bpy.types.SceneRenderData -> bpy.types.RenderSettings better do these changes before there are too many scripts out.
		
			
				
	
	
		
			965 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			965 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
# ##### BEGIN GPL LICENSE BLOCK #####
 | 
						|
#
 | 
						|
#  This program is free software; you can redistribute it and/or
 | 
						|
#  modify it under the terms of the GNU General Public License
 | 
						|
#  as published by the Free Software Foundation; either version 2
 | 
						|
#  of the License, or (at your option) any later version.
 | 
						|
#
 | 
						|
#  This program is distributed in the hope that it will be useful,
 | 
						|
#  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
#  GNU General Public License for more details.
 | 
						|
#
 | 
						|
#  You should have received a copy of the GNU General Public License
 | 
						|
#  along with this program; if not, write to the Free Software Foundation,
 | 
						|
#  Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | 
						|
#
 | 
						|
# ##### END GPL LICENSE BLOCK #####
 | 
						|
 | 
						|
# <pep8 compliant>
 | 
						|
 | 
						|
import bpy
 | 
						|
 | 
						|
from math import atan, pi, degrees
 | 
						|
import subprocess
 | 
						|
import os
 | 
						|
import sys
 | 
						|
import time
 | 
						|
 | 
						|
import platform as pltfrm
 | 
						|
 | 
						|
if pltfrm.architecture()[0] == '64bit':
 | 
						|
    bitness = 64
 | 
						|
else:
 | 
						|
    bitness = 32
 | 
						|
 | 
						|
 | 
						|
def write_pov(filename, scene=None, info_callback=None):
 | 
						|
    file = open(filename, 'w')
 | 
						|
 | 
						|
    # Only for testing
 | 
						|
    if not scene:
 | 
						|
        scene = bpy.data.scenes[0]
 | 
						|
 | 
						|
    render = scene.render
 | 
						|
    world = scene.world
 | 
						|
 | 
						|
    def uniqueName(name, nameSeq):
 | 
						|
 | 
						|
        if name not in nameSeq:
 | 
						|
            return name
 | 
						|
 | 
						|
        name_orig = name
 | 
						|
        i = 1
 | 
						|
        while name in nameSeq:
 | 
						|
            name = '%s_%.3d' % (name_orig, i)
 | 
						|
            i += 1
 | 
						|
 | 
						|
        return name
 | 
						|
 | 
						|
    def writeMatrix(matrix):
 | 
						|
        file.write('\tmatrix <%.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f,  %.6f, %.6f, %.6f>\n' %\
 | 
						|
        (matrix[0][0], matrix[0][1], matrix[0][2], matrix[1][0], matrix[1][1], matrix[1][2], matrix[2][0], matrix[2][1], matrix[2][2], matrix[3][0], matrix[3][1], matrix[3][2]))
 | 
						|
 | 
						|
    def writeObjectMaterial(material):
 | 
						|
        if material and material.transparency_method == 'RAYTRACE':
 | 
						|
            file.write('\tinterior { ior %.6f }\n' % material.raytrace_transparency.ior)
 | 
						|
 | 
						|
            # Other interior args
 | 
						|
            # fade_distance 2
 | 
						|
            # fade_power [Value]
 | 
						|
            # fade_color
 | 
						|
 | 
						|
            # dispersion
 | 
						|
            # dispersion_samples
 | 
						|
 | 
						|
    materialNames = {}
 | 
						|
    DEF_MAT_NAME = 'Default'
 | 
						|
 | 
						|
    def writeMaterial(material):
 | 
						|
        # Assumes only called once on each material
 | 
						|
 | 
						|
        if material:
 | 
						|
            name_orig = material.name
 | 
						|
        else:
 | 
						|
            name_orig = DEF_MAT_NAME
 | 
						|
 | 
						|
        name = materialNames[name_orig] = uniqueName(bpy.utils.clean_name(name_orig), materialNames)
 | 
						|
 | 
						|
        file.write('#declare %s = finish {\n' % name)
 | 
						|
 | 
						|
        if material:
 | 
						|
            file.write('\tdiffuse %.3g\n' % material.diffuse_intensity)
 | 
						|
            file.write('\tspecular %.3g\n' % material.specular_intensity)
 | 
						|
 | 
						|
            file.write('\tambient %.3g\n' % material.ambient)
 | 
						|
            #file.write('\tambient rgb <%.3g, %.3g, %.3g>\n' % tuple([c*material.ambient for c in world.ambient_color])) # povray blends the global value
 | 
						|
 | 
						|
            # map hardness between 0.0 and 1.0
 | 
						|
            roughness = ((1.0 - ((material.specular_hardness - 1.0) / 510.0)))
 | 
						|
            # scale from 0.0 to 0.1
 | 
						|
            roughness *= 0.1
 | 
						|
            # add a small value because 0.0 is invalid
 | 
						|
            roughness += (1 / 511.0)
 | 
						|
 | 
						|
            file.write('\troughness %.3g\n' % roughness)
 | 
						|
 | 
						|
            # 'phong 70.0 '
 | 
						|
 | 
						|
            if material.raytrace_mirror.enabled:
 | 
						|
                raytrace_mirror = material.raytrace_mirror
 | 
						|
                if raytrace_mirror.reflect_factor:
 | 
						|
                    file.write('\treflection {\n')
 | 
						|
                    file.write('\t\trgb <%.3g, %.3g, %.3g>' % tuple(material.mirror_color))
 | 
						|
                    file.write('\t\tfresnel 1 falloff %.3g exponent %.3g metallic %.3g} ' % (raytrace_mirror.fresnel, raytrace_mirror.fresnel_factor, raytrace_mirror.reflect_factor))
