This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/intern/cycles/device/hip/device_impl.cpp
Xavier Hallade 9821a2d397 Cycles: pass kernel features to get_bvh_layout_mask
This allows to selectively disable Hardware Raytracing in oneAPI
backend, depending on features used.
2023-04-18 22:09:42 +02:00

962 lines
27 KiB
C++

/* SPDX-License-Identifier: Apache-2.0
* Copyright 2011-2022 Blender Foundation */
#ifdef WITH_HIP
# include <climits>
# include <limits.h>
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include "device/hip/device_impl.h"
# include "util/debug.h"
# include "util/foreach.h"
# include "util/log.h"
# include "util/map.h"
# include "util/md5.h"
# include "util/path.h"
# include "util/string.h"
# include "util/system.h"
# include "util/time.h"
# include "util/types.h"
# include "util/windows.h"
# include "kernel/device/hip/globals.h"
CCL_NAMESPACE_BEGIN
class HIPDevice;
bool HIPDevice::have_precompiled_kernels()
{
string fatbins_path = path_get("lib");
return path_exists(fatbins_path);
}
BVHLayoutMask HIPDevice::get_bvh_layout_mask(uint /*kernel_features*/) const
{
return BVH_LAYOUT_BVH2;
}
void HIPDevice::set_error(const string &error)
{
Device::set_error(error);
if (first_error) {
fprintf(stderr, "\nRefer to the Cycles GPU rendering documentation for possible solutions:\n");
fprintf(stderr,
"https://docs.blender.org/manual/en/latest/render/cycles/gpu_rendering.html\n\n");
first_error = false;
}
}
HIPDevice::HIPDevice(const DeviceInfo &info, Stats &stats, Profiler &profiler)
: GPUDevice(info, stats, profiler)
{
/* Verify that base class types can be used with specific backend types */
static_assert(sizeof(texMemObject) == sizeof(hipTextureObject_t));
static_assert(sizeof(arrayMemObject) == sizeof(hArray));
first_error = true;
hipDevId = info.num;
hipDevice = 0;
hipContext = 0;
hipModule = 0;
need_texture_info = false;
pitch_alignment = 0;
/* Initialize HIP. */
hipError_t result = hipInit(0);
if (result != hipSuccess) {
set_error(string_printf("Failed to initialize HIP runtime (%s)", hipewErrorString(result)));
return;
}
/* Setup device and context. */
result = hipDeviceGet(&hipDevice, hipDevId);
if (result != hipSuccess) {
set_error(string_printf("Failed to get HIP device handle from ordinal (%s)",
hipewErrorString(result)));
return;
}
/* hipDeviceMapHost for mapping host memory when out of device memory.
* hipDeviceLmemResizeToMax for reserving local memory ahead of render,
* so we can predict which memory to map to host. */
int value;
hip_assert(hipDeviceGetAttribute(&value, hipDeviceAttributeCanMapHostMemory, hipDevice));
can_map_host = value != 0;
hip_assert(
hipDeviceGetAttribute(&pitch_alignment, hipDeviceAttributeTexturePitchAlignment, hipDevice));
unsigned int ctx_flags = hipDeviceLmemResizeToMax;
if (can_map_host) {
ctx_flags |= hipDeviceMapHost;
init_host_memory();
}
/* Create context. */
result = hipCtxCreate(&hipContext, ctx_flags, hipDevice);
if (result != hipSuccess) {
set_error(string_printf("Failed to create HIP context (%s)", hipewErrorString(result)));
return;
}
int major, minor;
hipDeviceGetAttribute(&major, hipDeviceAttributeComputeCapabilityMajor, hipDevId);
hipDeviceGetAttribute(&minor, hipDeviceAttributeComputeCapabilityMinor, hipDevId);
hipDevArchitecture = major * 100 + minor * 10;
/* Pop context set by hipCtxCreate. */
hipCtxPopCurrent(NULL);
}
HIPDevice::~HIPDevice()
{
texture_info.free();
hip_assert(hipCtxDestroy(hipContext));
}
