This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/mesh.c

3564 lines
94 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Blender Foundation
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenkernel/intern/mesh.c
* \ingroup bke
*/
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <math.h>
#include "MEM_guardedalloc.h"
#include "DNA_scene_types.h"
#include "DNA_material_types.h"
#include "DNA_object_types.h"
#include "DNA_key_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_ipo_types.h"
#include "DNA_customdata_types.h"
#include "BLI_utildefines.h"
#include "BLI_blenlib.h"
#include "BLI_math.h"
#include "BLI_edgehash.h"
#include "BLI_scanfill.h"
#include "BLI_array.h"
#include "BKE_animsys.h"
#include "BKE_main.h"
#include "BKE_customdata.h"
#include "BKE_DerivedMesh.h"
#include "BKE_global.h"
#include "BKE_mesh.h"
#include "BKE_displist.h"
#include "BKE_library.h"
#include "BKE_material.h"
#include "BKE_modifier.h"
#include "BKE_multires.h"
#include "BKE_key.h"
/* these 2 are only used by conversion functions */
#include "BKE_curve.h"
/* -- */
#include "BKE_object.h"
#include "BKE_editmesh.h"
#include "BLI_edgehash.h"
#include "bmesh.h"
enum {
MESHCMP_DVERT_WEIGHTMISMATCH = 1,
MESHCMP_DVERT_GROUPMISMATCH,
MESHCMP_DVERT_TOTGROUPMISMATCH,
MESHCMP_LOOPCOLMISMATCH,
MESHCMP_LOOPUVMISMATCH,
MESHCMP_LOOPMISMATCH,
MESHCMP_POLYVERTMISMATCH,
MESHCMP_POLYMISMATCH,
MESHCMP_EDGEUNKNOWN,
MESHCMP_VERTCOMISMATCH,
MESHCMP_CDLAYERS_MISMATCH
};
static const char *cmpcode_to_str(int code)
{
switch (code) {
case MESHCMP_DVERT_WEIGHTMISMATCH:
return "Vertex Weight Mismatch";
case MESHCMP_DVERT_GROUPMISMATCH:
return "Vertex Group Mismatch";
case MESHCMP_DVERT_TOTGROUPMISMATCH:
return "Vertex Doesn't Belong To Same Number Of Groups";
case MESHCMP_LOOPCOLMISMATCH:
return "Vertex Color Mismatch";
case MESHCMP_LOOPUVMISMATCH:
return "UV Mismatch";
case MESHCMP_LOOPMISMATCH:
return "Loop Mismatch";
case MESHCMP_POLYVERTMISMATCH:
return "Loop Vert Mismatch In Poly Test";
case MESHCMP_POLYMISMATCH:
return "Loop Vert Mismatch";
case MESHCMP_EDGEUNKNOWN:
return "Edge Mismatch";
case MESHCMP_VERTCOMISMATCH:
return "Vertex Coordinate Mismatch";
case MESHCMP_CDLAYERS_MISMATCH:
return "CustomData Layer Count Mismatch";
default:
return "Mesh Comparison Code Unknown";
}
}
/* thresh is threshold for comparing vertices, uvs, vertex colors,
* weights, etc.*/
static int customdata_compare(CustomData *c1, CustomData *c2, Mesh *m1, Mesh *m2, const float thresh)
{
const float thresh_sq = thresh * thresh;
CustomDataLayer *l1, *l2;
int i, i1 = 0, i2 = 0, tot, j;
for (i = 0; i < c1->totlayer; i++) {
if (ELEM7(c1->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
{
i1++;
}
}
for (i = 0; i < c2->totlayer; i++) {
if (ELEM7(c2->layers[i].type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
{
i2++;
}
}
if (i1 != i2)
return MESHCMP_CDLAYERS_MISMATCH;
l1 = c1->layers; l2 = c2->layers;
tot = i1;
i1 = 0; i2 = 0;
for (i = 0; i < tot; i++) {
while (i1 < c1->totlayer && !ELEM7(l1->type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
{
i1++, l1++;
}
while (i2 < c2->totlayer && !ELEM7(l2->type, CD_MVERT, CD_MEDGE, CD_MPOLY,
CD_MLOOPUV, CD_MLOOPCOL, CD_MTEXPOLY, CD_MDEFORMVERT))
{
i2++, l2++;
}
if (l1->type == CD_MVERT) {
MVert *v1 = l1->data;
MVert *v2 = l2->data;
int vtot = m1->totvert;
for (j = 0; j < vtot; j++, v1++, v2++) {
if (len_v3v3(v1->co, v2->co) > thresh)
return MESHCMP_VERTCOMISMATCH;
/* I don't care about normals, let's just do coodinates */
}
}
/*we're order-agnostic for edges here*/
if (l1->type == CD_MEDGE) {
MEdge *e1 = l1->data;
MEdge *e2 = l2->data;
EdgeHash *eh = BLI_edgehash_new();
int etot = m1->totedge;
for (j = 0; j < etot; j++, e1++) {
BLI_edgehash_insert(eh, e1->v1, e1->v2, e1);
}
for (j = 0; j < etot; j++, e2++) {
if (!BLI_edgehash_lookup(eh, e2->v1, e2->v2))
return MESHCMP_EDGEUNKNOWN;
}
BLI_edgehash_free(eh, NULL);
}
if (l1->type == CD_MPOLY) {
MPoly *p1 = l1->data;
MPoly *p2 = l2->data;
int ptot = m1->totpoly;
for (j = 0; j < ptot; j++, p1++, p2++) {
MLoop *lp1, *lp2;
int k;
if (p1->totloop != p2->totloop)
return MESHCMP_POLYMISMATCH;
lp1 = m1->mloop + p1->loopstart;
lp2 = m2->mloop + p2->loopstart;
for (k = 0; k < p1->totloop; k++, lp1++, lp2++) {
if (lp1->v != lp2->v)
return MESHCMP_POLYVERTMISMATCH;
}
}
}
if (l1->type == CD_MLOOP) {
MLoop *lp1 = l1->data;
MLoop *lp2 = l2->data;
int ltot = m1->totloop;
for (j = 0; j < ltot; j++, lp1++, lp2++) {
if (lp1->v != lp2->v)
return MESHCMP_LOOPMISMATCH;
}
}
if (l1->type == CD_MLOOPUV) {
MLoopUV *lp1 = l1->data;
MLoopUV *lp2 = l2->data;
int ltot = m1->totloop;
for (j = 0; j < ltot; j++, lp1++, lp2++) {
if (len_squared_v2v2(lp1->uv, lp2->uv) > thresh_sq)
return MESHCMP_LOOPUVMISMATCH;
}
}
if (l1->type == CD_MLOOPCOL) {
MLoopCol *lp1 = l1->data;
MLoopCol *lp2 = l2->data;
int ltot = m1->totloop;
for (j = 0; j < ltot; j++, lp1++, lp2++) {
if (ABS(lp1->r - lp2->r) > thresh ||
ABS(lp1->g - lp2->g) > thresh ||
ABS(lp1->b - lp2->b) > thresh ||
ABS(lp1->a - lp2->a) > thresh)
{
return MESHCMP_LOOPCOLMISMATCH;
}
}
}
if (l1->type == CD_MDEFORMVERT) {
MDeformVert *dv1 = l1->data;
MDeformVert *dv2 = l2->data;
int dvtot = m1->totvert;
for (j = 0; j < dvtot; j++, dv1++, dv2++) {
int k;
MDeformWeight *dw1 = dv1->dw, *dw2 = dv2->dw;
if (dv1->totweight != dv2->totweight)
return MESHCMP_DVERT_TOTGROUPMISMATCH;
for (k = 0; k < dv1->totweight; k++, dw1++, dw2++) {
if (dw1->def_nr != dw2->def_nr)
return MESHCMP_DVERT_GROUPMISMATCH;
if (ABS(dw1->weight - dw2->weight) > thresh)
return MESHCMP_DVERT_WEIGHTMISMATCH;
}
}
}
}
return 0;
}
/*used for testing. returns an error string the two meshes don't match*/
const char *BKE_mesh_cmp(Mesh *me1, Mesh *me2, float thresh)
{
int c;
if (!me1 || !me2)
return "Requires two input meshes";
if (me1->totvert != me2->totvert)
return "Number of verts don't match";
if (me1->totedge != me2->totedge)
return "Number of edges don't match";
if (me1->totpoly != me2->totpoly)
return "Number of faces don't match";
if (me1->totloop != me2->totloop)
return "Number of loops don't match";
if ((c = customdata_compare(&me1->vdata, &me2->vdata, me1, me2, thresh)))
return cmpcode_to_str(c);
if ((c = customdata_compare(&me1->edata, &me2->edata, me1, me2, thresh)))
return cmpcode_to_str(c);
if ((c = customdata_compare(&me1->ldata, &me2->ldata, me1, me2, thresh)))
return cmpcode_to_str(c);
if ((c = customdata_compare(&me1->pdata, &me2->pdata, me1, me2, thresh)))
return cmpcode_to_str(c);
return NULL;
}
static void mesh_ensure_tessellation_customdata(Mesh *me)
{
if (UNLIKELY((me->totface != 0) && (me->totpoly == 0))) {
/* Pass, otherwise this function clears 'mface' before
* versioning 'mface -> mpoly' code kicks in [#30583]
*
* Callers could also check but safer to do here - campbell */
}
else {
const int tottex_original = CustomData_number_of_layers(&me->pdata, CD_MTEXPOLY);
const int totcol_original = CustomData_number_of_layers(&me->ldata, CD_MLOOPCOL);
const int tottex_tessface = CustomData_number_of_layers(&me->fdata, CD_MTFACE);
const int totcol_tessface = CustomData_number_of_layers(&me->fdata, CD_MCOL);
if (tottex_tessface != tottex_original ||
totcol_tessface != totcol_original)
{
BKE_mesh_tessface_clear(me);
CustomData_from_bmeshpoly(&me->fdata, &me->pdata, &me->ldata, me->totface);
/* TODO - add some --debug-mesh option */
if (G.debug & G_DEBUG) {
/* note: this warning may be un-called for if we are initializing the mesh for the
* first time from bmesh, rather then giving a warning about this we could be smarter
* and check if there was any data to begin with, for now just print the warning with
* some info to help troubleshoot whats going on - campbell */
printf("%s: warning! Tessellation uvs or vcol data got out of sync, "
"had to reset!\n CD_MTFACE: %d != CD_MTEXPOLY: %d || CD_MCOL: %d != CD_MLOOPCOL: %d\n",
__func__, tottex_tessface, tottex_original, totcol_tessface, totcol_original);
}
}
}
}
/* this ensures grouped customdata (e.g. mtexpoly and mloopuv and mtface, or
* mloopcol and mcol) have the same relative active/render/clone/mask indices.