 | 
						|
 | 
						|
        else:
 | 
						|
            file.write('\tdiffuse 0.8\n')
 | 
						|
            file.write('\tspecular 0.2\n')
 | 
						|
 | 
						|
 | 
						|
        # This is written into the object
 | 
						|
        '''
 | 
						|
        if material and material.transparency_method=='RAYTRACE':
 | 
						|
            'interior { ior %.3g} ' % material.raytrace_transparency.ior
 | 
						|
        '''
 | 
						|
 | 
						|
        #file.write('\t\t\tcrand 1.0\n') # Sand granyness
 | 
						|
        #file.write('\t\t\tmetallic %.6f\n' % material.spec)
 | 
						|
        #file.write('\t\t\tphong %.6f\n' % material.spec)
 | 
						|
        #file.write('\t\t\tphong_size %.6f\n' % material.spec)
 | 
						|
        #file.write('\t\t\tbrilliance %.6f ' % (material.specular_hardness/256.0) # Like hardness
 | 
						|
 | 
						|
        file.write('}\n')
 | 
						|
 | 
						|
    def exportCamera():
 | 
						|
        camera = scene.camera
 | 
						|
        matrix = camera.matrix
 | 
						|
 | 
						|
        # compute resolution
 | 
						|
        Qsize = float(render.resolution_x) / float(render.resolution_y)
 | 
						|
 | 
						|
        file.write('camera {\n')
 | 
						|
        file.write('\tlocation  <0, 0, 0>\n')
 | 
						|
        file.write('\tlook_at  <0, 0, -1>\n')
 | 
						|
        file.write('\tright <%s, 0, 0>\n' % - Qsize)
 | 
						|
        file.write('\tup <0, 1, 0>\n')
 | 
						|
        file.write('\tangle  %f \n' % (360.0 * atan(16.0 / camera.data.lens) / pi))
 | 
						|
 | 
						|
        file.write('\trotate  <%.6f, %.6f, %.6f>\n' % tuple([degrees(e) for e in matrix.rotation_part().to_euler()]))
 | 
						|
        file.write('\ttranslate <%.6f, %.6f, %.6f>\n' % (matrix[3][0], matrix[3][1], matrix[3][2]))
 | 
						|
        file.write('}\n')
 | 
						|
 | 
						|
    def exportLamps(lamps):
 | 
						|
        # Get all lamps
 | 
						|
        for ob in lamps:
 | 
						|
            lamp = ob.data
 | 
						|
 | 
						|
            matrix = ob.matrix
 | 
						|
 | 
						|
            color = tuple([c * lamp.energy for c in lamp.color]) # Colour is modified by energy
 | 
						|
 | 
						|
            file.write('light_source {\n')
 | 
						|
            file.write('\t< 0,0,0 >\n')
 | 
						|
            file.write('\tcolor rgb<%.3g, %.3g, %.3g>\n' % color)
 | 
						|
 | 
						|
            if lamp.type == 'POINT': # Point Lamp
 | 
						|
                pass
 | 
						|
            elif lamp.type == 'SPOT': # Spot
 | 
						|
                file.write('\tspotlight\n')
 | 
						|
 | 
						|
                # Falloff is the main radius from the centre line
 | 
						|
                file.write('\tfalloff %.2f\n' % (degrees(lamp.spot_size) / 2.0)) # 1 TO 179 FOR BOTH
 | 
						|
                file.write('\tradius %.6f\n' % ((degrees(lamp.spot_size) / 2.0) * (1.0 - lamp.spot_blend)))
 | 
						|
 | 
						|
                # Blender does not have a tightness equivilent, 0 is most like blender default.
 | 
						|
                file.write('\ttightness 0\n') # 0:10f
 | 
						|
 | 
						|
                file.write('\tpoint_at  <0, 0, -1>\n')
 | 
						|
            elif lamp.type == 'SUN':
 | 
						|
                file.write('\tparallel\n')
 | 
						|
                file.write('\tpoint_at  <0, 0, -1>\n') # *must* be after 'parallel'
 | 
						|
 | 
						|
            elif lamp.type == 'AREA':
 | 
						|
 | 
						|
                size_x = lamp.size
 | 
						|
                samples_x = lamp.shadow_ray_samples_x
 | 
						|
                if lamp.shape == 'SQUARE':
 | 
						|
                    size_y = size_x
 | 
						|
                    samples_y = samples_x
 | 
						|
                else:
 | 
						|
                    size_y = lamp.size_y
 | 
						|
                    samples_y = lamp.shadow_ray_samples_y
 | 
						|
 | 
						|
                file.write('\tarea_light <%d,0,0>,<0,0,%d> %d, %d\n' % (size_x, size_y, samples_x, samples_y))
 | 
						|
                if lamp.shadow_ray_sampling_method == 'CONSTANT_JITTERED':
 | 
						|
                    if lamp.jitter:
 | 
						|
                        file.write('\tjitter\n')
 | 
						|
                else:
 | 
						|
                    file.write('\tadaptive 1\n')
 | 
						|
                    file.write('\tjitter\n')
 | 
						|
 | 
						|
            if lamp.shadow_method == 'NOSHADOW':
 | 
						|
                file.write('\tshadowless\n')
 | 
						|
 | 
						|
            file.write('\tfade_distance %.6f\n' % lamp.distance)
 | 
						|
            file.write('\tfade_power %d\n' % 1) # Could use blenders lamp quad?
 | 
						|
            writeMatrix(matrix)
 | 
						|
 | 
						|
            file.write('}\n')
 | 
						|
 | 
						|
    def exportMeta(metas):
 | 
						|
 | 
						|
        # TODO - blenders 'motherball' naming is not supported.
 | 
						|
 | 
						|
        for ob in metas:
 | 
						|
            meta = ob.data
 | 
						|
 | 
						|
            file.write('blob {\n')
 | 
						|
            file.write('\t\tthreshold %.4g\n' % meta.threshold)
 | 
						|
 | 
						|
            try:
 | 
						|
                material = meta.materials[0] # lame! - blender cant do enything else.