bool HIPDevice::support_device(const uint /*kernel_features*/)
{
if (hipSupportsDevice(hipDevId)) {
return true;
}
else {
/* We only support Navi and above. */
hipDeviceProp_t props;
hipGetDeviceProperties(&props, hipDevId);
set_error(string_printf("HIP backend requires AMD RDNA graphics card or up, but found %s.",
props.name));
return false;
}
}
bool HIPDevice::check_peer_access(Device *peer_device)
{
if (peer_device == this) {
return false;
}
if (peer_device->info.type != DEVICE_HIP && peer_device->info.type != DEVICE_OPTIX) {
return false;
}
HIPDevice *const peer_device_hip = static_cast<HIPDevice *>(peer_device);
int can_access = 0;
hip_assert(hipDeviceCanAccessPeer(&can_access, hipDevice, peer_device_hip->hipDevice));
if (can_access == 0) {
return false;
}
// Ensure array access over the link is possible as well (for 3D textures)
hip_assert(hipDeviceGetP2PAttribute(
&can_access, hipDevP2PAttrHipArrayAccessSupported, hipDevice, peer_device_hip->hipDevice));
if (can_access == 0) {
return false;
}
// Enable peer access in both directions
{
const HIPContextScope scope(this);
hipError_t result = hipCtxEnablePeerAccess(peer_device_hip->hipContext, 0);
if (result != hipSuccess) {
set_error(string_printf("Failed to enable peer access on HIP context (%s)",
hipewErrorString(result)));
return false;
}
}
{
const HIPContextScope scope(peer_device_hip);
hipError_t result = hipCtxEnablePeerAccess(hipContext, 0);
if (result != hipSuccess) {
set_error(string_printf("Failed to enable peer access on HIP context (%s)",
hipewErrorString(result)));
return false;
}
}
return true;
}
bool HIPDevice::use_adaptive_compilation()
{
return DebugFlags().hip.adaptive_compile;
}
/* Common HIPCC flags which stays the same regardless of shading model,
* kernel sources md5 and only depends on compiler or compilation settings.
*/
string HIPDevice::compile_kernel_get_common_cflags(const uint kernel_features)
{
const int machine = system_cpu_bits();
const string source_path = path_get("source");
const string include_path = source_path;
string cflags = string_printf(
"-m%d "
"--use_fast_math "
"-DHIPCC "
"-I\"%s\"",
machine,
include_path.c_str());
if (use_adaptive_compilation()) {
cflags += " -D__KERNEL_FEATURES__=" + to_string(kernel_features);
}
return cflags;
}
string HIPDevice::compile_kernel(const uint kernel_features, const char *name, const char *base)
{
/* Compute kernel name. */
int major, minor;
hipDeviceGetAttribute(&major, hipDeviceAttributeComputeCapabilityMajor, hipDevId);
hipDeviceGetAttribute(&minor, hipDeviceAttributeComputeCapabilityMinor, hipDevId);
hipDeviceProp_t props;
hipGetDeviceProperties(&props, hipDevId);
/* gcnArchName can contain tokens after the arch name with features, ie.
* `gfx1010:sramecc-:xnack-` so we tokenize it to get the first part. */
char *arch = strtok(props.gcnArchName, ":");
if (arch == NULL) {
arch = props.gcnArchName;
}
/* Attempt to use kernel provided with Blender. */
if (!use_adaptive_compilation()) {
const string fatbin = path_get(string_printf("lib/%s_%s.fatbin", name, arch));
VLOG_INFO << "Testing for pre-compiled kernel " << fatbin << ".";
if (path_exists(fatbin)) {
VLOG_INFO << "Using precompiled kernel.";
return fatbin;
}
}
/* Try to use locally compiled kernel. */
string source_path = path_get("source");
const string source_md5 = path_files_md5_hash(source_path);
/* We include cflags into md5 so changing hip toolkit or changing other
* compiler command line arguments makes sure fatbin gets re-built.