*
* note that for undo mesh data we want to skip 'ensure_tess_cd' call since
* we don't want to store memory for tessface when its only used for older
* versions of the mesh. - campbell*/
static void mesh_update_linked_customdata(Mesh *me, const bool do_ensure_tess_cd)
{
if (me->edit_btmesh)
BKE_editmesh_update_linked_customdata(me->edit_btmesh);
if (do_ensure_tess_cd) {
mesh_ensure_tessellation_customdata(me);
}
CustomData_bmesh_update_active_layers(&me->fdata, &me->pdata, &me->ldata);
}
void BKE_mesh_update_customdata_pointers(Mesh *me, const bool do_ensure_tess_cd)
{
mesh_update_linked_customdata(me, do_ensure_tess_cd);
me->mvert = CustomData_get_layer(&me->vdata, CD_MVERT);
me->dvert = CustomData_get_layer(&me->vdata, CD_MDEFORMVERT);
me->medge = CustomData_get_layer(&me->edata, CD_MEDGE);
me->mface = CustomData_get_layer(&me->fdata, CD_MFACE);
me->mcol = CustomData_get_layer(&me->fdata, CD_MCOL);
me->mtface = CustomData_get_layer(&me->fdata, CD_MTFACE);
me->mpoly = CustomData_get_layer(&me->pdata, CD_MPOLY);
me->mloop = CustomData_get_layer(&me->ldata, CD_MLOOP);
me->mtpoly = CustomData_get_layer(&me->pdata, CD_MTEXPOLY);
me->mloopcol = CustomData_get_layer(&me->ldata, CD_MLOOPCOL);
me->mloopuv = CustomData_get_layer(&me->ldata, CD_MLOOPUV);
}
/* Note: unlinking is called when me->id.us is 0, question remains how
* much unlinking of Library data in Mesh should be done... probably
* we need a more generic method, like the expand() functions in
* readfile.c */
void BKE_mesh_unlink(Mesh *me)
{
int a;
if (me == NULL) return;
if (me->mat)
for (a = 0; a < me->totcol; a++) {
if (me->mat[a]) me->mat[a]->id.us--;
me->mat[a] = NULL;
}
if (me->key) {
me->key->id.us--;
}
me->key = NULL;
if (me->texcomesh) me->texcomesh = NULL;
}
/* do not free mesh itself */
void BKE_mesh_free(Mesh *me, int unlink)
{
if (unlink)
BKE_mesh_unlink(me);
CustomData_free(&me->vdata, me->totvert);
CustomData_free(&me->edata, me->totedge);
CustomData_free(&me->fdata, me->totface);
CustomData_free(&me->ldata, me->totloop);
CustomData_free(&me->pdata, me->totpoly);
if (me->adt) {
BKE_free_animdata(&me->id);
me->adt = NULL;
}
if (me->mat) MEM_freeN(me->mat);
if (me->bb) MEM_freeN(me->bb);
if (me->mselect) MEM_freeN(me->mselect);
if (me->edit_btmesh) MEM_freeN(me->edit_btmesh);
}
static void mesh_tessface_clear_intern(Mesh *mesh, int free_customdata)
{
if (free_customdata) {
CustomData_free(&mesh->fdata, mesh->totface);
}
else {
CustomData_reset(&mesh->fdata);
}
mesh->mface = NULL;
mesh->mtface = NULL;
mesh->mcol = NULL;
mesh->totface = 0;
}
Mesh *BKE_mesh_add(Main *bmain, const char *name)
{
Mesh *me;
me = BKE_libblock_alloc(&bmain->mesh, ID_ME, name);
me->size[0] = me->size[1] = me->size[2] = 1.0;
me->smoothresh = 30;
me->texflag = ME_AUTOSPACE;
me->flag = ME_TWOSIDED;
me->drawflag = ME_DRAWEDGES | ME_DRAWFACES | ME_DRAWCREASES;
CustomData_reset(&me->vdata);
CustomData_reset(&me->edata);
CustomData_reset(&me->fdata);
CustomData_reset(&me->pdata);
CustomData_reset(&me->ldata);
return me;
}
Mesh *BKE_mesh_copy_ex(Main *bmain, Mesh *me)
{
Mesh *men;
MTFace *tface;
MTexPoly *txface;
int a, i;
const int do_tessface = ((me->totface != 0) && (me->totpoly == 0)); /* only do tessface if we have no polys */
men = BKE_libblock_copy_ex(bmain, &me->id);
men->mat = MEM_dupallocN(me->mat);
for (a = 0; a < men->totcol; a++) {
id_us_plus((ID *)men->mat[a]);
}
id_us_plus((ID *)men->texcomesh);
CustomData_copy(&me->vdata, &men->vdata, CD_MASK_MESH, CD_DUPLICATE, men->totvert);
CustomData_copy(&me->edata, &men->edata, CD_MASK_MESH, CD_DUPLICATE, men->totedge);
CustomData_copy(&me->ldata, &men->ldata, CD_MASK_MESH, CD_DUPLICATE, men->totloop);
CustomData_copy(&me->pdata, &men->pdata, CD_MASK_MESH, CD_DUPLICATE, men->totpoly);
if (do_tessface) {
CustomData_copy(&me->fdata, &men->fdata, CD_MASK_MESH, CD_DUPLICATE, men->totface);
}
else {
mesh_tessface_clear_intern(men, FALSE);
}
BKE_mesh_update_customdata_pointers(men, do_tessface);
/* ensure indirect linked data becomes lib-extern */
for (i = 0; i < me->fdata.totlayer; i++) {
if (me->fdata.layers[i].type == CD_MTFACE) {
tface = (MTFace *)me->fdata.layers[i].data;
for (a = 0; a < me->totface; a++, tface++)
if (tface->tpage)
id_lib_extern((ID *)tface->tpage);
}
}
for (i = 0; i < me->pdata.totlayer; i++) {
if (me->pdata.layers[i].type == CD_MTEXPOLY) {
txface = (MTexPoly *)me->pdata.layers[i].data;
for (a = 0; a < me->totpoly; a++, txface++)
if (txface->tpage)
id_lib_extern((ID *)txface->tpage);
}
}
men->mselect = NULL;
men->edit_btmesh = NULL;
men->bb = MEM_dupallocN(men->bb);
men->key = BKE_key_copy(me->key);
if (men->key) men->key->from = (ID *)men;
return men;
}
Mesh *BKE_mesh_copy(Mesh *me)
{
return BKE_mesh_copy_ex(G.main, me);
}
BMesh *BKE_mesh_to_bmesh(Mesh *me, Object *ob)
{
BMesh *bm;
bm = BM_mesh_create(&bm_mesh_allocsize_default);
BM_mesh_bm_from_me(bm, me, true, ob->shapenr);
return bm;
}
static void expand_local_mesh(Mesh *me)
{
id_lib_extern((ID *)me->texcomesh);
if (me->mtface || me->mtpoly) {
int a, i;
for (i = 0; i < me->pdata.totlayer; i++) {
if (me->pdata.layers[i].type == CD_MTEXPOLY) {
MTexPoly *txface = (MTexPoly *)me->pdata.layers[i].data;
for (a = 0; a < me->totpoly; a++, txface++) {
/* special case: ima always local immediately */
if (txface->tpage) {
id_lib_extern((ID *)txface->tpage);
}
}
}
}
for (i = 0; i < me->fdata.totlayer; i++) {
if (me->fdata.layers[i].type == CD_MTFACE) {
MTFace *tface = (MTFace *)me->fdata.layers[i].data;
for (a = 0; a < me->totface; a++, tface++) {
/* special case: ima always local immediately */
if (tface->tpage) {
id_lib_extern((ID *)tface->tpage);
}
}
}
}
}
if (me->mat) {
extern_local_matarar(me->mat, me->totcol);
}
}
void BKE_mesh_make_local(Mesh *me)
{
Main *bmain = G.main;
Object *ob;
int is_local = FALSE, is_lib = FALSE;
/* - only lib users: do nothing
* - only local users: set flag
* - mixed: make copy
*/
if (me->id.lib == NULL) return;
if (me->id.us == 1) {
id_clear_lib_data(bmain, &me->id);
expand_local_mesh(me);
return;
}
for (ob = bmain->object.first; ob && ELEM(0, is_lib, is_local); ob = ob->id.next) {
if (me == ob->data) {
if (ob->id.lib) is_lib = TRUE;
else is_local = TRUE;
}
}
if (is_local && is_lib == FALSE) {
id_clear_lib_data(bmain, &me->id);
expand_local_mesh(me);
}
else if (is_local && is_lib) {
Mesh *me_new = BKE_mesh_copy(me);
me_new->id.us = 0;
/* Remap paths of new ID using old library as base. */
BKE_id_lib_local_paths(bmain, me->id.lib, &me_new->id);
for (ob = bmain->object.first; ob; ob = ob->id.next) {
if (me == ob->data) {
if (ob->id.lib == NULL) {
BKE_mesh_assign_object(ob, me_new);
}
}
}
}
}
void BKE_mesh_boundbox_calc(Mesh *me, float r_loc[3], float r_size[3])
{
BoundBox *bb;
float min[3], max[3];
float mloc[3], msize[3];
if (me->bb == NULL) me->bb = MEM_callocN(sizeof(BoundBox), "boundbox");
bb = me->bb;
if (!r_loc) r_loc = mloc;
if (!r_size) r_size = msize;
INIT_MINMAX(min, max);
if (!BKE_mesh_minmax(me, min, max)) {
min[0] = min[1] = min[2] = -1.0f;
max[0] = max[1] = max[2] = 1.0f;
}
mid_v3_v3v3(r_loc, min, max);
r_size[0] = (max[0] - min[0]) / 2.0f;
r_size[1] = (max[1] - min[1]) / 2.0f;
r_size[2] = (max[2] - min[2]) / 2.0f;
BKE_boundbox_init_from_minmax(bb, min, max);
}
void BKE_mesh_texspace_calc(Mesh *me)
{
float loc[3], size[3];
int a;
BKE_mesh_boundbox_calc(me, loc, size);
if (me->texflag & ME_AUTOSPACE) {
for (a = 0; a < 3; a++) {
if (size[a] == 0.0f) size[a] = 1.0f;
else if (size[a] > 0.0f && size[a] < 0.00001f) size[a] = 0.00001f;
else if (size[a] < 0.0f && size[a] > -0.00001f) size[a] = -0.00001f;
}
copy_v3_v3(me->loc, loc);
copy_v3_v3(me->size, size);
zero_v3(me->rot);
}
}
BoundBox *BKE_mesh_boundbox_get(Object *ob)
{
Mesh *me = ob->data;
if (ob->bb)
return ob->bb;
if (!me->bb)
BKE_mesh_texspace_calc(me);
return me->bb;
}
void BKE_mesh_texspace_get(Mesh *me, float r_loc[3], float r_rot[3], float r_size[3])