 | 
						|
            except:
 | 
						|
                material = None
 | 
						|
 | 
						|
            for elem in meta.elements:
 | 
						|
 | 
						|
                if elem.type not in ('BALL', 'ELLIPSOID'):
 | 
						|
                    continue # Not supported
 | 
						|
 | 
						|
                loc = elem.location
 | 
						|
 | 
						|
                stiffness = elem.stiffness
 | 
						|
                if elem.negative:
 | 
						|
                    stiffness = - stiffness
 | 
						|
 | 
						|
                if elem.type == 'BALL':
 | 
						|
 | 
						|
                    file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x, loc.y, loc.z, elem.radius, stiffness))
 | 
						|
 | 
						|
                    # After this wecould do something simple like...
 | 
						|
                    # 	"pigment {Blue} }"
 | 
						|
                    # except we'll write the color
 | 
						|
 | 
						|
                elif elem.type == 'ELLIPSOID':
 | 
						|
                    # location is modified by scale
 | 
						|
                    file.write('\tsphere { <%.6g, %.6g, %.6g>, %.4g, %.4g ' % (loc.x / elem.size_x, loc.y / elem.size_y, loc.z / elem.size_z, elem.radius, stiffness))
 | 
						|
                    file.write('scale <%.6g, %.6g, %.6g> ' % (elem.size_x, elem.size_y, elem.size_z))
 | 
						|
 | 
						|
                if material:
 | 
						|
                    diffuse_color = material.diffuse_color
 | 
						|
 | 
						|
                    if material.transparency and material.transparency_method == 'RAYTRACE':
 | 
						|
                        trans = 1.0 - material.raytrace_transparency.filter
 | 
						|
                    else:
 | 
						|
                        trans = 0.0
 | 
						|
 | 
						|
                    file.write('pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s} }\n' % \
 | 
						|
                        (diffuse_color[0], diffuse_color[1], diffuse_color[2], 1.0 - material.alpha, trans, materialNames[material.name]))
 | 
						|
 | 
						|
                else:
 | 
						|
                    file.write('pigment {rgb<1 1 1>} finish {%s} }\n' % DEF_MAT_NAME)		# Write the finish last.
 | 
						|
 | 
						|
            writeObjectMaterial(material)
 | 
						|
 | 
						|
            writeMatrix(ob.matrix)
 | 
						|
 | 
						|
            file.write('}\n')
 | 
						|
 | 
						|
    def exportMeshs(sel):
 | 
						|
 | 
						|
        ob_num = 0
 | 
						|
 | 
						|
        for ob in sel:
 | 
						|
            ob_num += 1
 | 
						|
 | 
						|
            if ob.type in ('LAMP', 'CAMERA', 'EMPTY', 'META', 'ARMATURE'):
 | 
						|
                continue
 | 
						|
 | 
						|
            me = ob.data
 | 
						|
            me_materials = me.materials
 | 
						|
 | 
						|
            me = ob.create_mesh(True, 'RENDER')
 | 
						|
 | 
						|
            if not me:
 | 
						|
                continue
 | 
						|
 | 
						|
            if info_callback:
 | 
						|
                info_callback('Object %2.d of %2.d (%s)' % (ob_num, len(sel), ob.name))
 | 
						|
 | 
						|
            #if ob.type!='MESH':
 | 
						|
            #	continue
 | 
						|
            # me = ob.data
 | 
						|
 | 
						|
            matrix = ob.matrix
 | 
						|
            try:
 | 
						|
                uv_layer = me.active_uv_texture.data
 | 
						|
            except:
 | 
						|
                uv_layer = None
 | 
						|
 | 
						|
            try:
 | 
						|
                vcol_layer = me.active_vertex_color.data
 | 
						|
            except:
 | 
						|
                vcol_layer = None
 | 
						|
 | 
						|
            faces_verts = [f.verts for f in me.faces]
 | 
						|
            faces_normals = [tuple(f.normal) for f in me.faces]
 | 
						|
            verts_normals = [tuple(v.normal) for v in me.verts]
 | 
						|
 | 
						|
            # quads incur an extra face
 | 
						|
            quadCount = len([f for f in faces_verts if len(f) == 4])
 | 
						|
 | 
						|
            file.write('mesh2 {\n')
 | 
						|
            file.write('\tvertex_vectors {\n')
 | 
						|
            file.write('\t\t%s' % (len(me.verts))) # vert count
 | 
						|
            for v in me.verts:
 | 
						|
                file.write(',\n\t\t<%.6f, %.6f, %.6f>' % tuple(v.co)) # vert count
 | 
						|
            file.write('\n  }\n')
 | 
						|
 | 
						|
 | 
						|
            # Build unique Normal list
 | 
						|
            uniqueNormals = {}
 | 
						|
            for fi, f in enumerate(me.faces):
 | 
						|
                fv = faces_verts[fi]
 | 
						|
                # [-1] is a dummy index, use a list so we can modify in place
 | 
						|
                if f.smooth: # Use vertex normals
 | 
						|
                    for v in fv:
 | 
						|
                        key = verts_normals[v]
 | 
						|
                        uniqueNormals[key] = [-1]
 | 
						|
                else: # Use face normal
 | 
						|
                    key = faces_normals[fi]
 | 
						|
                    uniqueNormals[key] = [-1]
 | 
						|
 | 
						|
            file.write('\tnormal_vectors {\n')
 | 
						|
            file.write('\t\t%d' % len(uniqueNormals)) # vert count
 | 
						|
            idx = 0
 | 
						|
            for no, index in uniqueNormals.items():
 | 
						|
                file.write(',\n\t\t<%.6f, %.6f, %.6f>' % no) # vert count
 | 
						|
                index[0] = idx
 | 
						|
                idx += 1
 | 
						|
            file.write('\n  }\n')
 | 
						|
 | 
						|
 | 
						|
            # Vertex colours
 | 
						|
            vertCols = {} # Use for material colours also.