*/
string common_cflags = compile_kernel_get_common_cflags(kernel_features);
const string kernel_md5 = util_md5_string(source_md5 + common_cflags);
const char *const kernel_ext = "genco";
std::string options;
# ifdef _WIN32
options.append("Wno-parentheses-equality -Wno-unused-value --hipcc-func-supp -ffast-math");
# else
options.append("Wno-parentheses-equality -Wno-unused-value --hipcc-func-supp -O3 -ffast-math");
# endif
# ifdef _DEBUG
options.append(" -save-temps");
# endif
options.append(" --amdgpu-target=").append(arch);
const string include_path = source_path;
const string fatbin_file = string_printf("cycles_%s_%s_%s", name, arch, kernel_md5.c_str());
const string fatbin = path_cache_get(path_join("kernels", fatbin_file));
VLOG_INFO << "Testing for locally compiled kernel " << fatbin << ".";
if (path_exists(fatbin)) {
VLOG_INFO << "Using locally compiled kernel.";
return fatbin;
}
# ifdef _WIN32
if (!use_adaptive_compilation() && have_precompiled_kernels()) {
if (!hipSupportsDevice(hipDevId)) {
set_error(
string_printf("HIP backend requires compute capability 10.1 or up, but found %d.%d. "
"Your GPU is not supported.",
major,
minor));
}
else {
set_error(
string_printf("HIP binary kernel for this graphics card compute "
"capability (%d.%d) not found.",
major,
minor));
}
return string();
}
# endif
/* Compile. */
const char *const hipcc = hipewCompilerPath();
if (hipcc == NULL) {
set_error(
"HIP hipcc compiler not found. "
"Install HIP toolkit in default location.");
return string();
}
const int hipcc_hip_version = hipewCompilerVersion();
VLOG_INFO << "Found hipcc " << hipcc << ", HIP version " << hipcc_hip_version << ".";
if (hipcc_hip_version < 40) {
printf(
"Unsupported HIP version %d.%d detected, "
"you need HIP 4.0 or newer.\n",
hipcc_hip_version / 10,
hipcc_hip_version % 10);
return string();
}
double starttime = time_dt();
path_create_directories(fatbin);
source_path = path_join(path_join(source_path, "kernel"),
path_join("device", path_join(base, string_printf("%s.cpp", name))));
string command = string_printf("%s -%s -I %s --%s %s -o \"%s\"",
hipcc,
options.c_str(),
include_path.c_str(),
kernel_ext,
source_path.c_str(),
fatbin.c_str());
printf("Compiling %sHIP kernel ...\n%s\n",
(use_adaptive_compilation()) ? "adaptive " : "",
command.c_str());
# ifdef _WIN32
command = "call " + command;
# endif
if (system(command.c_str()) != 0) {
set_error(
"Failed to execute compilation command, "
"see console for details.");
return string();
}
/* Verify if compilation succeeded */
if (!path_exists(fatbin)) {
set_error(
"HIP kernel compilation failed, "
"see console for details.");
return string();
}
printf("Kernel compilation finished in %.2lfs.\n", time_dt() - starttime);
return fatbin;
}
bool HIPDevice::load_kernels(const uint kernel_features)
{
/* TODO(sergey): Support kernels re-load for HIP devices adaptive compile.
*
* Currently re-loading kernels will invalidate memory pointers.
*/
if (hipModule) {
if (use_adaptive_compilation()) {
VLOG_INFO << "Skipping HIP kernel reload for adaptive compilation, not currently supported.";
}
return true;
}
/* check if hip init succeeded */
if (hipContext == 0)
return false;
/* check if GPU is supported */
if (!support_device(kernel_features)) {
return false;
}
/* get kernel */
const char *kernel_name = "kernel";
string fatbin = compile_kernel(kernel_features, kernel_name);
if (fatbin.empty())
return false;
/* open module */
HIPContextScope scope(this);
string fatbin_data;
hipError_t result;
if (path_read_text(fatbin, fatbin_data))
result = hipModuleLoadData(&hipModule, fatbin_data.c_str());
else
result = hipErrorFileNotFound;
if (result != hipSuccess)
set_error(string_printf(
"Failed to load HIP kernel from '%s' (%s)", fatbin.c_str(), hipewErrorString(result)));
if (result == hipSuccess) {
kernels.load(this);
reserve_local_memory(kernel_features);
}
return (result == hipSuccess);
}
void HIPDevice::reserve_local_memory(const uint kernel_features)
{
/* Together with hipDeviceLmemResizeToMax, this reserves local memory
* needed for kernel launches, so that we can reliably figure out when
* to allocate scene data in mapped host memory. */
size_t total = 0, free_before = 0, free_after = 0;
{
HIPContextScope scope(this);
hipMemGetInfo(&free_before, &total);
}
{
/* Use the biggest kernel for estimation. */
const DeviceKernel test_kernel = (kernel_features & KERNEL_FEATURE_NODE_RAYTRACE) ?