{
if (!me->bb) {
BKE_mesh_texspace_calc(me);
}
if (r_loc) copy_v3_v3(r_loc, me->loc);
if (r_rot) copy_v3_v3(r_rot, me->rot);
if (r_size) copy_v3_v3(r_size, me->size);
}
float (*BKE_mesh_orco_verts_get(Object *ob))[3]
{
Mesh *me = ob->data;
MVert *mvert = NULL;
Mesh *tme = me->texcomesh ? me->texcomesh : me;
int a, totvert;
float (*vcos)[3] = NULL;
/* Get appropriate vertex coordinates */
vcos = MEM_callocN(sizeof(*vcos) * me->totvert, "orco mesh");
mvert = tme->mvert;
totvert = min_ii(tme->totvert, me->totvert);
for (a = 0; a < totvert; a++, mvert++) {
copy_v3_v3(vcos[a], mvert->co);
}
return vcos;
}
void BKE_mesh_orco_verts_transform(Mesh *me, float (*orco)[3], int totvert, int invert)
{
float loc[3], size[3];
int a;
BKE_mesh_texspace_get(me->texcomesh ? me->texcomesh : me, loc, NULL, size);
if (invert) {
for (a = 0; a < totvert; a++) {
float *co = orco[a];
madd_v3_v3v3v3(co, loc, co, size);
}
}
else {
for (a = 0; a < totvert; a++) {
float *co = orco[a];
co[0] = (co[0] - loc[0]) / size[0];
co[1] = (co[1] - loc[1]) / size[1];
co[2] = (co[2] - loc[2]) / size[2];
}
}
}
/* rotates the vertices of a face in case v[2] or v[3] (vertex index) is = 0.
* this is necessary to make the if (mface->v4) check for quads work */
int test_index_face(MFace *mface, CustomData *fdata, int mfindex, int nr)
{
/* first test if the face is legal */
if ((mface->v3 || nr == 4) && mface->v3 == mface->v4) {
mface->v4 = 0;
nr--;
}
if ((mface->v2 || mface->v4) && mface->v2 == mface->v3) {
mface->v3 = mface->v4;
mface->v4 = 0;
nr--;
}
if (mface->v1 == mface->v2) {
mface->v2 = mface->v3;
mface->v3 = mface->v4;
mface->v4 = 0;
nr--;
}
/* check corrupt cases, bow-tie geometry, cant handle these because edge data wont exist so just return 0 */
if (nr == 3) {
if (
/* real edges */
mface->v1 == mface->v2 ||
mface->v2 == mface->v3 ||
mface->v3 == mface->v1)
{
return 0;
}
}
else if (nr == 4) {
if (
/* real edges */
mface->v1 == mface->v2 ||
mface->v2 == mface->v3 ||
mface->v3 == mface->v4 ||
mface->v4 == mface->v1 ||
/* across the face */
mface->v1 == mface->v3 ||
mface->v2 == mface->v4)
{
return 0;
}
}
/* prevent a zero at wrong index location */
if (nr == 3) {
if (mface->v3 == 0) {
static int corner_indices[4] = {1, 2, 0, 3};
SWAP(unsigned int, mface->v1, mface->v2);
SWAP(unsigned int, mface->v2, mface->v3);
if (fdata)
CustomData_swap(fdata, mfindex, corner_indices);
}
}
else if (nr == 4) {
if (mface->v3 == 0 || mface->v4 == 0) {
static int corner_indices[4] = {2, 3, 0, 1};
SWAP(unsigned int, mface->v1, mface->v3);
SWAP(unsigned int, mface->v2, mface->v4);
if (fdata)
CustomData_swap(fdata, mfindex, corner_indices);
}
}
return nr;
}
Mesh *BKE_mesh_from_object(Object *ob)
{
if (ob == NULL) return NULL;
if (ob->type == OB_MESH) return ob->data;
else return NULL;
}
void BKE_mesh_assign_object(Object *ob, Mesh *me)
{
Mesh *old = NULL;
multires_force_update(ob);
if (ob == NULL) return;
if (ob->type == OB_MESH) {
old = ob->data;
if (old)
old->id.us--;
ob->data = me;
id_us_plus((ID *)me);
}
test_object_materials(G.main, (ID *)me);
test_object_modifiers(ob);
}
/* ************** make edges in a Mesh, for outside of editmode */
struct edgesort {
unsigned int v1, v2;
short is_loose, is_draw;
};
/* edges have to be added with lowest index first for sorting */
static void to_edgesort(struct edgesort *ed,
unsigned int v1, unsigned int v2,
short is_loose, short is_draw)
{
if (v1 < v2) {
ed->v1 = v1; ed->v2 = v2;
}
else {
ed->v1 = v2; ed->v2 = v1;
}
ed->is_loose = is_loose;
ed->is_draw = is_draw;
}
static int vergedgesort(const void *v1, const void *v2)
{
const struct edgesort *x1 = v1, *x2 = v2;
if (x1->v1 > x2->v1) return 1;
else if (x1->v1 < x2->v1) return -1;
else if (x1->v2 > x2->v2) return 1;
else if (x1->v2 < x2->v2) return -1;
return 0;
}
/* Create edges based on known verts and faces */
static void make_edges_mdata(MVert *UNUSED(allvert), MFace *allface, MLoop *allloop,
MPoly *allpoly, int UNUSED(totvert), int totface, int UNUSED(totloop), int totpoly,
int old, MEdge **alledge, int *_totedge)
{
MPoly *mpoly;
MFace *mface;
MEdge *medge;
EdgeHash *hash = BLI_edgehash_new();
struct edgesort *edsort, *ed;
int a, totedge = 0, final = 0;
/* we put all edges in array, sort them, and detect doubles that way */
for (a = totface, mface = allface; a > 0; a--, mface++) {
if (mface->v4) totedge += 4;
else if (mface->v3) totedge += 3;
else totedge += 1;
}
if (totedge == 0) {
/* flag that mesh has edges */
(*alledge) = MEM_callocN(0, "make mesh edges");
(*_totedge) = 0;
return;
}
ed = edsort = MEM_mallocN(totedge * sizeof(struct edgesort), "edgesort");
for (a = totface, mface = allface; a > 0; a--, mface++) {
to_edgesort(ed++, mface->v1, mface->v2, !mface->v3, mface->edcode & ME_V1V2);
if (mface->v4) {
to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3);
to_edgesort(ed++, mface->v3, mface->v4, 0, mface->edcode & ME_V3V4);
to_edgesort(ed++, mface->v4, mface->v1, 0, mface->edcode & ME_V4V1);
}
else if (mface->v3) {
to_edgesort(ed++, mface->v2, mface->v3, 0, mface->edcode & ME_V2V3);
to_edgesort(ed++, mface->v3, mface->v1, 0, mface->edcode & ME_V3V1);
}
}
qsort(edsort, totedge, sizeof(struct edgesort), vergedgesort);
/* count final amount */
for (a = totedge, ed = edsort; a > 1; a--, ed++) {
/* edge is unique when it differs from next edge, or is last */
if (ed->v1 != (ed + 1)->v1 || ed->v2 != (ed + 1)->v2) final++;
}
final++;
(*alledge) = medge = MEM_callocN(sizeof(MEdge) * final, "BKE_mesh_make_edges mdge");
(*_totedge) = final;
for (a = totedge, ed = edsort; a > 1; a--, ed++) {
/* edge is unique when it differs from next edge, or is last */
if (ed->v1 != (ed + 1)->v1 || ed->v2 != (ed + 1)->v2) {
medge->v1 = ed->v1;
medge->v2 = ed->v2;
if (old == 0 || ed->is_draw) medge->flag = ME_EDGEDRAW | ME_EDGERENDER;
if (ed->is_loose) medge->flag |= ME_LOOSEEDGE;
/* order is swapped so extruding this edge as a surface wont flip face normals
* with cyclic curves */
if (ed->v1 + 1 != ed->v2) {
SWAP(unsigned int, medge->v1, medge->v2);
}
medge++;
}
else {
/* equal edge, we merge the drawflag */
(ed + 1)->is_draw |= ed->is_draw;
}
}
/* last edge */
medge->v1 = ed->v1;
medge->v2 = ed->v2;
medge->flag = ME_EDGEDRAW;
if (ed->is_loose) medge->flag |= ME_LOOSEEDGE;
medge->flag |= ME_EDGERENDER;
MEM_freeN(edsort);
/* set edge members of mloops */
medge = *alledge;
for (a = 0; a < *_totedge; a++, medge++) {
BLI_edgehash_insert(hash, medge->v1, medge->v2, SET_INT_IN_POINTER(a));
}
mpoly = allpoly;
for (a = 0; a < totpoly; a++, mpoly++) {
MLoop *ml, *ml_next;
int i = mpoly->totloop;
ml_next = allloop + mpoly->loopstart; /* first loop */
ml = &ml_next[i - 1]; /* last loop */
while (i-- != 0) {
ml->e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(hash, ml->v, ml_next->v));
ml = ml_next;
ml_next++;
}
}
BLI_edgehash_free(hash, NULL);
}
void BKE_mesh_make_edges(Mesh *me, int old)
{
MEdge *medge;
int totedge = 0;
make_edges_mdata(me->mvert, me->mface, me->mloop, me->mpoly, me->totvert, me->totface, me->totloop, me->totpoly, old, &medge, &totedge);
if (totedge == 0) {
/* flag that mesh has edges */
me->medge = medge;
me->totedge = 0;
return;
}
medge = CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, medge, totedge);
me->medge = medge;
me->totedge = totedge;
BKE_mesh_strip_loose_faces(me);
}
/* We need to keep this for edge creation (for now?), and some old readfile code... */
void BKE_mesh_strip_loose_faces(Mesh *me)
{
MFace *f;
int a, b;
for (a = b = 0, f = me->mface; a < me->totface; a++, f++) {
if (f->v3) {
if (a != b) {
memcpy(&me->mface[b], f, sizeof(me->mface[b]));
CustomData_copy_data(&me->fdata, &me->fdata, a, b, 1);
}
b++;
}
}
if (a != b) {
CustomData_free_elem(&me->fdata, b, a - b);
me->totface = b;
}
}
/* Works on both loops and polys! */
/* Note: It won't try to guess which loops of an invalid poly to remove!