 | 
						|
 | 
						|
            if uv_layer:
 | 
						|
                # Generate unique UV's
 | 
						|
                uniqueUVs = {}
 | 
						|
 | 
						|
                for fi, uv in enumerate(uv_layer):
 | 
						|
 | 
						|
                    if len(faces_verts[fi]) == 4:
 | 
						|
                        uvs = uv.uv1, uv.uv2, uv.uv3, uv.uv4
 | 
						|
                    else:
 | 
						|
                        uvs = uv.uv1, uv.uv2, uv.uv3
 | 
						|
 | 
						|
                    for uv in uvs:
 | 
						|
                        uniqueUVs[tuple(uv)] = [-1]
 | 
						|
 | 
						|
                file.write('\tuv_vectors {\n')
 | 
						|
                #print unique_uvs
 | 
						|
                file.write('\t\t%s' % (len(uniqueUVs))) # vert count
 | 
						|
                idx = 0
 | 
						|
                for uv, index in uniqueUVs.items():
 | 
						|
                    file.write(',\n\t\t<%.6f, %.6f>' % uv)
 | 
						|
                    index[0] = idx
 | 
						|
                    idx += 1
 | 
						|
                '''
 | 
						|
                else:
 | 
						|
                    # Just add 1 dummy vector, no real UV's
 | 
						|
                    file.write('\t\t1') # vert count
 | 
						|
                    file.write(',\n\t\t<0.0, 0.0>')
 | 
						|
                '''
 | 
						|
                file.write('\n  }\n')
 | 
						|
 | 
						|
 | 
						|
            if me.vertex_colors:
 | 
						|
 | 
						|
                for fi, f in enumerate(me.faces):
 | 
						|
                    material_index = f.material_index
 | 
						|
                    material = me_materials[material_index]
 | 
						|
 | 
						|
                    if material and material.vertex_color_paint:
 | 
						|
 | 
						|
                        col = vcol_layer[fi]
 | 
						|
 | 
						|
                        if len(faces_verts[fi]) == 4:
 | 
						|
                            cols = col.color1, col.color2, col.color3, col.color4
 | 
						|
                        else:
 | 
						|
                            cols = col.color1, col.color2, col.color3
 | 
						|
 | 
						|
                        for col in cols:
 | 
						|
                            key = col[0], col[1], col[2], material_index # Material index!
 | 
						|
                            vertCols[key] = [-1]
 | 
						|
 | 
						|
                    else:
 | 
						|
                        if material:
 | 
						|
                            diffuse_color = tuple(material.diffuse_color)
 | 
						|
                            key = diffuse_color[0], diffuse_color[1], diffuse_color[2], material_index
 | 
						|
                            vertCols[key] = [-1]
 | 
						|
 | 
						|
 | 
						|
            else:
 | 
						|
                # No vertex colours, so write material colours as vertex colours
 | 
						|
                for i, material in enumerate(me_materials):
 | 
						|
 | 
						|
                    if material:
 | 
						|
                        diffuse_color = tuple(material.diffuse_color)
 | 
						|
                        key = diffuse_color[0], diffuse_color[1], diffuse_color[2], i # i == f.mat
 | 
						|
                        vertCols[key] = [-1]
 | 
						|
 | 
						|
 | 
						|
            # Vert Colours
 | 
						|
            file.write('\ttexture_list {\n')
 | 
						|
            file.write('\t\t%s' % (len(vertCols))) # vert count
 | 
						|
            idx = 0
 | 
						|
            for col, index in vertCols.items():
 | 
						|
 | 
						|
                if me_materials:
 | 
						|
                    material = me_materials[col[3]]
 | 
						|
                    material_finish = materialNames[material.name]
 | 
						|
 | 
						|
                    if material.transparency and material.transparency_method == 'RAYTRACE':
 | 
						|
                        trans = 1.0 - material.raytrace_transparency.filter
 | 
						|
                    else:
 | 
						|
                        trans = 0.0
 | 
						|
 | 
						|
                else:
 | 
						|
                    material_finish = DEF_MAT_NAME # not working properly,
 | 
						|
                    trans = 0.0
 | 
						|
 | 
						|
                #print material.apl
 | 
						|
                file.write(',\n\t\ttexture { pigment {rgbft<%.3g, %.3g, %.3g, %.3g, %.3g>} finish {%s}}' %
 | 
						|
                            (col[0], col[1], col[2], 1.0 - material.alpha, trans, material_finish))
 | 
						|
 | 
						|
                index[0] = idx
 | 
						|
                idx += 1
 | 
						|
 | 
						|
            file.write('\n  }\n')
 | 
						|
 | 
						|
            # Face indicies
 | 
						|
            file.write('\tface_indices {\n')
 | 
						|
            file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
 | 
						|
            for fi, f in enumerate(me.faces):
 | 
						|
                fv = faces_verts[fi]
 | 
						|
                material_index = f.material_index
 | 
						|
                if len(fv) == 4:
 | 
						|
                    indicies = (0, 1, 2), (0, 2, 3)
 | 
						|
                else:
 | 
						|
                    indicies = ((0, 1, 2),)
 | 
						|
 | 
						|
                if vcol_layer:
 | 
						|
                    col = vcol_layer[fi]
 | 
						|
 | 
						|
                    if len(fv) == 4:
 | 
						|
                        cols = col.color1, col.color2, col.color3, col.color4
 | 
						|
                    else:
 | 
						|
                        cols = col.color1, col.color2, col.color3
 | 
						|
 | 
						|
 | 
						|
                if not me_materials or me_materials[material_index] == None: # No materials
 | 
						|
                    for i1, i2, i3 in indicies:
 | 
						|
                        file.write(',\n\t\t<%d,%d,%d>' % (fv[i1], fv[i2], fv[i3])) # vert count
 | 
						|
                else:
 | 
						|
                    material = me_materials[material_index]
 | 
						|
                    for i1, i2, i3 in indicies:
 | 
						|
                        if me.vertex_colors and material.vertex_color_paint:
 | 
						|
                            # Colour per vertex - vertex colour