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_RAYTRACE :
(kernel_features & KERNEL_FEATURE_MNEE) ?
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE_MNEE :
DEVICE_KERNEL_INTEGRATOR_SHADE_SURFACE;
/* Launch kernel, using just 1 block appears sufficient to reserve memory for all
* multiprocessors. It would be good to do this in parallel for the multi GPU case
* still to make it faster. */
HIPDeviceQueue queue(this);
device_ptr d_path_index = 0;
device_ptr d_render_buffer = 0;
int d_work_size = 0;
DeviceKernelArguments args(&d_path_index, &d_render_buffer, &d_work_size);
queue.init_execution();
queue.enqueue(test_kernel, 1, args);
queue.synchronize();
}
{
HIPContextScope scope(this);
hipMemGetInfo(&free_after, &total);
}
VLOG_INFO << "Local memory reserved " << string_human_readable_number(free_before - free_after)
<< " bytes. (" << string_human_readable_size(free_before - free_after) << ")";
# if 0
/* For testing mapped host memory, fill up device memory. */
const size_t keep_mb = 1024;
while (free_after > keep_mb * 1024 * 1024LL) {
hipDeviceptr_t tmp;
hip_assert(hipMalloc(&tmp, 10 * 1024 * 1024LL));
hipMemGetInfo(&free_after, &total);
}
# endif
}
void HIPDevice::get_device_memory_info(size_t &total, size_t &free)
{
HIPContextScope scope(this);
hipMemGetInfo(&free, &total);
}
bool HIPDevice::alloc_device(void *&device_pointer, size_t size)
{
HIPContextScope scope(this);
hipError_t mem_alloc_result = hipMalloc((hipDeviceptr_t *)&device_pointer, size);
return mem_alloc_result == hipSuccess;
}
void HIPDevice::free_device(void *device_pointer)
{
HIPContextScope scope(this);
hip_assert(hipFree((hipDeviceptr_t)device_pointer));
}
bool HIPDevice::alloc_host(void *&shared_pointer, size_t size)
{
HIPContextScope scope(this);
hipError_t mem_alloc_result = hipHostMalloc(
&shared_pointer, size, hipHostMallocMapped | hipHostMallocWriteCombined);
return mem_alloc_result == hipSuccess;
}
void HIPDevice::free_host(void *shared_pointer)
{
HIPContextScope scope(this);
hipHostFree(shared_pointer);
}
void HIPDevice::transform_host_pointer(void *&device_pointer, void *&shared_pointer)
{
HIPContextScope scope(this);
hip_assert(hipHostGetDevicePointer((hipDeviceptr_t *)&device_pointer, shared_pointer, 0));
}
void HIPDevice::copy_host_to_device(void *device_pointer, void *host_pointer, size_t size)
{
const HIPContextScope scope(this);
hip_assert(hipMemcpyHtoD((hipDeviceptr_t)device_pointer, host_pointer, size));
}
void HIPDevice::mem_alloc(device_memory &mem)
{
if (mem.type == MEM_TEXTURE) {
assert(!"mem_alloc not supported for textures.");
}
else if (mem.type == MEM_GLOBAL) {
assert(!"mem_alloc not supported for global memory.");
}
else {
generic_alloc(mem);
}
}
void HIPDevice::mem_copy_to(device_memory &mem)
{
if (mem.type == MEM_GLOBAL) {
global_free(mem);
global_alloc(mem);
}
else if (mem.type == MEM_TEXTURE) {
tex_free((device_texture &)mem);
tex_alloc((device_texture &)mem);
}
else {
if (!mem.device_pointer) {
generic_alloc(mem);
}
generic_copy_to(mem);
}
}
void HIPDevice::mem_copy_from(device_memory &mem, size_t y, size_t w, size_t h, size_t elem)
{
if (mem.type == MEM_TEXTURE || mem.type == MEM_GLOBAL) {
assert(!"mem_copy_from not supported for textures.");
}
else if (mem.host_pointer) {
const size_t size = elem * w * h;
const size_t offset = elem * y * w;
if (mem.device_pointer) {
const HIPContextScope scope(this);