* this is the work of the caller, to mark those loops...
* See e.g. BKE_mesh_validate_arrays(). */
void BKE_mesh_strip_loose_polysloops(Mesh *me)
{
MPoly *p;
MLoop *l;
int a, b;
/* New loops idx! */
int *new_idx = MEM_mallocN(sizeof(int) * me->totloop, __func__);
for (a = b = 0, p = me->mpoly; a < me->totpoly; a++, p++) {
int invalid = FALSE;
int i = p->loopstart;
int stop = i + p->totloop;
if (stop > me->totloop || stop < i) {
invalid = TRUE;
}
else {
l = &me->mloop[i];
i = stop - i;
/* If one of the poly's loops is invalid, the whole poly is invalid! */
for (; i--; l++) {
if (l->e == INVALID_LOOP_EDGE_MARKER) {
invalid = TRUE;
break;
}
}
}
if (p->totloop >= 3 && !invalid) {
if (a != b) {
memcpy(&me->mpoly[b], p, sizeof(me->mpoly[b]));
CustomData_copy_data(&me->pdata, &me->pdata, a, b, 1);
}
b++;
}
}
if (a != b) {
CustomData_free_elem(&me->pdata, b, a - b);
me->totpoly = b;
}
/* And now, get rid of invalid loops. */
for (a = b = 0, l = me->mloop; a < me->totloop; a++, l++) {
if (l->e != INVALID_LOOP_EDGE_MARKER) {
if (a != b) {
memcpy(&me->mloop[b], l, sizeof(me->mloop[b]));
CustomData_copy_data(&me->ldata, &me->ldata, a, b, 1);
}
new_idx[a] = b;
b++;
}
else {
/* XXX Theoretically, we should be able to not do this, as no remaining poly
* should use any stripped loop. But for security's sake... */
new_idx[a] = -a;
}
}
if (a != b) {
CustomData_free_elem(&me->ldata, b, a - b);
me->totloop = b;
}
/* And now, update polys' start loop index. */
/* Note: At this point, there should never be any poly using a striped loop! */
for (a = 0, p = me->mpoly; a < me->totpoly; a++, p++) {
p->loopstart = new_idx[p->loopstart];
}
MEM_freeN(new_idx);
}
void BKE_mesh_strip_loose_edges(Mesh *me)
{
MEdge *e;
MLoop *l;
int a, b;
unsigned int *new_idx = MEM_mallocN(sizeof(int) * me->totedge, __func__);
for (a = b = 0, e = me->medge; a < me->totedge; a++, e++) {
if (e->v1 != e->v2) {
if (a != b) {
memcpy(&me->medge[b], e, sizeof(me->medge[b]));
CustomData_copy_data(&me->edata, &me->edata, a, b, 1);
}
new_idx[a] = b;
b++;
}
else {
new_idx[a] = INVALID_LOOP_EDGE_MARKER;
}
}
if (a != b) {
CustomData_free_elem(&me->edata, b, a - b);
me->totedge = b;
}
/* And now, update loops' edge indices. */
/* XXX We hope no loop was pointing to a striped edge!
* Else, its e will be set to INVALID_LOOP_EDGE_MARKER :/ */
for (a = 0, l = me->mloop; a < me->totloop; a++, l++) {
l->e = new_idx[l->e];
}
MEM_freeN(new_idx);
}
void BKE_mesh_from_metaball(ListBase *lb, Mesh *me)
{
DispList *dl;
MVert *mvert;
MLoop *mloop, *allloop;
MPoly *mpoly;
float *nors, *verts;
int a, *index;
dl = lb->first;
if (dl == NULL) return;
if (dl->type == DL_INDEX4) {
mvert = CustomData_add_layer(&me->vdata, CD_MVERT, CD_CALLOC, NULL, dl->nr);
allloop = mloop = CustomData_add_layer(&me->ldata, CD_MLOOP, CD_CALLOC, NULL, dl->parts * 4);
mpoly = CustomData_add_layer(&me->pdata, CD_MPOLY, CD_CALLOC, NULL, dl->parts);
me->mvert = mvert;
me->mloop = mloop;
me->mpoly = mpoly;
me->totvert = dl->nr;
me->totpoly = dl->parts;
a = dl->nr;
nors = dl->nors;
verts = dl->verts;
while (a--) {
copy_v3_v3(mvert->co, verts);
normal_float_to_short_v3(mvert->no, nors);
mvert++;
nors += 3;
verts += 3;
}
a = dl->parts;
index = dl->index;
while (a--) {
int count = index[2] != index[3] ? 4 : 3;
mloop[0].v = index[0];
mloop[1].v = index[1];
mloop[2].v = index[2];
if (count == 4)
mloop[3].v = index[3];
mpoly->totloop = count;
mpoly->loopstart = (int)(mloop - allloop);
mpoly->flag = ME_SMOOTH;
mpoly++;
mloop += count;
me->totloop += count;
index += 4;
}
BKE_mesh_update_customdata_pointers(me, true);
BKE_mesh_calc_normals(me->mvert, me->totvert, me->mloop, me->mpoly, me->totloop, me->totpoly, NULL);
BKE_mesh_calc_edges(me, true, false);
}
}
/**
* Specialized function to use when we _know_ existing edges don't overlap with poly edges.
*/
static void make_edges_mdata_extend(MEdge **r_alledge, int *r_totedge,
const MPoly *mpoly, MLoop *mloop,
const int totpoly)
{
int totedge = *r_totedge;
int totedge_new;
EdgeHash *eh;
const MPoly *mp;
int i;
eh = BLI_edgehash_new();
for (i = 0, mp = mpoly; i < totpoly; i++, mp++) {
BKE_mesh_poly_edgehash_insert(eh, mp, mloop + mp->loopstart);
}
totedge_new = BLI_edgehash_size(eh);
#ifdef DEBUG
/* ensure that theres no overlap! */
if (totedge_new) {
MEdge *medge = *r_alledge;
for (i = 0; i < totedge; i++, medge++) {
BLI_assert(BLI_edgehash_haskey(eh, medge->v1, medge->v2) == false);
}
}
#endif
if (totedge_new) {
EdgeHashIterator *ehi;
MEdge *medge;
unsigned int e_index = totedge;
*r_alledge = medge = (*r_alledge ? MEM_reallocN(*r_alledge, sizeof(MEdge) * (totedge + totedge_new)) :
MEM_callocN(sizeof(MEdge) * totedge_new, __func__));
medge += totedge;
totedge += totedge_new;
/* --- */
for (ehi = BLI_edgehashIterator_new(eh);
BLI_edgehashIterator_isDone(ehi) == FALSE;
BLI_edgehashIterator_step(ehi), ++medge, e_index++)
{
BLI_edgehashIterator_getKey(ehi, &medge->v1, &medge->v2);
BLI_edgehashIterator_setValue(ehi, SET_UINT_IN_POINTER(e_index));
medge->crease = medge->bweight = 0;
medge->flag = ME_EDGEDRAW | ME_EDGERENDER;
}
BLI_edgehashIterator_free(ehi);
*r_totedge = totedge;
for (i = 0, mp = mpoly; i < totpoly; i++, mp++) {
MLoop *l = &mloop[mp->loopstart];
MLoop *l_prev = (l + (mp->totloop - 1));
int j;
for (j = 0; j < mp->totloop; j++, l++) {
/* lookup hashed edge index */
l_prev->e = GET_UINT_FROM_POINTER(BLI_edgehash_lookup(eh, l_prev->v, l->v));
l_prev = l;
}
}
}
BLI_edgehash_free(eh, NULL);
}
/* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */
/* return non-zero on error */
int BKE_mesh_nurbs_to_mdata(Object *ob, MVert **allvert, int *totvert,
MEdge **alledge, int *totedge, MLoop **allloop, MPoly **allpoly,
int *totloop, int *totpoly)
{
return BKE_mesh_nurbs_displist_to_mdata(ob, &ob->disp,
allvert, totvert,
alledge, totedge,
allloop, allpoly, NULL,
totloop, totpoly);
}
/* BMESH: this doesn't calculate all edges from polygons,
* only free standing edges are calculated */
/* Initialize mverts, medges and, faces for converting nurbs to mesh and derived mesh */
/* use specified dispbase */
int BKE_mesh_nurbs_displist_to_mdata(Object *ob, ListBase *dispbase,
MVert **allvert, int *_totvert,
MEdge **alledge, int *_totedge,
MLoop **allloop, MPoly **allpoly,
MLoopUV **alluv,
int *_totloop, int *_totpoly)
{
Curve *cu = ob->data;
DispList *dl;
MVert *mvert;
MPoly *mpoly;
MLoop *mloop;
MLoopUV *mloopuv = NULL;
MEdge *medge;
float *data;
int a, b, ofs, vertcount, startvert, totvert = 0, totedge = 0, totloop = 0, totvlak = 0;
int p1, p2, p3, p4, *index;
const bool conv_polys = ((cu->flag & CU_3D) || /* 2d polys are filled with DL_INDEX3 displists */
(ob->type == OB_SURF)); /* surf polys are never filled */
/* count */
dl = dispbase->first;
while (dl) {
if (dl->type == DL_SEGM) {
totvert += dl->parts * dl->nr;
totedge += dl->parts * (dl->nr - 1);
}
else if (dl->type == DL_POLY) {
if (conv_polys) {
totvert += dl->parts * dl->nr;
totedge += dl->parts * dl->nr;
}
}
else if (dl->type == DL_SURF) {
int tot;
totvert += dl->parts * dl->nr;
tot = (dl->parts - 1 + ((dl->flag & DL_CYCL_V) == 2)) * (dl->nr - 1 + (dl->flag & DL_CYCL_U));
totvlak += tot;
totloop += tot * 4;
}
else if (dl->type == DL_INDEX3) {
int tot;
totvert += dl->nr;
tot = dl->parts;
totvlak += tot;
totloop += tot * 3;
}
dl = dl->next;
}
if (totvert == 0) {
/* error("can't convert"); */
/* Make Sure you check ob->data is a curve */
return -1;
}
*allvert = mvert = MEM_callocN(sizeof(MVert) * totvert, "nurbs_init mvert");
*alledge = medge = MEM_callocN(sizeof(MEdge) * totedge, "nurbs_init medge");
*allloop = mloop = MEM_callocN(sizeof(MLoop) * totvlak * 4, "nurbs_init mloop"); // totloop
*allpoly = mpoly = MEM_callocN(sizeof(MPoly) * totvlak, "nurbs_init mloop");
if (alluv)
*alluv = mloopuv = MEM_callocN(sizeof(MLoopUV) * totvlak * 4, "nurbs_init mloopuv");
/* verts and faces */
vertcount = 0;
dl = dispbase->first;
while (dl) {
int smooth = dl->rt & CU_SMOOTH ? 1 : 0;
if (dl->type == DL_SEGM) {
startvert = vertcount;
a = dl->parts * dl->nr;
data = dl->verts;
while (a--) {
copy_v3_v3(mvert->co, data);
data += 3;
vertcount++;
mvert++;
}
for (a = 0; a < dl->parts; a++) {
ofs = a * dl->nr;
for (b = 1; b < dl->nr; b++) {
medge->v1 = startvert + ofs + b - 1;
medge->v2 = startvert + ofs + b;
medge->flag = ME_LOOSEEDGE | ME_EDGERENDER | ME_EDGEDRAW;
medge++;
}
}
}
else if (dl->type == DL_POLY) {
if (conv_polys) {
startvert = vertcount;
a = dl->parts * dl->nr;
data = dl->verts;
while (a--) {
copy_v3_v3(mvert->co, data);
data += 3;
vertcount++;
mvert++;
}
for (a = 0; a < dl->parts; a++) {
ofs = a * dl->nr;
for (b = 0; b < dl->nr; b++) {
medge->v1 = startvert + ofs + b;
if (b == dl->nr - 1) medge->v2 = startvert + ofs;
else medge->v2 = startvert + ofs + b + 1;
medge->flag = ME_LOOSEEDGE | ME_EDGERENDER | ME_EDGEDRAW;
medge++;
}
}
}
}
else if (dl->type == DL_INDEX3) {
startvert = vertcount;
a = dl->nr;
data = dl->verts;
while (a--) {
copy_v3_v3(mvert->co, data);
data += 3;
vertcount++;
mvert++;
}
a = dl->parts;
index = dl->index;
while (a--) {
mloop[0].v = startvert + index[0];
mloop[1].v = startvert + index[2];
mloop[2].v = startvert + index[1];
mpoly->loopstart = (int)(mloop - (*allloop));
mpoly->totloop = 3;
mpoly->mat_nr = dl->col;
if (mloopuv) {
int i;
for (i = 0; i < 3; i++, mloopuv++) {
mloopuv->uv[0] = (mloop[i].v - startvert) / (float)(dl->nr - 1);
mloopuv->uv[1] = 0.0f;
}
}
if (smooth) mpoly->flag |= ME_SMOOTH;
mpoly++;
mloop += 3;
index += 3;
}
}
else if (dl->type == DL_SURF) {
startvert = vertcount;
a = dl->parts * dl->nr;
data = dl->verts;
while (a--) {
copy_v3_v3(mvert->co, data);
data += 3;
vertcount++;
mvert++;
}
for (a = 0; a < dl->parts; a++) {
if ( (dl->flag & DL_CYCL_V) == 0 && a == dl->parts - 1) break;
if (dl->flag & DL_CYCL_U) { /* p2 -> p1 -> */
p1 = startvert + dl->nr * a; /* p4 -> p3 -> */
p2 = p1 + dl->nr - 1; /* -----> next row */
p3 = p1 + dl->nr;
p4 = p2 + dl->nr;
b = 0;
}
else {
p2 = startvert + dl->nr * a;
p1 = p2 + 1;
p4 = p2 + dl->nr;
p3 = p1 + dl->nr;
b = 1;
}
if ( (dl->flag & DL_CYCL_V) && a == dl->parts - 1) {
p3 -= dl->parts * dl->nr;
p4 -= dl->parts * dl->nr;
}
for (; b < dl->nr; b++) {
mloop[0].v = p1;
mloop[1].v = p3;
mloop[2].v = p4;
mloop[3].v = p2;
mpoly->loopstart = (int)(mloop - (*allloop));
mpoly->totloop = 4;
mpoly->mat_nr = dl->col;
if (mloopuv) {
int orco_sizeu = dl->nr - 1;
int orco_sizev = dl->parts - 1;
int i;
/* exception as handled in convertblender.c too */
if (dl->flag & DL_CYCL_U) {
orco_sizeu++;
if (dl->flag & DL_CYCL_V)
orco_sizev++;
}
for (i = 0; i < 4; i++, mloopuv++) {
/* find uv based on vertex index into grid array */
int v = mloop[i].v - startvert;
mloopuv->uv[0] = (v / dl->nr) / (float)orco_sizev;
mloopuv->uv[1] = (v % dl->nr) / (float)orco_sizeu;
/* cyclic correction */
if ((i == 0 || i == 1) && mloopuv->uv[1] == 0.0f)
mloopuv->uv[1] = 1.0f;
}
}
if (smooth) mpoly->flag |= ME_SMOOTH;
mpoly++;
mloop += 4;
p4 = p3;
p3++;
p2 = p1;
p1++;
}
}
}
dl = dl->next;
}
if (totvlak) {
make_edges_mdata_extend(alledge, &totedge,
*allpoly, *allloop, totvlak);
}
*_totpoly = totvlak;
*_totloop = totloop;
*_totedge = totedge;
*_totvert = totvert;
return 0;
}
/* this may fail replacing ob->data, be sure to check ob->type */
void BKE_mesh_from_nurbs_displist(Object *ob, ListBase *dispbase, const bool use_orco_uv)
{
Main *bmain = G.main;
Object *ob1;
DerivedMesh *dm = ob->derivedFinal;
Mesh *me;
Curve *cu;
MVert *allvert = NULL;
MEdge *alledge = NULL;
MLoop *allloop = NULL;
MLoopUV *alluv = NULL;
MPoly *allpoly = NULL;
int totvert, totedge, totloop, totpoly;
cu = ob->data;
if (dm == NULL) {
if (BKE_mesh_nurbs_displist_to_mdata(ob, dispbase, &allvert, &totvert,
&alledge, &totedge, &allloop,
&allpoly, (use_orco_uv) ? &alluv : NULL,
&totloop, &totpoly) != 0)
{
/* Error initializing */
return;
}
/* make mesh */
me = BKE_mesh_add(G.main, "Mesh");
me->totvert = totvert;
me->totedge = totedge;
me->totloop = totloop;
me->totpoly = totpoly;
me->mvert = CustomData_add_layer(&me->vdata, CD_MVERT, CD_ASSIGN, allvert, me->totvert);