 | 
						|
 | 
						|
                            col1 = cols[i1]
 | 
						|
                            col2 = cols[i2]
 | 
						|
                            col3 = cols[i3]
 | 
						|
 | 
						|
                            ci1 = vertCols[col1[0], col1[1], col1[2], material_index][0]
 | 
						|
                            ci2 = vertCols[col2[0], col2[1], col2[2], material_index][0]
 | 
						|
                            ci3 = vertCols[col3[0], col3[1], col3[2], material_index][0]
 | 
						|
                        else:
 | 
						|
                            # Colour per material - flat material colour
 | 
						|
                            diffuse_color = material.diffuse_color
 | 
						|
                            ci1 = ci2 = ci3 = vertCols[diffuse_color[0], diffuse_color[1], diffuse_color[2], f.material_index][0]
 | 
						|
 | 
						|
                        file.write(',\n\t\t<%d,%d,%d>, %d,%d,%d' % (fv[i1], fv[i2], fv[i3], ci1, ci2, ci3)) # vert count
 | 
						|
 | 
						|
 | 
						|
            file.write('\n  }\n')
 | 
						|
 | 
						|
            # normal_indices indicies
 | 
						|
            file.write('\tnormal_indices {\n')
 | 
						|
            file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
 | 
						|
            for fi, fv in enumerate(faces_verts):
 | 
						|
 | 
						|
                if len(fv) == 4:
 | 
						|
                    indicies = (0, 1, 2), (0, 2, 3)
 | 
						|
                else:
 | 
						|
                    indicies = ((0, 1, 2),)
 | 
						|
 | 
						|
                for i1, i2, i3 in indicies:
 | 
						|
                    if f.smooth:
 | 
						|
                        file.write(',\n\t\t<%d,%d,%d>' %\
 | 
						|
                        (uniqueNormals[verts_normals[fv[i1]]][0],\
 | 
						|
                         uniqueNormals[verts_normals[fv[i2]]][0],\
 | 
						|
                         uniqueNormals[verts_normals[fv[i3]]][0])) # vert count
 | 
						|
                    else:
 | 
						|
                        idx = uniqueNormals[faces_normals[fi]][0]
 | 
						|
                        file.write(',\n\t\t<%d,%d,%d>' % (idx, idx, idx)) # vert count
 | 
						|
 | 
						|
            file.write('\n  }\n')
 | 
						|
 | 
						|
            if uv_layer:
 | 
						|
                file.write('\tuv_indices {\n')
 | 
						|
                file.write('\t\t%d' % (len(me.faces) + quadCount)) # faces count
 | 
						|
                for fi, fv in enumerate(faces_verts):
 | 
						|
 | 
						|
                    if len(fv) == 4:
 | 
						|
                        indicies = (0, 1, 2), (0, 2, 3)
 | 
						|
                    else:
 | 
						|
                        indicies = ((0, 1, 2),)
 | 
						|
 | 
						|
                    uv = uv_layer[fi]
 | 
						|
                    if len(faces_verts[fi]) == 4:
 | 
						|
                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3), tuple(uv.uv4)
 | 
						|
                    else:
 | 
						|
                        uvs = tuple(uv.uv1), tuple(uv.uv2), tuple(uv.uv3)
 | 
						|
 | 
						|
                    for i1, i2, i3 in indicies:
 | 
						|
                        file.write(',\n\t\t<%d,%d,%d>' %\
 | 
						|
                        (uniqueUVs[uvs[i1]][0],\
 | 
						|
                         uniqueUVs[uvs[i2]][0],\
 | 
						|
                         uniqueUVs[uvs[i2]][0])) # vert count
 | 
						|
                file.write('\n  }\n')
 | 
						|
 | 
						|
            if me.materials:
 | 
						|
                material = me.materials[0] # dodgy
 | 
						|
                writeObjectMaterial(material)
 | 
						|
 | 
						|
            writeMatrix(matrix)
 | 
						|
            file.write('}\n')
 | 
						|
 | 
						|
            bpy.data.meshes.remove(me)
 | 
						|
 | 
						|
    def exportWorld(world):
 | 
						|
        if not world:
 | 
						|
            return
 | 
						|
 | 
						|
        mist = world.mist
 | 
						|
 | 
						|
        if mist.enabled:
 | 
						|
            file.write('fog {\n')
 | 
						|
            file.write('\tdistance %.6f\n' % mist.depth)
 | 
						|
            file.write('\tcolor rgbt<%.3g, %.3g, %.3g, %.3g>\n' % (tuple(world.horizon_color) + (1 - mist.intensity,)))
 | 
						|
            #file.write('\tfog_offset %.6f\n' % mist.start)
 | 
						|
            #file.write('\tfog_alt 5\n')
 | 
						|
            #file.write('\tturbulence 0.2\n')
 | 
						|
            #file.write('\tturb_depth 0.3\n')
 | 
						|
            file.write('\tfog_type 1\n')
 | 
						|
            file.write('}\n')
 | 
						|
 | 
						|
    def exportGlobalSettings(scene):
 | 
						|
 | 
						|
        file.write('global_settings {\n')
 | 
						|
 | 
						|
        if scene.pov_radio_enable:
 | 
						|
            file.write('\tradiosity {\n')
 | 
						|
            file.write("\t\tadc_bailout %.4g\n" % scene.pov_radio_adc_bailout)
 | 
						|
            file.write("\t\talways_sample %d\n" % scene.pov_radio_always_sample)
 | 
						|
            file.write("\t\tbrightness %.4g\n" % scene.pov_radio_brightness)
 | 
						|
            file.write("\t\tcount %d\n" % scene.pov_radio_count)
 | 
						|
            file.write("\t\terror_bound %.4g\n" % scene.pov_radio_error_bound)
 | 
						|
            file.write("\t\tgray_threshold %.4g\n" % scene.pov_radio_gray_threshold)
 | 
						|
            file.write("\t\tlow_error_factor %.4g\n" % scene.pov_radio_low_error_factor)
 | 
						|
            file.write("\t\tmedia %d\n" % scene.pov_radio_media)
 | 
						|
            file.write("\t\tminimum_reuse %.4g\n" % scene.pov_radio_minimum_reuse)
 | 
						|
            file.write("\t\tnearest_count %d\n" % scene.pov_radio_nearest_count)
 | 
						|
            file.write("\t\tnormal %d\n" % scene.pov_radio_normal)
 | 
						|
            file.write("\t\trecursion_limit %d\n" % scene.pov_radio_recursion_limit)
 | 
						|
            file.write('\t}\n')
 | 
						|
 | 
						|
        if world:
 | 
						|
            file.write("\tambient_light rgb<%.3g, %.3g, %.3g>\n" % tuple(world.ambient_color))
 | 
						|
 | 
						|
        file.write('}\n')
