /*****************************************************************************/
 | |
| /* Python attributes get/set structure:                                      */
 | |
| /*****************************************************************************/
 | |
| static PyGetSetDef Quaternion_getseters[] = {
 | |
| 	{"w", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion W value.\n\n:type: float", (void *)0},
 | |
| 	{"x", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion X axis.\n\n:type: float", (void *)1},
 | |
| 	{"y", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Y axis.\n\n:type: float", (void *)2},
 | |
| 	{"z", (getter)Quaternion_getAxis, (setter)Quaternion_setAxis, "Quaternion Z axis.\n\n:type: float", (void *)3},
 | |
| 	{"magnitude", (getter)Quaternion_getMagnitude, (setter)NULL, "Size of the quaternion (readonly).\n\n:type: float", NULL},
 | |
| 	{"angle", (getter)Quaternion_getAngle, (setter)Quaternion_setAngle, "angle of the quaternion.\n\n:type: float", NULL},
 | |
| 	{"axis",(getter)Quaternion_getAxisVec, (setter)Quaternion_setAxisVec, "quaternion axis as a vector.\n\n:type: :class:`Vector`", NULL},
 | |
| 	{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
 | |
| 	{"owner", (getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
 | |
| 	{NULL,NULL,NULL,NULL,NULL}  /* Sentinel */
 | |
| };
 | |
| 
 | |
| //------------------PY_OBECT DEFINITION--------------------------
 | |
| static char quaternion_doc[] =
 | |
| "This object gives access to Quaternions in Blender.";
 | |
| 
 | |
| PyTypeObject quaternion_Type = {
 | |
| 	PyVarObject_HEAD_INIT(NULL, 0)
 | |
| 	"quaternion",						//tp_name
 | |
| 	sizeof(QuaternionObject),			//tp_basicsize
 | |
| 	0,								//tp_itemsize
 | |
| 	(destructor)BaseMathObject_dealloc,		//tp_dealloc
 | |
| 	0,								//tp_print
 | |
| 	0,								//tp_getattr
 | |
| 	0,								//tp_setattr
 | |
| 	0,								//tp_compare
 | |
| 	(reprfunc) Quaternion_repr,		//tp_repr
 | |
| 	&Quaternion_NumMethods,			//tp_as_number
 | |
| 	&Quaternion_SeqMethods,			//tp_as_sequence
 | |
| 	&Quaternion_AsMapping,			//tp_as_mapping
 | |
| 	0,								//tp_hash
 | |
| 	0,								//tp_call
 | |
| 	0,								//tp_str
 | |
| 	0,								//tp_getattro
 | |
| 	0,								//tp_setattro
 | |
| 	0,								//tp_as_buffer
 | |
| 	Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, //tp_flags
 | |
| 	quaternion_doc, //tp_doc
 | |
| 	0,								//tp_traverse
 | |
| 	0,								//tp_clear
 | |
| 	(richcmpfunc)Quaternion_richcmpr,	//tp_richcompare
 | |
| 	0,								//tp_weaklistoffset
 | |
| 	0,								//tp_iter
 | |
| 	0,								//tp_iternext
 | |
| 	Quaternion_methods,				//tp_methods
 | |
| 	0,								//tp_members
 | |
| 	Quaternion_getseters,			//tp_getset
 | |
| 	0,								//tp_base
 | |
| 	0,								//tp_dict
 | |
| 	0,								//tp_descr_get
 | |
| 	0,								//tp_descr_set
 | |
| 	0,								//tp_dictoffset
 | |
| 	0,								//tp_init
 | |
| 	0,								//tp_alloc
 | |
| 	Quaternion_new,					//tp_new
 | |
| 	0,								//tp_free
 | |
| 	0,								//tp_is_gc
 | |
| 	0,								//tp_bases
 | |
| 	0,								//tp_mro
 | |
| 	0,								//tp_cache
 | |
| 	0,								//tp_subclasses
 | |
| 	0,								//tp_weaklist
 | |
| 	0								//tp_del
 | |
| };
 | |
| //------------------------newQuaternionObject (internal)-------------
 | |
| //creates a new quaternion object
 | |
| /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | |
|  (i.e. it was allocated elsewhere by MEM_mallocN())
 | |
|   pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | |
|  (i.e. it must be created here with PyMEM_malloc())*/
 | |
| PyObject *newQuaternionObject(float *quat, int type, PyTypeObject *base_type)
 | |
| {
 | |
| 	QuaternionObject *self;
 | |
| 	
 | |
| 	if(base_type)	self = (QuaternionObject *)base_type->tp_alloc(base_type, 0);
 | |
| 	else			self = PyObject_NEW(QuaternionObject, &quaternion_Type);
 | |
| 
 | |
| 	/* init callbacks as NULL */
 | |
| 	self->cb_user= NULL;
 | |
| 	self->cb_type= self->cb_subtype= 0;
 | |
| 
 | |
| 	if(type == Py_WRAP){
 | |
| 		self->quat = quat;
 | |
| 		self->wrapped = Py_WRAP;
 | |
| 	}else if (type == Py_NEW){
 | |
| 		self->quat = PyMem_Malloc(QUAT_SIZE * sizeof(float));
 | |
| 		if(!quat) { //new empty
 | |
| 			unit_qt(self->quat);
 | |
| 		}else{
 | |
| 			QUATCOPY(self->quat, quat);
 | |
| 		}
 | |
| 		self->wrapped = Py_NEW;
 | |
| 	}else{ //bad type
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (PyObject *) self;
 | |
| }
 | |
| 
 | |
| PyObject *newQuaternionObject_cb(PyObject *cb_user, int cb_type, int cb_subtype)
 | |
| {
 | |
| 	QuaternionObject *self= (QuaternionObject *)newQuaternionObject(NULL, Py_NEW, NULL);
 | |
| 	if(self) {
 | |
| 		Py_INCREF(cb_user);
 | |
| 		self->cb_user=			cb_user;
 | |
| 		self->cb_type=			(unsigned char)cb_type;
 | |
| 		self->cb_subtype=		(unsigned char)cb_subtype;
 | |
| 	}
 | |
| 
 | |
| 	return (PyObject *)self;
 | |
| }
 | |
| 
 |