me->medge = CustomData_add_layer(&me->edata, CD_MEDGE, CD_ASSIGN, alledge, me->totedge);
me->mloop = CustomData_add_layer(&me->ldata, CD_MLOOP, CD_ASSIGN, allloop, me->totloop);
me->mpoly = CustomData_add_layer(&me->pdata, CD_MPOLY, CD_ASSIGN, allpoly, me->totpoly);
if (alluv) {
const char *uvname = "Orco";
me->mtpoly = CustomData_add_layer_named(&me->pdata, CD_MTEXPOLY, CD_DEFAULT, NULL, me->totpoly, uvname);
me->mloopuv = CustomData_add_layer_named(&me->ldata, CD_MLOOPUV, CD_ASSIGN, alluv, me->totloop, uvname);
}
BKE_mesh_calc_normals(me->mvert, me->totvert, me->mloop, me->mpoly, me->totloop, me->totpoly, NULL);
}
else {
me = BKE_mesh_add(G.main, "Mesh");
DM_to_mesh(dm, me, ob, CD_MASK_MESH);
}
me->totcol = cu->totcol;
me->mat = cu->mat;
BKE_mesh_texspace_calc(me);
cu->mat = NULL;
cu->totcol = 0;
if (ob->data) {
BKE_libblock_free(&bmain->curve, ob->data);
}
ob->data = me;
ob->type = OB_MESH;
/* other users */
ob1 = bmain->object.first;
while (ob1) {
if (ob1->data == cu) {
ob1->type = OB_MESH;
ob1->data = ob->data;
id_us_plus((ID *)ob->data);
}
ob1 = ob1->id.next;
}
}
void BKE_mesh_from_nurbs(Object *ob)
{
BKE_mesh_from_nurbs_displist(ob, &ob->disp, false);
}
typedef struct EdgeLink {
Link *next, *prev;
void *edge;
} EdgeLink;
typedef struct VertLink {
Link *next, *prev;
unsigned int index;
} VertLink;
static void prependPolyLineVert(ListBase *lb, unsigned int index)
{
VertLink *vl = MEM_callocN(sizeof(VertLink), "VertLink");
vl->index = index;
BLI_addhead(lb, vl);
}
static void appendPolyLineVert(ListBase *lb, unsigned int index)
{
VertLink *vl = MEM_callocN(sizeof(VertLink), "VertLink");
vl->index = index;
BLI_addtail(lb, vl);
}
void BKE_mesh_to_curve_nurblist(DerivedMesh *dm, ListBase *nurblist, const int edge_users_test)
{
MVert *mvert = dm->getVertArray(dm);
MEdge *med, *medge = dm->getEdgeArray(dm);
MPoly *mp, *mpoly = dm->getPolyArray(dm);
MLoop *mloop = dm->getLoopArray(dm);
int dm_totedge = dm->getNumEdges(dm);
int dm_totpoly = dm->getNumPolys(dm);
int totedges = 0;
int i;
/* only to detect edge polylines */
int *edge_users;
ListBase edges = {NULL, NULL};
/* get boundary edges */
edge_users = MEM_callocN(sizeof(int) * dm_totedge, __func__);
for (i = 0, mp = mpoly; i < dm_totpoly; i++, mp++) {
MLoop *ml = &mloop[mp->loopstart];
int j;
for (j = 0; j < mp->totloop; j++, ml++) {
edge_users[ml->e]++;
}
}
/* create edges from all faces (so as to find edges not in any faces) */
med = medge;
for (i = 0; i < dm_totedge; i++, med++) {
if (edge_users[i] == edge_users_test) {
EdgeLink *edl = MEM_callocN(sizeof(EdgeLink), "EdgeLink");
edl->edge = med;
BLI_addtail(&edges, edl); totedges++;
}
}
MEM_freeN(edge_users);
if (edges.first) {
while (edges.first) {
/* each iteration find a polyline and add this as a nurbs poly spline */
ListBase polyline = {NULL, NULL}; /* store a list of VertLink's */
int closed = FALSE;
int totpoly = 0;
MEdge *med_current = ((EdgeLink *)edges.last)->edge;
unsigned int startVert = med_current->v1;
unsigned int endVert = med_current->v2;
int ok = TRUE;
appendPolyLineVert(&polyline, startVert); totpoly++;
appendPolyLineVert(&polyline, endVert); totpoly++;
BLI_freelinkN(&edges, edges.last); totedges--;
while (ok) { /* while connected edges are found... */
ok = FALSE;
i = totedges;
while (i) {
EdgeLink *edl;
i -= 1;
edl = BLI_findlink(&edges, i);
med = edl->edge;
if (med->v1 == endVert) {
endVert = med->v2;
appendPolyLineVert(&polyline, med->v2); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok = TRUE;
}
else if (med->v2 == endVert) {
endVert = med->v1;
appendPolyLineVert(&polyline, endVert); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok = TRUE;
}
else if (med->v1 == startVert) {
startVert = med->v2;
prependPolyLineVert(&polyline, startVert); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok = TRUE;
}
else if (med->v2 == startVert) {
startVert = med->v1;
prependPolyLineVert(&polyline, startVert); totpoly++;
BLI_freelinkN(&edges, edl); totedges--;
ok = TRUE;
}
}
}
/* Now we have a polyline, make into a curve */
if (startVert == endVert) {
BLI_freelinkN(&polyline, polyline.last);
totpoly--;
closed = TRUE;
}
/* --- nurbs --- */
{
Nurb *nu;
BPoint *bp;
VertLink *vl;
/* create new 'nurb' within the curve */
nu = (Nurb *)MEM_callocN(sizeof(Nurb), "MeshNurb");
nu->pntsu = totpoly;
nu->pntsv = 1;
nu->orderu = 4;
nu->flagu = CU_NURB_ENDPOINT | (closed ? CU_NURB_CYCLIC : 0); /* endpoint */
nu->resolu = 12;
nu->bp = (BPoint *)MEM_callocN(sizeof(BPoint) * totpoly, "bpoints");
/* add points */
vl = polyline.first;
for (i = 0, bp = nu->bp; i < totpoly; i++, bp++, vl = (VertLink *)vl->next) {
copy_v3_v3(bp->vec, mvert[vl->index].co);
bp->f1 = SELECT;
bp->radius = bp->weight = 1.0;
}
BLI_freelistN(&polyline);
/* add nurb to curve */
BLI_addtail(nurblist, nu);
}
/* --- done with nurbs --- */
}
}
}
void BKE_mesh_to_curve(Scene *scene, Object *ob)
{
/* make new mesh data from the original copy */
DerivedMesh *dm = mesh_get_derived_final(scene, ob, CD_MASK_MESH);
ListBase nurblist = {NULL, NULL};
bool needsFree = false;
BKE_mesh_to_curve_nurblist(dm, &nurblist, 0);
BKE_mesh_to_curve_nurblist(dm, &nurblist, 1);
if (nurblist.first) {
Curve *cu = BKE_curve_add(G.main, ob->id.name + 2, OB_CURVE);
cu->flag |= CU_3D;
cu->nurb = nurblist;
((Mesh *)ob->data)->id.us--;
ob->data = cu;
ob->type = OB_CURVE;
/* curve objects can't contain DM in usual cases, we could free memory */
needsFree = true;
}
dm->needsFree = needsFree;
dm->release(dm);
if (needsFree) {
ob->derivedFinal = NULL;
/* curve object could have got bounding box only in special cases */
if (ob->bb) {
MEM_freeN(ob->bb);
ob->bb = NULL;
}
}
}
void BKE_mesh_delete_material_index(Mesh *me, short index)
{
int i;
for (i = 0; i < me->totpoly; i++) {
MPoly *mp = &((MPoly *) me->mpoly)[i];
if (mp->mat_nr && mp->mat_nr >= index)
mp->mat_nr--;
}
for (i = 0; i < me->totface; i++) {
MFace *mf = &((MFace *) me->mface)[i];
if (mf->mat_nr && mf->mat_nr >= index)
mf->mat_nr--;
}
}
void BKE_mesh_smooth_flag_set(Object *meshOb, int enableSmooth)
{
Mesh *me = meshOb->data;
int i;
for (i = 0; i < me->totpoly; i++) {
MPoly *mp = &((MPoly *) me->mpoly)[i];
if (enableSmooth) {
mp->flag |= ME_SMOOTH;
}
else {
mp->flag &= ~ME_SMOOTH;
}
}
for (i = 0; i < me->totface; i++) {
MFace *mf = &((MFace *) me->mface)[i];
if (enableSmooth) {
mf->flag |= ME_SMOOTH;
}
else {
mf->flag &= ~ME_SMOOTH;
}
}
}
void BKE_mesh_calc_normals_mapping(MVert *mverts, int numVerts,
MLoop *mloop, MPoly *mpolys, int numLoops, int numPolys, float (*polyNors_r)[3],
MFace *mfaces, int numFaces, int *origIndexFace, float (*faceNors_r)[3])
{
BKE_mesh_calc_normals_mapping_ex(mverts, numVerts, mloop, mpolys,
numLoops, numPolys, polyNors_r, mfaces, numFaces,
origIndexFace, faceNors_r, FALSE);
}
void BKE_mesh_calc_normals_mapping_ex(MVert *mverts, int numVerts,
MLoop *mloop, MPoly *mpolys,
int numLoops, int numPolys, float (*polyNors_r)[3],
MFace *mfaces, int numFaces, int *origIndexFace, float (*faceNors_r)[3],
const bool only_face_normals)
{
float (*pnors)[3] = polyNors_r, (*fnors)[3] = faceNors_r;
int i;
MFace *mf;
MPoly *mp;
if (numPolys == 0) {
return;
}
/* if we are not calculating verts and no verts were passes then we have nothing to do */
if ((only_face_normals == TRUE) && (polyNors_r == NULL) && (faceNors_r == NULL)) {
printf("%s: called with nothing to do\n", __func__);
return;
}
if (!pnors) pnors = MEM_callocN(sizeof(float) * 3 * numPolys, "poly_nors mesh.c");
/* if (!fnors) fnors = MEM_callocN(sizeof(float) * 3 * numFaces, "face nors mesh.c"); */ /* NO NEED TO ALLOC YET */
if (only_face_normals == FALSE) {
/* vertex normals are optional, they require some extra calculations,
* so make them optional */
BKE_mesh_calc_normals(mverts, numVerts, mloop, mpolys, numLoops, numPolys, pnors);
}
else {
/* only calc poly normals */
mp = mpolys;
for (i = 0; i < numPolys; i++, mp++) {
BKE_mesh_calc_poly_normal(mp, mloop + mp->loopstart, mverts, pnors[i]);
}
}
if (origIndexFace &&
/* fnors == faceNors_r */ /* NO NEED TO ALLOC YET */
fnors != NULL &&
numFaces)
{
mf = mfaces;
for (i = 0; i < numFaces; i++, mf++, origIndexFace++) {
if (*origIndexFace < numPolys) {
copy_v3_v3(fnors[i], pnors[*origIndexFace]);
}
else {
/* eek, we're not corresponding to polys */
printf("error in BKE_mesh_calc_normals; tessellation face indices are incorrect. normals may look bad.\n");
}
}
}
if (pnors != polyNors_r) MEM_freeN(pnors);
/* if (fnors != faceNors_r) MEM_freeN(fnors); */ /* NO NEED TO ALLOC YET */
fnors = pnors = NULL;
}
void BKE_mesh_calc_normals(MVert *mverts, int numVerts, MLoop *mloop, MPoly *mpolys,
int UNUSED(numLoops), int numPolys, float (*polyNors_r)[3])
{
float (*pnors)[3] = polyNors_r;
float (*tnorms)[3], (*edgevecbuf)[3] = NULL;
float **vertcos = NULL, **vertnos = NULL;
BLI_array_declare(vertcos);
BLI_array_declare(vertnos);
BLI_array_declare(edgevecbuf);
int i, j;
MPoly *mp;
MLoop *ml;
if (!pnors) pnors = MEM_callocN(sizeof(float) * 3 * numPolys, "poly_nors mesh.c");
/* first go through and calculate normals for all the polys */
tnorms = MEM_callocN(sizeof(float) * 3 * numVerts, "tnorms mesh.c");
mp = mpolys;
for (i = 0; i < numPolys; i++, mp++) {
BKE_mesh_calc_poly_normal(mp, mloop + mp->loopstart, mverts, pnors[i]);
ml = mloop + mp->loopstart;
BLI_array_empty(vertcos);
BLI_array_empty(vertnos);
BLI_array_grow_items(vertcos, mp->totloop);
BLI_array_grow_items(vertnos, mp->totloop);
for (j = 0; j < mp->totloop; j++) {
int vindex = ml[j].v;
vertcos[j] = mverts[vindex].co;
vertnos[j] = tnorms[vindex];
}
BLI_array_empty(edgevecbuf);
BLI_array_grow_items(edgevecbuf, mp->totloop);
accumulate_vertex_normals_poly(vertnos, pnors[i], vertcos, edgevecbuf, mp->totloop);
}
BLI_array_free(vertcos);
BLI_array_free(vertnos);
BLI_array_free(edgevecbuf);
/* following Mesh convention; we use vertex coordinate itself for normal in this case */
for (i = 0; i < numVerts; i++) {
MVert *mv = &mverts[i];
float *no = tnorms[i];
if (UNLIKELY(normalize_v3(no) == 0.0f)) {
normalize_v3_v3(no, mv->co);
}
normal_float_to_short_v3(mv->no, no);
}
MEM_freeN(tnorms);
if (pnors != polyNors_r) MEM_freeN(pnors);
}
void BKE_mesh_calc_normals_tessface(MVert *mverts, int numVerts, MFace *mfaces, int numFaces, float (*faceNors_r)[3])
{
float (*tnorms)[3] = MEM_callocN(numVerts * sizeof(*tnorms), "tnorms");
float (*fnors)[3] = (faceNors_r) ? faceNors_r : MEM_callocN(sizeof(*fnors) * numFaces, "meshnormals");
int i;
for (i = 0; i < numFaces; i++) {
MFace *mf = &mfaces[i];
float *f_no = fnors[i];
float *n4 = (mf->v4) ? tnorms[mf->v4] : NULL;
float *c4 = (mf->v4) ? mverts[mf->v4].co : NULL;
if (mf->v4)
normal_quad_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, mverts[mf->v4].co);
else
normal_tri_v3(f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co);
accumulate_vertex_normals(tnorms[mf->v1], tnorms[mf->v2], tnorms[mf->v3], n4,
f_no, mverts[mf->v1].co, mverts[mf->v2].co, mverts[mf->v3].co, c4);
}
/* following Mesh convention; we use vertex coordinate itself for normal in this case */
for (i = 0; i < numVerts; i++) {
MVert *mv = &mverts[i];
float *no = tnorms[i];
if (UNLIKELY(normalize_v3(no) == 0.0f)) {
normalize_v3_v3(no, mv->co);
}
normal_float_to_short_v3(mv->no, no);
}
MEM_freeN(tnorms);
if (fnors != faceNors_r)
MEM_freeN(fnors);
}
static void bm_corners_to_loops_ex(ID *id, CustomData *fdata, CustomData *ldata, CustomData *pdata,
MFace *mface, int totloop, int findex, int loopstart, int numTex, int numCol)
{
MTFace *texface;
MTexPoly *texpoly;
MCol *mcol;
MLoopCol *mloopcol;
MLoopUV *mloopuv;
MFace *mf;
int i;
mf = mface + findex;
for (i = 0; i < numTex; i++) {
texface = CustomData_get_n(fdata, CD_MTFACE, findex, i);
texpoly = CustomData_get_n(pdata, CD_MTEXPOLY, findex, i);
ME_MTEXFACE_CPY(texpoly, texface);
mloopuv = CustomData_get_n(ldata, CD_MLOOPUV, loopstart, i);
copy_v2_v2(mloopuv->uv, texface->uv[0]); mloopuv++;
copy_v2_v2(mloopuv->uv, texface->uv[1]); mloopuv++;