 | 
						|
 | 
						|
 | 
						|
    # Convert all materials to strings we can access directly per vertex.
 | 
						|
    writeMaterial(None) # default material
 | 
						|
 | 
						|
    for material in bpy.data.materials:
 | 
						|
        writeMaterial(material)
 | 
						|
 | 
						|
    exportCamera()
 | 
						|
    #exportMaterials()
 | 
						|
    sel = scene.objects
 | 
						|
    exportLamps([l for l in sel if l.type == 'LAMP'])
 | 
						|
    exportMeta([l for l in sel if l.type == 'META'])
 | 
						|
    exportMeshs(sel)
 | 
						|
    exportWorld(scene.world)
 | 
						|
    exportGlobalSettings(scene)
 | 
						|
 | 
						|
    file.close()
 | 
						|
 | 
						|
 | 
						|
def write_pov_ini(filename_ini, filename_pov, filename_image):
 | 
						|
    scene = bpy.data.scenes[0]
 | 
						|
    render = scene.render
 | 
						|
 | 
						|
    x = int(render.resolution_x * render.resolution_percentage * 0.01)
 | 
						|
    y = int(render.resolution_y * render.resolution_percentage * 0.01)
 | 
						|
 | 
						|
    file = open(filename_ini, 'w')
 | 
						|
 | 
						|
    file.write('Input_File_Name="%s"\n' % filename_pov)
 | 
						|
    file.write('Output_File_Name="%s"\n' % filename_image)
 | 
						|
 | 
						|
    file.write('Width=%d\n' % x)
 | 
						|
    file.write('Height=%d\n' % y)
 | 
						|
 | 
						|
    # Needed for border render.
 | 
						|
    '''
 | 
						|
    file.write('Start_Column=%d\n' % part.x)
 | 
						|
    file.write('End_Column=%d\n' % (part.x+part.w))
 | 
						|
 | 
						|
    file.write('Start_Row=%d\n' % (part.y))
 | 
						|
    file.write('End_Row=%d\n' % (part.y+part.h))
 | 
						|
    '''
 | 
						|
 | 
						|
    file.write('Display=0\n')
 | 
						|
    file.write('Pause_When_Done=0\n')
 | 
						|
    file.write('Output_File_Type=T\n') # TGA, best progressive loading
 | 
						|
    file.write('Output_Alpha=1\n')
 | 
						|
 | 
						|
    if render.antialiasing:
 | 
						|
        aa_mapping = {'OVERSAMPLE_5': 2, 'OVERSAMPLE_8': 3, 'OVERSAMPLE_11': 4, 'OVERSAMPLE_16': 5} # method 1 assumed
 | 
						|
        file.write('Antialias=1\n')
 | 
						|
        file.write('Antialias_Depth=%d\n' % aa_mapping[render.antialiasing_samples])
 | 
						|
    else:
 | 
						|
        file.write('Antialias=0\n')
 | 
						|
 | 
						|
    file.close()
 | 
						|
 | 
						|
# Radiosity panel, use in the scene for now.
 | 
						|
FloatProperty = bpy.types.Scene.FloatProperty
 | 
						|
IntProperty = bpy.types.Scene.IntProperty
 | 
						|
BoolProperty = bpy.types.Scene.BoolProperty
 | 
						|
 | 
						|
# Not a real pov option, just to know if we should write
 | 
						|
BoolProperty(attr="pov_radio_enable",
 | 
						|
                name="Enable Radiosity",
 | 
						|
                description="Enable povrays radiosity calculation",
 | 
						|
                default=False)
 | 
						|
BoolProperty(attr="pov_radio_display_advanced",
 | 
						|
                name="Advanced Options",
 | 
						|
                description="Show advanced options",
 | 
						|
                default=False)
 | 
						|
 | 
						|
# Real pov options
 | 
						|
FloatProperty(attr="pov_radio_adc_bailout",
 | 
						|
                name="ADC Bailout",
 | 
						|
                description="The adc_bailout for radiosity rays. Use adc_bailout = 0.01 / brightest_ambient_object for good results",
 | 
						|
                min=0.0, max=1000.0, soft_min=0.0, soft_max=1.0, default=0.01)
 | 
						|
 | 
						|
BoolProperty(attr="pov_radio_always_sample",
 | 
						|
                name="Always Sample",
 | 
						|
                description="Only use the data from the pretrace step and not gather any new samples during the final radiosity pass",
 | 
						|
                default=True)
 | 
						|
 | 
						|
FloatProperty(attr="pov_radio_brightness",
 | 
						|
                name="Brightness",
 | 
						|
                description="Amount objects are brightened before being returned upwards to the rest of the system",
 | 
						|
                min=0.0, max=1000.0, soft_min=0.0, soft_max=10.0, default=1.0)
 | 
						|
 | 
						|
IntProperty(attr="pov_radio_count",
 | 
						|
                name="Ray Count",
 | 
						|
                description="Number of rays that are sent out whenever a new radiosity value has to be calculated",
 | 
						|
                min=1, max=1600, default=35)
 | 
						|
 | 
						|
FloatProperty(attr="pov_radio_error_bound",
 | 
						|
                name="Error Bound",
 | 
						|
                description="One of the two main speed/quality tuning values, lower values are more accurate",
 | 
						|
                min=0.0, max=1000.0, soft_min=0.1, soft_max=10.0, default=1.8)
 | 
						|
 | 
						|
FloatProperty(attr="pov_radio_gray_threshold",
 | 
						|
                name="Gray Threshold",
 | 
						|
                description="One of the two main speed/quality tuning values, lower values are more accurate",
 | 
						|
                min=0.0, max=1.0, soft_min=0, soft_max=1, default=0.0)
 | 
						|
 | 
						|
FloatProperty(attr="pov_radio_low_error_factor",
 | 
						|
                name="Low Error Factor",
 | 
						|
                description="If you calculate just enough samples, but no more, you will get an image which has slightly blotchy lighting",
 | 
						|
                min=0.0, max=1.0, soft_min=0.0, soft_max=1.0, default=0.5)
 | 
						|
 | 
						|
# max_sample - not available yet
 | 
						|
BoolProperty(attr="pov_radio_media",
 | 
						|
                name="Media",