hip_assert(hipMemcpyDtoH(
(char *)mem.host_pointer + offset, (hipDeviceptr_t)mem.device_pointer + offset, size));
}
else {
memset((char *)mem.host_pointer + offset, 0, size);
}
}
}
void HIPDevice::mem_zero(device_memory &mem)
{
if (!mem.device_pointer) {
mem_alloc(mem);
}
if (!mem.device_pointer) {
return;
}
/* If use_mapped_host of mem is false, mem.device_pointer currently refers to device memory
* regardless of mem.host_pointer and mem.shared_pointer. */
thread_scoped_lock lock(device_mem_map_mutex);
if (!device_mem_map[&mem].use_mapped_host || mem.host_pointer != mem.shared_pointer) {
const HIPContextScope scope(this);
hip_assert(hipMemsetD8((hipDeviceptr_t)mem.device_pointer, 0, mem.memory_size()));
}
else if (mem.host_pointer) {
memset(mem.host_pointer, 0, mem.memory_size());
}
}
void HIPDevice::mem_free(device_memory &mem)
{
if (mem.type == MEM_GLOBAL) {
global_free(mem);
}
else if (mem.type == MEM_TEXTURE) {
tex_free((device_texture &)mem);
}
else {
generic_free(mem);
}
}
device_ptr HIPDevice::mem_alloc_sub_ptr(device_memory &mem, size_t offset, size_t /*size*/)
{
return (device_ptr)(((char *)mem.device_pointer) + mem.memory_elements_size(offset));
}
void HIPDevice::const_copy_to(const char *name, void *host, size_t size)
{
HIPContextScope scope(this);
hipDeviceptr_t mem;
size_t bytes;
hip_assert(hipModuleGetGlobal(&mem, &bytes, hipModule, "kernel_params"));
assert(bytes == sizeof(KernelParamsHIP));
/* Update data storage pointers in launch parameters. */
# define KERNEL_DATA_ARRAY(data_type, data_name) \
if (strcmp(name, #data_name) == 0) { \
hip_assert(hipMemcpyHtoD(mem + offsetof(KernelParamsHIP, data_name), host, size)); \
return; \
}
KERNEL_DATA_ARRAY(KernelData, data)
KERNEL_DATA_ARRAY(IntegratorStateGPU, integrator_state)
# include "kernel/data_arrays.h"
# undef KERNEL_DATA_ARRAY
}
void HIPDevice::global_alloc(device_memory &mem)
{
if (mem.is_resident(this)) {
generic_alloc(mem);
generic_copy_to(mem);
}
const_copy_to(mem.name, &mem.device_pointer, sizeof(mem.device_pointer));
}
void HIPDevice::global_free(device_memory &mem)
{
if (mem.is_resident(this) && mem.device_pointer) {
generic_free(mem);
}
}
void HIPDevice::tex_alloc(device_texture &mem)
{
HIPContextScope scope(this);
size_t dsize = datatype_size(mem.data_type);
size_t size = mem.memory_size();
hipTextureAddressMode address_mode = hipAddressModeWrap;
switch (mem.info.extension) {
case EXTENSION_REPEAT:
address_mode = hipAddressModeWrap;
break;
case EXTENSION_EXTEND:
address_mode = hipAddressModeClamp;
break;
case EXTENSION_CLIP:
/* TODO(@arya): setting this to Mode Clamp instead of Mode Border
* because it's unsupported in HIP. */
address_mode = hipAddressModeClamp;
break;
case EXTENSION_MIRROR:
address_mode = hipAddressModeMirror;
break;
default:
assert(0);
break;
}
hipTextureFilterMode filter_mode;
if (mem.info.interpolation == INTERPOLATION_CLOSEST) {
filter_mode = hipFilterModePoint;
}
else {
filter_mode = hipFilterModeLinear;
}
/* Image Texture Storage */
hipArray_Format format;
switch (mem.data_type) {
case TYPE_UCHAR:
format = HIP_AD_FORMAT_UNSIGNED_INT8;
break;
case TYPE_UINT16:
format = HIP_AD_FORMAT_UNSIGNED_INT16;
break;
case TYPE_UINT:
format = HIP_AD_FORMAT_UNSIGNED_INT32;
break;
case TYPE_INT:
format = HIP_AD_FORMAT_SIGNED_INT32;
break;
case TYPE_FLOAT:
format = HIP_AD_FORMAT_FLOAT;
break;
case TYPE_HALF:
format = HIP_AD_FORMAT_HALF;
break;
default:
assert(0);
return;
}
Mem *cmem = NULL;
hArray array_3d = NULL;
size_t src_pitch = mem.data_width * dsize * mem.data_elements;
size_t dst_pitch = src_pitch;
if (!mem.is_resident(this)) {
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
cmem->texobject = 0;
if (mem.data_depth > 1) {
array_3d = (hArray)mem.device_pointer;
cmem->array = reinterpret_cast<arrayMemObject>(array_3d);
}
else if (mem.data_height > 0) {
dst_pitch = align_up(src_pitch, pitch_alignment);
}
}
else if (mem.data_depth > 1) {
/* 3D texture using array, there is no API for linear memory. */
HIP_ARRAY3D_DESCRIPTOR desc;
desc.Width = mem.data_width;
desc.Height = mem.data_height;
desc.Depth = mem.data_depth;
desc.Format = format;
desc.NumChannels = mem.data_elements;
desc.Flags = 0;
VLOG_WORK << "Array 3D allocate: " << mem.name << ", "
<< string_human_readable_number(mem.memory_size()) << " bytes. ("
<< string_human_readable_size(mem.memory_size()) << ")";
hip_assert(hipArray3DCreate((hArray *)&array_3d, &desc));
if (!array_3d) {
return;
}
HIP_MEMCPY3D param;
memset(&param, 0, sizeof(HIP_MEMCPY3D));
param.dstMemoryType = hipMemoryTypeArray;
param.dstArray = array_3d;
param.srcMemoryType = hipMemoryTypeHost;
param.srcHost = mem.host_pointer;
param.srcPitch = src_pitch;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
param.Depth = mem.data_depth;
hip_assert(hipDrvMemcpy3D(&param));
mem.device_pointer = (device_ptr)array_3d;
mem.device_size = size;
stats.mem_alloc(size);
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
cmem->texobject = 0;
cmem->array = reinterpret_cast<arrayMemObject>(array_3d);
}
else if (mem.data_height > 0) {
/* 2D texture, using pitch aligned linear memory. */
dst_pitch = align_up(src_pitch, pitch_alignment);
size_t dst_size = dst_pitch * mem.data_height;
cmem = generic_alloc(mem, dst_size - mem.memory_size());
if (!cmem) {
return;
}
hip_Memcpy2D param;
memset(&param, 0, sizeof(param));
param.dstMemoryType = hipMemoryTypeDevice;
param.dstDevice = mem.device_pointer;
param.dstPitch = dst_pitch;
param.srcMemoryType = hipMemoryTypeHost;
param.srcHost = mem.host_pointer;
param.srcPitch = src_pitch;
param.WidthInBytes = param.srcPitch;
param.Height = mem.data_height;
hip_assert(hipDrvMemcpy2DUnaligned(&param));
}
else {
/* 1D texture, using linear memory. */
cmem = generic_alloc(mem);
if (!cmem) {
return;
}
hip_assert(hipMemcpyHtoD(mem.device_pointer, mem.host_pointer, size));
}
/* Resize once */
const uint slot = mem.slot;
if (slot >= texture_info.size()) {
/* Allocate some slots in advance, to reduce amount
* of re-allocations. */
texture_info.resize(slot + 128);
}
/* Set Mapping and tag that we need to (re-)upload to device */
texture_info[slot] = mem.info;
need_texture_info = true;
if (mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT &&
mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT3 &&
mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FPN &&
mem.info.data_type != IMAGE_DATA_TYPE_NANOVDB_FP16) {
/* Bindless textures. */
hipResourceDesc resDesc;
memset(&resDesc, 0, sizeof(resDesc));
if (array_3d) {
resDesc.resType = hipResourceTypeArray;
resDesc.res.array.h_Array = array_3d;
resDesc.flags = 0;
}
else if (mem.data_height > 0) {
resDesc.resType = hipResourceTypePitch2D;
resDesc.res.pitch2D.devPtr = mem.device_pointer;