copy_v2_v2(mloopuv->uv, texface->uv[2]); mloopuv++;
if (mf->v4) {
copy_v2_v2(mloopuv->uv, texface->uv[3]); mloopuv++;
}
}
for (i = 0; i < numCol; i++) {
mloopcol = CustomData_get_n(ldata, CD_MLOOPCOL, loopstart, i);
mcol = CustomData_get_n(fdata, CD_MCOL, findex, i);
MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[0]); mloopcol++;
MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[1]); mloopcol++;
MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[2]); mloopcol++;
if (mf->v4) {
MESH_MLOOPCOL_FROM_MCOL(mloopcol, &mcol[3]); mloopcol++;
}
}
if (CustomData_has_layer(fdata, CD_MDISPS)) {
MDisps *ld = CustomData_get(ldata, loopstart, CD_MDISPS);
MDisps *fd = CustomData_get(fdata, findex, CD_MDISPS);
float (*disps)[3] = fd->disps;
int tot = mf->v4 ? 4 : 3;
int side, corners;
if (CustomData_external_test(fdata, CD_MDISPS)) {
if (id && fdata->external) {
CustomData_external_add(ldata, id, CD_MDISPS,
totloop, fdata->external->filename);
}
}
corners = multires_mdisp_corners(fd);
if (corners == 0) {
/* Empty MDisp layers appear in at least one of the sintel.blend files.
* Not sure why this happens, but it seems fine to just ignore them here.
* If (corners == 0) for a non-empty layer though, something went wrong. */
BLI_assert(fd->totdisp == 0);
}
else {
side = sqrt(fd->totdisp / corners);
for (i = 0; i < tot; i++, disps += side * side, ld++) {
ld->totdisp = side * side;
ld->level = (int)(logf(side - 1.0f) / (float)M_LN2) + 1;
if (ld->disps)
MEM_freeN(ld->disps);
ld->disps = MEM_callocN(sizeof(float) * 3 * side * side, "converted loop mdisps");
if (fd->disps) {
memcpy(ld->disps, disps, sizeof(float) * 3 * side * side);
}
}
}
}
}
void BKE_mesh_convert_mfaces_to_mpolys(Mesh *mesh)
{
BKE_mesh_convert_mfaces_to_mpolys_ex(&mesh->id, &mesh->fdata, &mesh->ldata, &mesh->pdata,
mesh->totedge, mesh->totface, mesh->totloop, mesh->totpoly,
mesh->medge, mesh->mface,
&mesh->totloop, &mesh->totpoly, &mesh->mloop, &mesh->mpoly);
BKE_mesh_update_customdata_pointers(mesh, true);
}
/* the same as BKE_mesh_convert_mfaces_to_mpolys but oriented to be used in do_versions from readfile.c
* the difference is how active/render/clone/stencil indices are handled here
*
* normally thay're being set from pdata which totally makes sense for meshes which are already
* converted to bmesh structures, but when loading older files indices shall be updated in other
* way around, so newly added pdata and ldata would have this indices set based on fdata layer
*
* this is normally only needed when reading older files, in all other cases BKE_mesh_convert_mfaces_to_mpolys
* shall be always used
*/
void BKE_mesh_do_versions_convert_mfaces_to_mpolys(Mesh *mesh)
{
BKE_mesh_convert_mfaces_to_mpolys_ex(&mesh->id, &mesh->fdata, &mesh->ldata, &mesh->pdata,
mesh->totedge, mesh->totface, mesh->totloop, mesh->totpoly,
mesh->medge, mesh->mface,
&mesh->totloop, &mesh->totpoly, &mesh->mloop, &mesh->mpoly);
CustomData_bmesh_do_versions_update_active_layers(&mesh->fdata, &mesh->pdata, &mesh->ldata);
BKE_mesh_update_customdata_pointers(mesh, true);
}
void BKE_mesh_convert_mfaces_to_mpolys_ex(ID *id, CustomData *fdata, CustomData *ldata, CustomData *pdata,
int totedge_i, int totface_i, int totloop_i, int totpoly_i,
MEdge *medge, MFace *mface,
int *totloop_r, int *totpoly_r,
MLoop **mloop_r, MPoly **mpoly_r)
{
MFace *mf;
MLoop *ml, *mloop;
MPoly *mp, *mpoly;
MEdge *me;
EdgeHash *eh;
int numTex, numCol;
int i, j, totloop, totpoly, *polyindex;
/* just in case some of these layers are filled in (can happen with python created meshes) */
CustomData_free(ldata, totloop_i);
CustomData_free(pdata, totpoly_i);
totpoly = totface_i;
mpoly = MEM_callocN(sizeof(MPoly) * totpoly, "mpoly converted");
CustomData_add_layer(pdata, CD_MPOLY, CD_ASSIGN, mpoly, totpoly);
numTex = CustomData_number_of_layers(fdata, CD_MTFACE);
numCol = CustomData_number_of_layers(fdata, CD_MCOL);
totloop = 0;
mf = mface;
for (i = 0; i < totface_i; i++, mf++) {
totloop += mf->v4 ? 4 : 3;
}
mloop = MEM_callocN(sizeof(MLoop) * totloop, "mloop converted");
CustomData_add_layer(ldata, CD_MLOOP, CD_ASSIGN, mloop, totloop);
CustomData_to_bmeshpoly(fdata, pdata, ldata, totloop, totpoly);
if (id) {
/* ensure external data is transferred */
CustomData_external_read(fdata, id, CD_MASK_MDISPS, totface_i);
}
eh = BLI_edgehash_new();
/* build edge hash */
me = medge;
for (i = 0; i < totedge_i; i++, me++) {
BLI_edgehash_insert(eh, me->v1, me->v2, SET_INT_IN_POINTER(i));
/* unrelated but avoid having the FGON flag enabled, so we can reuse it later for something else */
me->flag &= ~ME_FGON;
}
polyindex = CustomData_get_layer(fdata, CD_ORIGINDEX);
j = 0; /* current loop index */
ml = mloop;
mf = mface;
mp = mpoly;
for (i = 0; i < totface_i; i++, mf++, mp++) {
mp->loopstart = j;
mp->totloop = mf->v4 ? 4 : 3;
mp->mat_nr = mf->mat_nr;
mp->flag = mf->flag;
# define ML(v1, v2) { \
ml->v = mf->v1; ml->e = GET_INT_FROM_POINTER(BLI_edgehash_lookup(eh, mf->v1, mf->v2)); ml++; j++; \
} (void)0
ML(v1, v2);
ML(v2, v3);
if (mf->v4) {
ML(v3, v4);
ML(v4, v1);
}
else {
ML(v3, v1);
}
# undef ML
bm_corners_to_loops_ex(id, fdata, ldata, pdata, mface, totloop, i, mp->loopstart, numTex, numCol);
if (polyindex) {
*polyindex = i;
polyindex++;
}
}
/* note, we don't convert NGons at all, these are not even real ngons,
* they have their own UV's, colors etc - its more an editing feature. */
BLI_edgehash_free(eh, NULL);
*totpoly_r = totpoly;
*totloop_r = totloop;
*mpoly_r = mpoly;
*mloop_r = mloop;
}
float (*BKE_mesh_vertexCos_get(Mesh *me, int *r_numVerts))[3]
{
int i, numVerts = me->totvert;
float (*cos)[3] = MEM_mallocN(sizeof(*cos) * numVerts, "vertexcos1");
if (r_numVerts) *r_numVerts = numVerts;
for (i = 0; i < numVerts; i++)
copy_v3_v3(cos[i], me->mvert[i].co);
return cos;
}
/* ngon version wip, based on EDBM_uv_vert_map_create */
/* this replaces the non bmesh function (in trunk) which takes MTFace's, if we ever need it back we could
* but for now this replaces it because its unused. */
UvVertMap *BKE_mesh_uv_vert_map_create(struct MPoly *mpoly, struct MLoop *mloop, struct MLoopUV *mloopuv,
unsigned int totpoly, unsigned int totvert, int selected, float *limit)
{
UvVertMap *vmap;
UvMapVert *buf;
MPoly *mp;
unsigned int a;
int i, totuv, nverts;
totuv = 0;
/* generate UvMapVert array */
mp = mpoly;
for (a = 0; a < totpoly; a++, mp++)
if (!selected || (!(mp->flag & ME_HIDE) && (mp->flag & ME_FACE_SEL)))
totuv += mp->totloop;
if (totuv == 0)
return NULL;
vmap = (UvVertMap *)MEM_callocN(sizeof(*vmap), "UvVertMap");
if (!vmap)
return NULL;
vmap->vert = (UvMapVert **)MEM_callocN(sizeof(*vmap->vert) * totvert, "UvMapVert*");
buf = vmap->buf = (UvMapVert *)MEM_callocN(sizeof(*vmap->buf) * totuv, "UvMapVert");
if (!vmap->vert || !vmap->buf) {
BKE_mesh_uv_vert_map_free(vmap);
return NULL;
}
mp = mpoly;
for (a = 0; a < totpoly; a++, mp++) {
if (!selected || (!(mp->flag & ME_HIDE) && (mp->flag & ME_FACE_SEL))) {
nverts = mp->totloop;
for (i = 0; i < nverts; i++) {
buf->tfindex = i;
buf->f = a;
buf->separate = 0;
buf->next = vmap->vert[mloop[mp->loopstart + i].v];
vmap->vert[mloop[mp->loopstart + i].v] = buf;
buf++;
}
}
}
/* sort individual uvs for each vert */
for (a = 0; a < totvert; a++) {
UvMapVert *newvlist = NULL, *vlist = vmap->vert[a];
UvMapVert *iterv, *v, *lastv, *next;
float *uv, *uv2, uvdiff[2];
while (vlist) {
v = vlist;
vlist = vlist->next;
v->next = newvlist;
newvlist = v;
uv = mloopuv[mpoly[v->f].loopstart + v->tfindex].uv;
lastv = NULL;
iterv = vlist;
while (iterv) {
next = iterv->next;
uv2 = mloopuv[mpoly[iterv->f].loopstart + iterv->tfindex].uv;
sub_v2_v2v2(uvdiff, uv2, uv);
if (fabsf(uv[0] - uv2[0]) < limit[0] && fabsf(uv[1] - uv2[1]) < limit[1]) {
if (lastv) lastv->next = next;
else vlist = next;
iterv->next = newvlist;
newvlist = iterv;
}
else
lastv = iterv;
iterv = next;
}
newvlist->separate = 1;
}
vmap->vert[a] = newvlist;
}
return vmap;
}
UvMapVert *BKE_mesh_uv_vert_map_get_vert(UvVertMap *vmap, unsigned int v)
{
return vmap->vert[v];
}
void BKE_mesh_uv_vert_map_free(UvVertMap *vmap)
{
if (vmap) {
if (vmap->vert) MEM_freeN(vmap->vert);
if (vmap->buf) MEM_freeN(vmap->buf);
MEM_freeN(vmap);
}
}
/* Generates a map where the key is the vertex and the value is a list
* of polys that use that vertex as a corner. The lists are allocated
* from one memory pool. */
void BKE_mesh_vert_poly_map_create(MeshElemMap **map, int **mem,
const MPoly *mpoly, const MLoop *mloop,
int totvert, int totpoly, int totloop)
{
int i, j;
int *indices;
(*map) = MEM_callocN(sizeof(MeshElemMap) * totvert, "vert poly map");
(*mem) = MEM_mallocN(sizeof(int) * totloop, "vert poly map mem");
/* Count number of polys for each vertex */
for (i = 0; i < totpoly; i++) {
const MPoly *p = &mpoly[i];
for (j = 0; j < p->totloop; j++)
(*map)[mloop[p->loopstart + j].v].count++;
}
/* Assign indices mem */
indices = (*mem);
for (i = 0; i < totvert; i++) {
(*map)[i].indices = indices;
indices += (*map)[i].count;
/* Reset 'count' for use as index in last loop */
(*map)[i].count = 0;
}
/* Find the users */
for (i = 0; i < totpoly; i++) {
const MPoly *p = &mpoly[i];
for (j = 0; j < p->totloop; j++) {
int v = mloop[p->loopstart + j].v;
(*map)[v].indices[(*map)[v].count] = i;
(*map)[v].count++;
}
}
}
/* Generates a map where the key is the vertex and the value is a list
* of edges that use that vertex as an endpoint. The lists are allocated
* from one memory pool. */
void BKE_mesh_vert_edge_map_create(MeshElemMap **map, int **mem,
const MEdge *medge, int totvert, int totedge)
{
int i, *indices;
(*map) = MEM_callocN(sizeof(MeshElemMap) * totvert, "vert-edge map");
(*mem) = MEM_mallocN(sizeof(int) * totedge * 2, "vert-edge map mem");
/* Count number of edges for each vertex */
for (i = 0; i < totedge; i++) {
(*map)[medge[i].v1].count++;
(*map)[medge[i].v2].count++;
}
/* Assign indices mem */
indices = (*mem);
for (i = 0; i < totvert; i++) {
(*map)[i].indices = indices;
indices += (*map)[i].count;
/* Reset 'count' for use as index in last loop */
(*map)[i].count = 0;
}
/* Find the users */
for (i = 0; i < totedge; i++) {
const int v[2] = {medge[i].v1, medge[i].v2};
(*map)[v[0]].indices[(*map)[v[0]].count] = i;
(*map)[v[1]].indices[(*map)[v[1]].count] = i;
(*map)[v[0]].count++;
(*map)[v[1]].count++;
}
}
void BKE_mesh_loops_to_mface_corners(CustomData *fdata, CustomData *ldata,
CustomData *pdata, int lindex[4], int findex,
const int polyindex,
const int mf_len, /* 3 or 4 */
/* cache values to avoid lookups every time */
const int numTex, /* CustomData_number_of_layers(pdata, CD_MTEXPOLY) */
const int numCol, /* CustomData_number_of_layers(ldata, CD_MLOOPCOL) */
const int hasPCol, /* CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL) */
const int hasOrigSpace /* CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP) */
)
{
MTFace *texface;
MTexPoly *texpoly;
MCol *mcol;
MLoopCol *mloopcol;
MLoopUV *mloopuv;
int i, j;
for (i = 0; i < numTex; i++) {
texface = CustomData_get_n(fdata, CD_MTFACE, findex, i);
texpoly = CustomData_get_n(pdata, CD_MTEXPOLY, polyindex, i);
ME_MTEXFACE_CPY(texface, texpoly);
for (j = 0; j < mf_len; j++) {
mloopuv = CustomData_get_n(ldata, CD_MLOOPUV, lindex[j], i);
copy_v2_v2(texface->uv[j], mloopuv->uv);
}
}
for (i = 0; i < numCol; i++) {
mcol = CustomData_get_n(fdata, CD_MCOL, findex, i);
for (j = 0; j < mf_len; j++) {
mloopcol = CustomData_get_n(ldata, CD_MLOOPCOL, lindex[j], i);
MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]);
}
}
if (hasPCol) {
mcol = CustomData_get(fdata, findex, CD_PREVIEW_MCOL);
for (j = 0; j < mf_len; j++) {
mloopcol = CustomData_get(ldata, lindex[j], CD_PREVIEW_MLOOPCOL);
MESH_MLOOPCOL_TO_MCOL(mloopcol, &mcol[j]);
}
}
if (hasOrigSpace) {
OrigSpaceFace *of = CustomData_get(fdata, findex, CD_ORIGSPACE);
OrigSpaceLoop *lof;
for (j = 0; j < mf_len; j++) {
lof = CustomData_get(ldata, lindex[j], CD_ORIGSPACE_MLOOP);
copy_v2_v2(of->uv[j], lof->uv);
}
}
}
/*
* this function recreates a tessellation.
* returns number of tessellation faces.