 | 
						|
                description="Radiosity estimation can be affected by media",
 | 
						|
                default=False)
 | 
						|
 | 
						|
FloatProperty(attr="pov_radio_minimum_reuse",
 | 
						|
                name="Minimum Reuse",
 | 
						|
                description="Fraction of the screen width which sets the minimum radius of reuse for each sample point (At values higher than 2% expect errors)",
 | 
						|
                min=0.0, max=1.0, soft_min=0.1, soft_max=0.1, default=0.015)
 | 
						|
 | 
						|
IntProperty(attr="pov_radio_nearest_count",
 | 
						|
                name="Nearest Count",
 | 
						|
                description="Number of old ambient values blended together to create a new interpolated value",
 | 
						|
                min=1, max=20, default=5)
 | 
						|
 | 
						|
BoolProperty(attr="pov_radio_normal",
 | 
						|
                name="Normals",
 | 
						|
                description="Radiosity estimation can be affected by normals",
 | 
						|
                default=False)
 | 
						|
 | 
						|
IntProperty(attr="pov_radio_recursion_limit",
 | 
						|
                name="Recursion Limit",
 | 
						|
                description="how many recursion levels are used to calculate the diffuse inter-reflection",
 | 
						|
                min=1, max=20, default=3)
 | 
						|
 | 
						|
 | 
						|
class PovrayRender(bpy.types.RenderEngine):
 | 
						|
    bl_idname = 'POVRAY_RENDER'
 | 
						|
    bl_label = "Povray"
 | 
						|
    DELAY = 0.02
 | 
						|
 | 
						|
    def _export(self, scene):
 | 
						|
        import tempfile
 | 
						|
 | 
						|
        self._temp_file_in = tempfile.mktemp(suffix='.pov')
 | 
						|
        self._temp_file_out = tempfile.mktemp(suffix='.tga')
 | 
						|
        self._temp_file_ini = tempfile.mktemp(suffix='.ini')
 | 
						|
        '''
 | 
						|
        self._temp_file_in = '/test.pov'
 | 
						|
        self._temp_file_out = '/test.tga'
 | 
						|
        self._temp_file_ini = '/test.ini'
 | 
						|
        '''
 | 
						|
 | 
						|
        def info_callback(txt):
 | 
						|
            self.update_stats("", "POVRAY: " + txt)
 | 
						|
 | 
						|
        write_pov(self._temp_file_in, scene, info_callback)
 | 
						|
 | 
						|
    def _render(self):
 | 
						|
 | 
						|
        try:
 | 
						|
            os.remove(self._temp_file_out) # so as not to load the old file
 | 
						|
        except:
 | 
						|
            pass
 | 
						|
 | 
						|
        write_pov_ini(self._temp_file_ini, self._temp_file_in, self._temp_file_out)
 | 
						|
 | 
						|
        print ("***-STARTING-***")
 | 
						|
 | 
						|
        pov_binary = "povray"
 | 
						|
 | 
						|
        if sys.platform == 'win32':
 | 
						|
            import winreg
 | 
						|
            regKey = winreg.OpenKey(winreg.HKEY_CURRENT_USER, 'Software\\POV-Ray\\v3.6\\Windows')
 | 
						|
 | 
						|
            if bitness == 64:
 | 
						|
                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine64'
 | 
						|
            else:
 | 
						|
                pov_binary = winreg.QueryValueEx(regKey, 'Home')[0] + '\\bin\\pvengine'
 | 
						|
 | 
						|
        if 1:
 | 
						|
            # TODO, when povray isnt found this gives a cryptic error, would be nice to be able to detect if it exists
 | 
						|
            self._process = subprocess.Popen([pov_binary, self._temp_file_ini]) # stdout=subprocess.PIPE, stderr=subprocess.PIPE
 | 
						|
        else:
 | 
						|
            # This works too but means we have to wait until its done
 | 
						|
            os.system('%s %s' % (pov_binary, self._temp_file_ini))
 | 
						|
 | 
						|
        print ("***-DONE-***")
 | 
						|
 | 
						|
    def _cleanup(self):
 | 
						|
        for f in (self._temp_file_in, self._temp_file_ini, self._temp_file_out):
 | 
						|
            try:
 | 
						|
                os.remove(f)
 | 
						|
            except:
 | 
						|
                pass
 | 
						|
 | 
						|
        self.update_stats("", "")
 | 
						|
 | 
						|
    def render(self, scene):
 | 
						|
 | 
						|
        self.update_stats("", "POVRAY: Exporting data from Blender")
 | 
						|
        self._export(scene)
 | 
						|
        self.update_stats("", "POVRAY: Parsing File")
 | 
						|
        self._render()
 | 
						|
 | 
						|
        r = scene.render
 | 
						|
 | 
						|
        # compute resolution
 | 
						|
        x = int(r.resolution_x * r.resolution_percentage * 0.01)
 | 
						|
        y = int(r.resolution_y * r.resolution_percentage * 0.01)
 | 
						|
 | 
						|
        # Wait for the file to be created
 | 
						|
        while not os.path.exists(self._temp_file_out):
 | 
						|
            if self.test_break():
 | 
						|
                try:
 | 
						|
                    self._process.terminate()
 | 
						|
                except:
 | 
						|
                    pass
 | 
						|
                break
 | 
						|
 | 
						|
            if self._process.poll() != None:
 | 
						|
                self.update_stats("", "POVRAY: Failed")
 | 
						|
                break
 | 
						|
 | 
						|
            time.sleep(self.DELAY)
 | 
						|
 | 
						|
        if os.path.exists(self._temp_file_out):
 | 
						|
 | 
						|
            self.update_stats("", "POVRAY: Rendering")
 | 
						|
 | 
						|
            prev_size = -1
 | 
						|
 | 
						|
            def update_image():
 | 
						|
                result = self.begin_result(0, 0, x, y)
 | 
						|
                lay = result.layers[0]