resDesc.res.pitch2D.format = format;
resDesc.res.pitch2D.numChannels = mem.data_elements;
resDesc.res.pitch2D.height = mem.data_height;
resDesc.res.pitch2D.width = mem.data_width;
resDesc.res.pitch2D.pitchInBytes = dst_pitch;
}
else {
resDesc.resType = hipResourceTypeLinear;
resDesc.res.linear.devPtr = mem.device_pointer;
resDesc.res.linear.format = format;
resDesc.res.linear.numChannels = mem.data_elements;
resDesc.res.linear.sizeInBytes = mem.device_size;
}
hipTextureDesc texDesc;
memset(&texDesc, 0, sizeof(texDesc));
texDesc.addressMode[0] = address_mode;
texDesc.addressMode[1] = address_mode;
texDesc.addressMode[2] = address_mode;
texDesc.filterMode = filter_mode;
texDesc.flags = HIP_TRSF_NORMALIZED_COORDINATES;
thread_scoped_lock lock(device_mem_map_mutex);
cmem = &device_mem_map[&mem];
hip_assert(hipTexObjectCreate(&cmem->texobject, &resDesc, &texDesc, NULL));
texture_info[slot].data = (uint64_t)cmem->texobject;
}
else {
texture_info[slot].data = (uint64_t)mem.device_pointer;
}
}
void HIPDevice::tex_free(device_texture &mem)
{
if (mem.device_pointer) {
HIPContextScope scope(this);
thread_scoped_lock lock(device_mem_map_mutex);
DCHECK(device_mem_map.find(&mem) != device_mem_map.end());
const Mem &cmem = device_mem_map[&mem];
if (cmem.texobject) {
/* Free bindless texture. */
hipTexObjectDestroy(cmem.texobject);
}
if (!mem.is_resident(this)) {
/* Do not free memory here, since it was allocated on a different device. */
device_mem_map.erase(device_mem_map.find(&mem));
}
else if (cmem.array) {
/* Free array. */
hipArrayDestroy(reinterpret_cast<hArray>(cmem.array));
stats.mem_free(mem.device_size);
mem.device_pointer = 0;
mem.device_size = 0;
device_mem_map.erase(device_mem_map.find(&mem));
}
else {
lock.unlock();
generic_free(mem);
}
}
}
unique_ptr<DeviceQueue> HIPDevice::gpu_queue_create()
{
return make_unique<HIPDeviceQueue>(this);
}
bool HIPDevice::should_use_graphics_interop()
{
/* Check whether this device is part of OpenGL context.
*
* Using HIP device for graphics interoperability which is not part of the OpenGL context is
* possible, but from the empiric measurements it can be considerably slower than using naive
* pixels copy. */
/* Disable graphics interop for now, because of driver bug in 21.40. See #92972 */
# if 0
HIPContextScope scope(this);
int num_all_devices = 0;
hip_assert(hipGetDeviceCount(&num_all_devices));
if (num_all_devices == 0) {
return false;
}
vector<hipDevice_t> gl_devices(num_all_devices);
uint num_gl_devices = 0;
hipGLGetDevices(&num_gl_devices, gl_devices.data(), num_all_devices, hipGLDeviceListAll);
for (hipDevice_t gl_device : gl_devices) {
if (gl_device == hipDevice) {
return true;
}
}
# endif
return false;
}
int HIPDevice::get_num_multiprocessors()
{
return get_device_default_attribute(hipDeviceAttributeMultiprocessorCount, 0);
}
int HIPDevice::get_max_num_threads_per_multiprocessor()
{
return get_device_default_attribute(hipDeviceAttributeMaxThreadsPerMultiProcessor, 0);
}
bool HIPDevice::get_device_attribute(hipDeviceAttribute_t attribute, int *value)
{
HIPContextScope scope(this);
return hipDeviceGetAttribute(value, attribute, hipDevice) == hipSuccess;
}
int HIPDevice::get_device_default_attribute(hipDeviceAttribute_t attribute, int default_value)
{
int value = 0;
if (!get_device_attribute(attribute, &value)) {
return default_value;
}
return value;
}
CCL_NAMESPACE_END
#endif