*/
int BKE_mesh_recalc_tessellation(CustomData *fdata,
CustomData *ldata, CustomData *pdata,
MVert *mvert, int totface, int totloop,
int totpoly,
/* when tessellating to recalculate normals after
* we can skip copying here */
const bool do_face_nor_cpy)
{
/* use this to avoid locking pthread for _every_ polygon
* and calling the fill function */
#define USE_TESSFACE_SPEEDUP
#define USE_TESSFACE_QUADS // NEEDS FURTHER TESTING
#define TESSFACE_SCANFILL (1 << 0)
#define TESSFACE_IS_QUAD (1 << 1)
const int looptris_tot = poly_to_tri_count(totpoly, totloop);
MPoly *mp, *mpoly;
MLoop *ml, *mloop;
MFace *mface, *mf;
ScanFillContext sf_ctx;
ScanFillVert *sf_vert, *sf_vert_last, *sf_vert_first;
ScanFillFace *sf_tri;
int *mface_to_poly_map;
int lindex[4]; /* only ever use 3 in this case */
int poly_index, j, mface_index;
const int numTex = CustomData_number_of_layers(pdata, CD_MTEXPOLY);
const int numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL);
const int hasPCol = CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL);
const int hasOrigSpace = CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP);
mpoly = CustomData_get_layer(pdata, CD_MPOLY);
mloop = CustomData_get_layer(ldata, CD_MLOOP);
/* allocate the length of totfaces, avoid many small reallocs,
* if all faces are tri's it will be correct, quads == 2x allocs */
/* take care. we are _not_ calloc'ing so be sure to initialize each field */
mface_to_poly_map = MEM_mallocN(sizeof(*mface_to_poly_map) * looptris_tot, __func__);
mface = MEM_mallocN(sizeof(*mface) * looptris_tot, __func__);
mface_index = 0;
mp = mpoly;
for (poly_index = 0; poly_index < totpoly; poly_index++, mp++) {
if (mp->totloop < 3) {
/* do nothing */
}
#ifdef USE_TESSFACE_SPEEDUP
#define ML_TO_MF(i1, i2, i3) \
mface_to_poly_map[mface_index] = poly_index; \
mf = &mface[mface_index]; \
/* set loop indices, transformed to vert indices later */ \
mf->v1 = mp->loopstart + i1; \
mf->v2 = mp->loopstart + i2; \
mf->v3 = mp->loopstart + i3; \
mf->v4 = 0; \
mf->mat_nr = mp->mat_nr; \
mf->flag = mp->flag; \
mf->edcode = 0; \
(void)0
/* ALMOST IDENTICAL TO DEFINE ABOVE (see EXCEPTION) */
#define ML_TO_MF_QUAD() \
mface_to_poly_map[mface_index] = poly_index; \
mf = &mface[mface_index]; \
/* set loop indices, transformed to vert indices later */ \
mf->v1 = mp->loopstart + 0; /* EXCEPTION */ \
mf->v2 = mp->loopstart + 1; /* EXCEPTION */ \
mf->v3 = mp->loopstart + 2; /* EXCEPTION */ \
mf->v4 = mp->loopstart + 3; /* EXCEPTION */ \
mf->mat_nr = mp->mat_nr; \
mf->flag = mp->flag; \
mf->edcode = TESSFACE_IS_QUAD; /* EXCEPTION */ \
(void)0
else if (mp->totloop == 3) {
ML_TO_MF(0, 1, 2);
mface_index++;
}
else if (mp->totloop == 4) {
#ifdef USE_TESSFACE_QUADS
ML_TO_MF_QUAD();
mface_index++;
#else
ML_TO_MF(0, 1, 2);
mface_index++;
ML_TO_MF(0, 2, 3);
mface_index++;
#endif
}
#endif /* USE_TESSFACE_SPEEDUP */
else {
int totfilltri;
ml = mloop + mp->loopstart;
BLI_scanfill_begin(&sf_ctx);
sf_vert_first = NULL;
sf_vert_last = NULL;
for (j = 0; j < mp->totloop; j++, ml++) {
sf_vert = BLI_scanfill_vert_add(&sf_ctx, mvert[ml->v].co);
sf_vert->keyindex = mp->loopstart + j;
if (sf_vert_last)
BLI_scanfill_edge_add(&sf_ctx, sf_vert_last, sf_vert);
if (!sf_vert_first)
sf_vert_first = sf_vert;
sf_vert_last = sf_vert;
}
BLI_scanfill_edge_add(&sf_ctx, sf_vert_last, sf_vert_first);
totfilltri = BLI_scanfill_calc(&sf_ctx, 0);
BLI_assert(totfilltri <= mp->totloop - 2);
(void)totfilltri;
for (sf_tri = sf_ctx.fillfacebase.first; sf_tri; sf_tri = sf_tri->next, mf++) {
mface_to_poly_map[mface_index] = poly_index;
mf = &mface[mface_index];
/* set loop indices, transformed to vert indices later */
mf->v1 = sf_tri->v1->keyindex;
mf->v2 = sf_tri->v2->keyindex;
mf->v3 = sf_tri->v3->keyindex;
mf->v4 = 0;
mf->mat_nr = mp->mat_nr;
mf->flag = mp->flag;
#ifdef USE_TESSFACE_SPEEDUP
mf->edcode = TESSFACE_SCANFILL; /* tag for sorting loop indices */
#endif
mface_index++;
}
BLI_scanfill_end(&sf_ctx);
}
}
CustomData_free(fdata, totface);
totface = mface_index;
BLI_assert(totface <= looptris_tot);
/* not essential but without this we store over-alloc'd memory in the CustomData layers */
if (LIKELY(looptris_tot != totface)) {
mface = MEM_reallocN(mface, sizeof(*mface) * totface);
mface_to_poly_map = MEM_reallocN(mface_to_poly_map, sizeof(*mface_to_poly_map) * totface);
}
CustomData_add_layer(fdata, CD_MFACE, CD_ASSIGN, mface, totface);
/* CD_ORIGINDEX will contain an array of indices from tessfaces to the polygons
* they are directly tessellated from */
CustomData_add_layer(fdata, CD_ORIGINDEX, CD_ASSIGN, mface_to_poly_map, totface);
CustomData_from_bmeshpoly(fdata, pdata, ldata, totface);
if (do_face_nor_cpy) {
/* If polys have a normals layer, copying that to faces can help
* avoid the need to recalculate normals later */
if (CustomData_has_layer(pdata, CD_NORMAL)) {
float (*pnors)[3] = CustomData_get_layer(pdata, CD_NORMAL);
float (*fnors)[3] = CustomData_add_layer(fdata, CD_NORMAL, CD_CALLOC, NULL, totface);
for (mface_index = 0; mface_index < totface; mface_index++) {
copy_v3_v3(fnors[mface_index], pnors[mface_to_poly_map[mface_index]]);
}
}
}
mf = mface;
for (mface_index = 0; mface_index < totface; mface_index++, mf++) {
#ifdef USE_TESSFACE_QUADS
const int mf_len = mf->edcode & TESSFACE_IS_QUAD ? 4 : 3;
#endif
#ifdef USE_TESSFACE_SPEEDUP
/* skip sorting when not using ngons */
if (UNLIKELY(mf->edcode & TESSFACE_SCANFILL))
#endif
{
/* sort loop indices to ensure winding is correct */
if (mf->v1 > mf->v2) SWAP(unsigned int, mf->v1, mf->v2);
if (mf->v2 > mf->v3) SWAP(unsigned int, mf->v2, mf->v3);
if (mf->v1 > mf->v2) SWAP(unsigned int, mf->v1, mf->v2);
if (mf->v1 > mf->v2) SWAP(unsigned int, mf->v1, mf->v2);
if (mf->v2 > mf->v3) SWAP(unsigned int, mf->v2, mf->v3);
if (mf->v1 > mf->v2) SWAP(unsigned int, mf->v1, mf->v2);
}
/* end abusing the edcode */
#if defined(USE_TESSFACE_QUADS) || defined(USE_TESSFACE_SPEEDUP)
mf->edcode = 0;
#endif
lindex[0] = mf->v1;
lindex[1] = mf->v2;
lindex[2] = mf->v3;
#ifdef USE_TESSFACE_QUADS
if (mf_len == 4) lindex[3] = mf->v4;
#endif
/*transform loop indices to vert indices*/
mf->v1 = mloop[mf->v1].v;
mf->v2 = mloop[mf->v2].v;
mf->v3 = mloop[mf->v3].v;
#ifdef USE_TESSFACE_QUADS
if (mf_len == 4) mf->v4 = mloop[mf->v4].v;
#endif
BKE_mesh_loops_to_mface_corners(fdata, ldata, pdata,
lindex, mface_index, mface_to_poly_map[mface_index],
#ifdef USE_TESSFACE_QUADS
mf_len,
#else
3,
#endif
numTex, numCol, hasPCol, hasOrigSpace);
#ifdef USE_TESSFACE_QUADS
test_index_face(mf, fdata, mface_index, mf_len);
#endif
}
return totface;
#undef USE_TESSFACE_SPEEDUP
}
#ifdef USE_BMESH_SAVE_AS_COMPAT
/*
* this function recreates a tessellation.
* returns number of tessellation faces.
*/
int BKE_mesh_mpoly_to_mface(struct CustomData *fdata, struct CustomData *ldata,
struct CustomData *pdata, int totface, int UNUSED(totloop), int totpoly)
{
MLoop *mloop;
int lindex[4];
int i;
int k;
MPoly *mp, *mpoly;
MFace *mface = NULL, *mf;
BLI_array_declare(mface);
const int numTex = CustomData_number_of_layers(pdata, CD_MTEXPOLY);
const int numCol = CustomData_number_of_layers(ldata, CD_MLOOPCOL);
const int hasPCol = CustomData_has_layer(ldata, CD_PREVIEW_MLOOPCOL);
const int hasOrigSpace = CustomData_has_layer(ldata, CD_ORIGSPACE_MLOOP);
mpoly = CustomData_get_layer(pdata, CD_MPOLY);
mloop = CustomData_get_layer(ldata, CD_MLOOP);
mp = mpoly;
k = 0;
for (i = 0; i < totpoly; i++, mp++) {
if (ELEM(mp->totloop, 3, 4)) {
BLI_array_grow_one(mface);
mf = &mface[k];
mf->mat_nr = mp->mat_nr;
mf->flag = mp->flag;
mf->v1 = mp->loopstart + 0;
mf->v2 = mp->loopstart + 1;
mf->v3 = mp->loopstart + 2;
mf->v4 = (mp->totloop == 4) ? (mp->loopstart + 3) : 0;
/* abuse edcode for temp storage and clear next loop */
mf->edcode = (char)mp->totloop; /* only ever 3 or 4 */
k++;
}
}
CustomData_free(fdata, totface);
totface = k;
CustomData_add_layer(fdata, CD_MFACE, CD_ASSIGN, mface, totface);
CustomData_from_bmeshpoly(fdata, pdata, ldata, totface);
mp = mpoly;
k = 0;
for (i = 0; i < totpoly; i++, mp++) {
if (ELEM(mp->totloop, 3, 4)) {
mf = &mface[k];
if (mf->edcode == 3) {
/* sort loop indices to ensure winding is correct */
/* NO SORT - looks like we can skip this */
lindex[0] = mf->v1;
lindex[1] = mf->v2;
lindex[2] = mf->v3;
lindex[3] = 0; /* unused */
/* transform loop indices to vert indices */
mf->v1 = mloop[mf->v1].v;
mf->v2 = mloop[mf->v2].v;
mf->v3 = mloop[mf->v3].v;
BKE_mesh_loops_to_mface_corners(fdata, ldata, pdata,
lindex, k, i, 3,
numTex, numCol, hasPCol, hasOrigSpace);
test_index_face(mf, fdata, k, 3);
}
else {
/* sort loop indices to ensure winding is correct */
/* NO SORT - looks like we can skip this */
lindex[0] = mf->v1;
lindex[1] = mf->v2;
lindex[2] = mf->v3;
lindex[3] = mf->v4;
/* transform loop indices to vert indices */
mf->v1 = mloop[mf->v1].v;
mf->v2 = mloop[mf->v2].v;
mf->v3 = mloop[mf->v3].v;
mf->v4 = mloop[mf->v4].v;
BKE_mesh_loops_to_mface_corners(fdata, ldata, pdata,
lindex, k, i, 4,
numTex, numCol, hasPCol, hasOrigSpace);
test_index_face(mf, fdata, k, 4);
}
mf->edcode = 0;
k++;
}
}
return k;
}
#endif /* USE_BMESH_SAVE_AS_COMPAT */
/*
* COMPUTE POLY NORMAL
*
* Computes the normal of a planar
* polygon See Graphics Gems for
* computing newell normal.
*
*/
static void mesh_calc_ngon_normal(MPoly *mpoly, MLoop *loopstart,
MVert *mvert, float normal[3])
{
const int nverts = mpoly->totloop;
float const *v_prev = mvert[loopstart[nverts - 1].v].co;
float const *v_curr;
int i;
zero_v3(normal);
/* Newell's Method */
for (i = 0; i < nverts; i++) {
v_curr = mvert[loopstart[i].v].co;
add_newell_cross_v3_v3v3(normal, v_prev, v_curr);
v_prev = v_curr;
}
if (UNLIKELY(normalize_v3(normal) == 0.0f)) {
normal[2] = 1.0f; /* other axis set to 0.0 */
}
}
void BKE_mesh_calc_poly_normal(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, float no[3])
{
if (mpoly->totloop > 4) {
mesh_calc_ngon_normal(mpoly, loopstart, mvarray, no);
}
else if (mpoly->totloop == 3) {
normal_tri_v3(no,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co
);
}
else if (mpoly->totloop == 4) {
normal_quad_v3(no,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co,
mvarray[loopstart[3].v].co
);
}
else { /* horrible, two sided face! */
no[0] = 0.0;
no[1] = 0.0;
no[2] = 1.0;
}
}
/* duplicate of function above _but_ takes coords rather then mverts */
static void mesh_calc_ngon_normal_coords(MPoly *mpoly, MLoop *loopstart,
const float (*vertex_coords)[3], float normal[3])
{
const int nverts = mpoly->totloop;
float const *v_prev = vertex_coords[loopstart[nverts - 1].v];
float const *v_curr;
int i;
zero_v3(normal);
/* Newell's Method */
for (i = 0; i < nverts; i++) {
v_curr = vertex_coords[loopstart[i].v];
add_newell_cross_v3_v3v3(normal, v_prev, v_curr);
v_prev = v_curr;
}
if (UNLIKELY(normalize_v3(normal) == 0.0f)) {
normal[2] = 1.0f; /* other axis set to 0.0 */
}
}
void BKE_mesh_calc_poly_normal_coords(MPoly *mpoly, MLoop *loopstart,
const float (*vertex_coords)[3], float no[3])
{
if (mpoly->totloop > 4) {
mesh_calc_ngon_normal_coords(mpoly, loopstart, vertex_coords, no);
}
else if (mpoly->totloop == 3) {
normal_tri_v3(no,
vertex_coords[loopstart[0].v],
vertex_coords[loopstart[1].v],
vertex_coords[loopstart[2].v]
);
}
else if (mpoly->totloop == 4) {
normal_quad_v3(no,
vertex_coords[loopstart[0].v],
vertex_coords[loopstart[1].v],
vertex_coords[loopstart[2].v],
vertex_coords[loopstart[3].v]
);
}
else { /* horrible, two sided face! */
no[0] = 0.0;
no[1] = 0.0;
no[2] = 1.0;
}
}
static void mesh_calc_ngon_center(MPoly *mpoly, MLoop *loopstart,
MVert *mvert, float cent[3])
{
const float w = 1.0f / (float)mpoly->totloop;
int i;
zero_v3(cent);
for (i = 0; i < mpoly->totloop; i++) {
madd_v3_v3fl(cent, mvert[(loopstart++)->v].co, w);
}
}
void BKE_mesh_calc_poly_center(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, float cent[3])
{
if (mpoly->totloop == 3) {
cent_tri_v3(cent,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co
);
}
else if (mpoly->totloop == 4) {
cent_quad_v3(cent,
mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co,
mvarray[loopstart[3].v].co
);
}
else {
mesh_calc_ngon_center(mpoly, loopstart, mvarray, cent);
}
}
/* note, passing polynormal is only a speedup so we can skip calculating it */
float BKE_mesh_calc_poly_area(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, const float polynormal[3])
{
if (mpoly->totloop == 3) {
return area_tri_v3(mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co
);
}
else if (mpoly->totloop == 4) {
return area_quad_v3(mvarray[loopstart[0].v].co,
mvarray[loopstart[1].v].co,
mvarray[loopstart[2].v].co,
mvarray[loopstart[3].v].co
);
}
else {
int i;
MLoop *l_iter = loopstart;
float area, polynorm_local[3];
float (*vertexcos)[3] = BLI_array_alloca(vertexcos, mpoly->totloop);
const float *no = polynormal ? polynormal : polynorm_local;
/* pack vertex cos into an array for area_poly_v3 */
for (i = 0; i < mpoly->totloop; i++, l_iter++) {
copy_v3_v3(vertexcos[i], mvarray[l_iter->v].co);
}
/* need normal for area_poly_v3 as well */
if (polynormal == NULL) {
BKE_mesh_calc_poly_normal(mpoly, loopstart, mvarray, polynorm_local);
}
/* finally calculate the area */
area = area_poly_v3(mpoly->totloop, vertexcos, no);
return area;
}
}
/* note, results won't be correct if polygon is non-planar */
static float mesh_calc_poly_planar_area_centroid(MPoly *mpoly, MLoop *loopstart, MVert *mvarray, float cent[3])
{
int i;
float tri_area;
float total_area = 0.0f;
float v1[3], v2[3], v3[3], normal[3], tri_cent[3];
BKE_mesh_calc_poly_normal(mpoly, loopstart, mvarray, normal);
copy_v3_v3(v1, mvarray[loopstart[0].v].co);
copy_v3_v3(v2, mvarray[loopstart[1].v].co);
zero_v3(cent);
for (i = 2; i < mpoly->totloop; i++) {
copy_v3_v3(v3, mvarray[loopstart[i].v].co);
tri_area = area_tri_signed_v3(v1, v2, v3, normal);
total_area += tri_area;
cent_tri_v3(tri_cent, v1, v2, v3);
madd_v3_v3fl(cent, tri_cent, tri_area);
copy_v3_v3(v2, v3);
}
mul_v3_fl(cent, 1.0f / total_area);
return total_area;
}
/**
* This function takes the difference between 2 vertex-coord-arrays
* (\a vert_cos_src, \a vert_cos_dst),
* and applies the difference to \a vert_cos_new relative to \a vert_cos_org.
*
* \param vert_cos_src reference deform source.
* \param vert_cos_dst reference deform destination.
*
* \param vert_cos_org reference for the output location.
* \param vert_cos_new resulting coords.
*/
void BKE_mesh_calc_relative_deform(
const MPoly *mpoly, const int totpoly,
const MLoop *mloop, const int totvert,
const float (*vert_cos_src)[3],
const float (*vert_cos_dst)[3],
const float (*vert_cos_org)[3],
float (*vert_cos_new)[3])
{
const MPoly *mp;
int i;
int *vert_accum = MEM_callocN(sizeof(*vert_accum) * totvert, __func__);
memset(vert_cos_new, '\0', sizeof(*vert_cos_new) * totvert);
for (i = 0, mp = mpoly; i < totpoly; i++, mp++) {
const MLoop *loopstart = mloop + mp->loopstart;
int j;
for (j = 0; j < mp->totloop; j++) {
int v_prev = (loopstart + ((mp->totloop + (j - 1)) % mp->totloop))->v;
int v_curr = (loopstart + j)->v;
int v_next = (loopstart + ((j + 1) % mp->totloop))->v;
float tvec[3];
barycentric_transform(
tvec, vert_cos_dst[v_curr],
vert_cos_org[v_prev], vert_cos_org[v_curr], vert_cos_org[v_next],
vert_cos_src[v_prev], vert_cos_src[v_curr], vert_cos_src[v_next]
);
add_v3_v3(vert_cos_new[v_curr], tvec);
vert_accum[v_curr] += 1;
}
}
for (i = 0; i < totvert; i++) {
if (vert_accum[i]) {
mul_v3_fl(vert_cos_new[i], 1.0f / (float)vert_accum[i]);
}
else {
copy_v3_v3(vert_cos_new[i], vert_cos_org[i]);
}
}
MEM_freeN(vert_accum);
}
/* Find the index of the loop in 'poly' which references vertex,
* returns -1 if not found */
int poly_find_loop_from_vert(const MPoly *poly, const MLoop *loopstart,
unsigned vert)
{
int j;
for (j = 0; j < poly->totloop; j++, loopstart++) {
if (loopstart->v == vert)
return j;
}
return -1;
}
/* Fill 'adj_r' with the loop indices in 'poly' adjacent to the
* vertex. Returns the index of the loop matching vertex, or -1 if the
* vertex is not in 'poly' */
int poly_get_adj_loops_from_vert(unsigned adj_r[3], const MPoly *poly,
const MLoop *mloop, unsigned vert)
{
int corner = poly_find_loop_from_vert(poly,
&mloop[poly->loopstart],
vert);
if (corner != -1) {
const MLoop *ml = &mloop[poly->loopstart + corner];
/* vertex was found */
adj_r[0] = ME_POLY_LOOP_PREV(mloop, poly, corner)->v;
adj_r[1] = ml->v;
adj_r[2] = ME_POLY_LOOP_NEXT(mloop, poly, corner)->v;
}
return corner;
}
/* Return the index of the edge vert that is not equal to 'v'. If
* neither edge vertex is equal to 'v', returns -1. */
int BKE_mesh_edge_other_vert(const MEdge *e, int v)
{
if (e->v1 == v)
return e->v2;
else if (e->v2 == v)
return e->v1;
else
return -1;
}
/* update the hide flag for edges and faces from the corresponding
* flag in verts */
void BKE_mesh_flush_hidden_from_verts(const MVert *mvert,
const MLoop *mloop,
MEdge *medge, int totedge,
MPoly *mpoly, int totpoly)
{
int i, j;
for (i = 0; i < totedge; i++) {
MEdge *e = &medge[i];
if (mvert[e->v1].flag & ME_HIDE ||
mvert[e->v2].flag & ME_HIDE)
{
e->flag |= ME_HIDE;
}
else {
e->flag &= ~ME_HIDE;
}
}
for (i = 0; i < totpoly; i++) {
MPoly *p = &mpoly[i];
p->flag &= ~ME_HIDE;
for (j = 0; j < p->totloop; j++) {
if (mvert[mloop[p->loopstart + j].v].flag & ME_HIDE)
p->flag |= ME_HIDE;
}
}
}
/**
* simple poly -> vert/edge selection.
*/
void BKE_mesh_flush_select_from_polys_ex(MVert *mvert, const int totvert,
MLoop *mloop,
MEdge *medge, const int totedge,
const MPoly *mpoly, const int totpoly)
{
MVert *mv;
MEdge *med;
const MPoly *mp;
int i;
i = totvert;
for (mv = mvert; i--; mv++) {
mv->flag &= ~SELECT;
}
i = totedge;
for (med = medge; i--; med++) {
med->flag &= ~SELECT;
}
i = totpoly;
for (mp = mpoly; i--; mp++) {
/* assume if its selected its not hidden and none of its verts/edges are hidden
* (a common assumption)*/
if (mp->flag & ME_FACE_SEL) {
MLoop *ml;
int j;
j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
mvert[ml->v].flag |= SELECT;
medge[ml->e].flag |= SELECT;
}
}
}
}
void BKE_mesh_flush_select_from_polys(Mesh *me)
{
BKE_mesh_flush_select_from_polys_ex(me->mvert, me->totvert,
me->mloop,
me->medge, me->totedge,
me->mpoly, me->totpoly);
}
void BKE_mesh_flush_select_from_verts_ex(const MVert *mvert, const int UNUSED(totvert),
MLoop *mloop,
MEdge *medge, const int totedge,
MPoly *mpoly, const int totpoly)
{
MEdge *med;
MPoly *mp;
int i;
/* edges */
i = totedge;
for (med = medge; i--; med++) {
if ((med->flag & ME_HIDE) == 0) {
if ((mvert[med->v1].flag & SELECT) && (mvert[med->v2].flag & SELECT)) {
med->flag |= SELECT;
}
else {
med->flag &= ~SELECT;
}
}
}
/* polys */
i = totpoly;
for (mp = mpoly; i--; mp++) {
if ((mp->flag & ME_HIDE) == 0) {
int ok = TRUE;
MLoop *ml;
int j;
j = mp->totloop;
for (ml = &mloop[mp->loopstart]; j--; ml++) {
if ((mvert[ml->v].flag & SELECT) == 0) {
ok = FALSE;
break;
}
}
if (ok) {
mp->flag |= ME_FACE_SEL;
}
else {
mp->flag &= ~ME_FACE_SEL;
}
}
}
}
void BKE_mesh_flush_select_from_verts(Mesh *me)
{
BKE_mesh_flush_select_from_verts_ex(me->mvert, me->totvert,
me->mloop,
me->medge, me->totedge,
me->mpoly, me->totpoly);
}
/* basic vertex data functions */
int BKE_mesh_minmax(Mesh *me, float r_min[3], float r_max[3])
{
int i = me->totvert;
MVert *mvert;
for (mvert = me->mvert; i--; mvert++) {
minmax_v3v3_v3(r_min, r_max, mvert->co);
}
return (me->totvert != 0);
}
int BKE_mesh_center_median(Mesh *me, float cent[3])
{
int i = me->totvert;
MVert *mvert;
zero_v3(cent);
for (mvert = me->mvert; i--; mvert++) {
add_v3_v3(cent, mvert->co);
}
/* otherwise we get NAN for 0 verts */
if (me->totvert) {
mul_v3_fl(cent, 1.0f / (float)me->totvert);
}
return (me->totvert != 0);
}
int BKE_mesh_center_bounds(Mesh *me, float cent[3])
{
float min[3], max[3];
INIT_MINMAX(min, max);
if (BKE_mesh_minmax(me, min, max)) {
mid_v3_v3v3(cent, min, max);
return 1;
}
return 0;
}
int BKE_mesh_center_centroid(Mesh *me, float cent[3])
{
int i = me->totpoly;
MPoly *mpoly;
float poly_area;
float total_area = 0.0f;
float poly_cent[3];
zero_v3(cent);
/* calculate a weighted average of polygon centroids */
for (mpoly = me->mpoly; i--; mpoly++) {
poly_area = mesh_calc_poly_planar_area_centroid(mpoly, me->mloop + mpoly->loopstart, me->mvert, poly_cent);
madd_v3_v3fl(cent, poly_cent, poly_area);
total_area += poly_area;
}
/* otherwise we get NAN for 0 polys */
if (me->totpoly) {
mul_v3_fl(cent, 1.0f / total_area);
}
return (me->totpoly != 0);
}
void BKE_mesh_translate(Mesh *me, const float offset[3], const bool do_keys)
{
int i = me->totvert;
MVert *mvert;
for (mvert = me->mvert; i--; mvert++) {
add_v3_v3(mvert->co, offset);
}
if (do_keys && me->key) {
KeyBlock *kb;
for (kb = me->key->block.first; kb; kb = kb->next) {
float *fp = kb->data;
for (i = kb->totelem; i--; fp += 3) {
add_v3_v3(fp, offset);
}
}
}
}
void BKE_mesh_ensure_navmesh(Mesh *me)
{
if (!CustomData_has_layer(&me->pdata, CD_RECAST)) {
int i;
int numFaces = me->totpoly;
int *recastData;
recastData = (int *)MEM_mallocN(numFaces * sizeof(int), __func__);
for (i = 0; i < numFaces; i++) {
recastData[i] = i + 1;
}
CustomData_add_layer_named(&me->pdata, CD_RECAST, CD_ASSIGN, recastData, numFaces, "recastData");
}
}
void BKE_mesh_tessface_calc(Mesh *mesh)
{
mesh->totface = BKE_mesh_recalc_tessellation(&mesh->fdata, &mesh->ldata, &mesh->pdata,
mesh->mvert,
mesh->totface, mesh->totloop, mesh->totpoly,
/* calc normals right after, don't copy from polys here */
false);
BKE_mesh_update_customdata_pointers(mesh, true);
}
void BKE_mesh_tessface_ensure(Mesh *mesh)
{
if (mesh->totpoly && mesh->totface == 0) {
BKE_mesh_tessface_calc(mesh);
}
}
void BKE_mesh_tessface_clear(Mesh *mesh)
{
mesh_tessface_clear_intern(mesh, TRUE);
}
#if 0 /* slow version of the function below */
void BKE_mesh_calc_poly_angles(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, float angles[])
{
MLoop *ml;
MLoop *mloop = &loopstart[-mpoly->loopstart];
int j;
for (j = 0, ml = loopstart; j < mpoly->totloop; j++, ml++) {
MLoop *ml_prev = ME_POLY_LOOP_PREV(mloop, mpoly, j);
MLoop *ml_next = ME_POLY_LOOP_NEXT(mloop, mpoly, j);
float e1[3], e2[3];
sub_v3_v3v3(e1, mvarray[ml_next->v].co, mvarray[ml->v].co);
sub_v3_v3v3(e2, mvarray[ml_prev->v].co, mvarray[ml->v].co);
angles[j] = (float)M_PI - angle_v3v3(e1, e2);
}
}
#else /* equivalent the function above but avoid multiple subtractions + normalize */
void BKE_mesh_calc_poly_angles(MPoly *mpoly, MLoop *loopstart,
MVert *mvarray, float angles[])
{
float nor_prev[3];
float nor_next[3];
int i_this = mpoly->totloop - 1;
int i_next = 0;
sub_v3_v3v3(nor_prev, mvarray[loopstart[i_this - 1].v].co, mvarray[loopstart[i_this].v].co);
normalize_v3(nor_prev);
while (i_next < mpoly->totloop) {
sub_v3_v3v3(nor_next, mvarray[loopstart[i_this].v].co, mvarray[loopstart[i_next].v].co);
normalize_v3(nor_next);
angles[i_this] = angle_normalized_v3v3(nor_prev, nor_next);
/* step */
copy_v3_v3(nor_prev, nor_next);
i_this = i_next;
i_next++;
}
}
#endif
void BKE_mesh_poly_edgehash_insert(EdgeHash *ehash, const MPoly *mp, const MLoop *mloop)
{
const MLoop *ml, *ml_next;
int i = mp->totloop;
ml_next = mloop; /* first loop */
ml = &ml_next[i - 1]; /* last loop */
while (i-- != 0) {
if (!BLI_edgehash_haskey(ehash, ml->v, ml_next->v)) {
BLI_edgehash_insert(ehash, ml->v, ml_next->v, NULL);
}
ml = ml_next;
ml_next++;
}
}
void BKE_mesh_do_versions_cd_flag_init(Mesh *mesh)
{
if (UNLIKELY(mesh->cd_flag)) {
return;
}
else {
MVert *mv;
MEdge *med;
int i;
for (mv = mesh->mvert, i = 0; i < mesh->totvert; mv++, i++) {
if (mv->bweight != 0) {
mesh->cd_flag |= ME_CDFLAG_VERT_BWEIGHT;
break;
}
}
for (med = mesh->medge, i = 0; i < mesh->totedge; med++, i++) {
if (med->bweight != 0) {
mesh->cd_flag |= ME_CDFLAG_EDGE_BWEIGHT;
if (mesh->cd_flag & ME_CDFLAG_EDGE_CREASE) {
break;
}
}
if (med->crease != 0) {
mesh->cd_flag |= ME_CDFLAG_EDGE_CREASE;
if (mesh->cd_flag & ME_CDFLAG_EDGE_BWEIGHT) {
break;
}
}
}
}
}