 | 
						|
                # possible the image wont load early on.
 | 
						|
                try:
 | 
						|
                    lay.load_from_file(self._temp_file_out)
 | 
						|
                except:
 | 
						|
                    pass
 | 
						|
                self.end_result(result)
 | 
						|
 | 
						|
            # Update while povray renders
 | 
						|
            while True:
 | 
						|
 | 
						|
                # test if povray exists
 | 
						|
                if self._process.poll() is not None:
 | 
						|
                    update_image()
 | 
						|
                    break
 | 
						|
 | 
						|
                # user exit
 | 
						|
                if self.test_break():
 | 
						|
                    try:
 | 
						|
                        self._process.terminate()
 | 
						|
                    except:
 | 
						|
                        pass
 | 
						|
 | 
						|
                    break
 | 
						|
 | 
						|
                # Would be nice to redirect the output
 | 
						|
                # stdout_value, stderr_value = self._process.communicate() # locks
 | 
						|
 | 
						|
 | 
						|
                # check if the file updated
 | 
						|
                new_size = os.path.getsize(self._temp_file_out)
 | 
						|
 | 
						|
                if new_size != prev_size:
 | 
						|
                    update_image()
 | 
						|
                    prev_size = new_size
 | 
						|
 | 
						|
                time.sleep(self.DELAY)
 | 
						|
 | 
						|
        self._cleanup()
 | 
						|
 | 
						|
 | 
						|
# Use some of the existing buttons.
 | 
						|
import properties_render
 | 
						|
properties_render.RENDER_PT_render.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
properties_render.RENDER_PT_dimensions.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
properties_render.RENDER_PT_antialiasing.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
properties_render.RENDER_PT_output.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
del properties_render
 | 
						|
 | 
						|
# Use only a subset of the world panels
 | 
						|
import properties_world
 | 
						|
properties_world.WORLD_PT_preview.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
properties_world.WORLD_PT_context_world.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
properties_world.WORLD_PT_world.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
properties_world.WORLD_PT_mist.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
del properties_world
 | 
						|
 | 
						|
# Example of wrapping every class 'as is'
 | 
						|
import properties_material
 | 
						|
for member in dir(properties_material):
 | 
						|
    subclass = getattr(properties_material, member)
 | 
						|
    try:
 | 
						|
        subclass.COMPAT_ENGINES.add('POVRAY_RENDER')
 | 
						|
    except:
 | 
						|
        pass
 | 
						|
del properties_material
 | 
						|
 | 
						|
 | 
						|
class RenderButtonsPanel(bpy.types.Panel):
 | 
						|
    bl_space_type = 'PROPERTIES'
 | 
						|
    bl_region_type = 'WINDOW'
 | 
						|
    bl_context = "render"
 | 
						|
    # COMPAT_ENGINES must be defined in each subclass, external engines can add themselves here
 | 
						|
 | 
						|
    def poll(self, context):
 | 
						|
        rd = context.scene.render
 | 
						|
        return (rd.use_game_engine == False) and (rd.engine in self.COMPAT_ENGINES)
 | 
						|
 | 
						|
 | 
						|
class RENDER_PT_povray_radiosity(RenderButtonsPanel):
 | 
						|
    bl_label = "Radiosity"
 | 
						|
    COMPAT_ENGINES = {'POVRAY_RENDER'}
 | 
						|
 | 
						|
    def draw_header(self, context):
 | 
						|
        scene = context.scene
 | 
						|
 | 
						|
        self.layout.prop(scene, "pov_radio_enable", text="")
 | 
						|
 | 
						|
    def draw(self, context):
 | 
						|
        layout = self.layout
 | 
						|
 | 
						|
        scene = context.scene
 | 
						|
        rd = scene.render
 | 
						|
 | 
						|
        layout.active = scene.pov_radio_enable
 | 
						|
 | 
						|
        split = layout.split()
 | 
						|
 | 
						|
        col = split.column()
 | 
						|
        col.prop(scene, "pov_radio_count", text="Rays")
 | 
						|
        col.prop(scene, "pov_radio_recursion_limit", text="Recursions")
 | 
						|
        col = split.column()
 | 
						|
        col.prop(scene, "pov_radio_error_bound", text="Error")
 | 
						|
 | 
						|
        layout.prop(scene, "pov_radio_display_advanced")
 | 
						|
 | 
						|
        if scene.pov_radio_display_advanced:
 | 
						|
            split = layout.split()
 | 
						|
 | 
						|
            col = split.column()
 | 
						|
            col.prop(scene, "pov_radio_adc_bailout", slider=True)
 | 
						|
            col.prop(scene, "pov_radio_gray_threshold", slider=True)
 | 
						|
            col.prop(scene, "pov_radio_low_error_factor", slider=True)
 | 
						|
 | 
						|
            col = split.column()
 | 
						|
            col.prop(scene, "pov_radio_brightness")
 | 
						|
            col.prop(scene, "pov_radio_minimum_reuse", text="Min Reuse")
 | 
						|
            col.prop(scene, "pov_radio_nearest_count")
 | 
						|
 | 
						|
            split = layout.split()
 | 
						|
 | 
						|
            col = split.column()
 | 
						|
            col.label(text="Estimation Influence:")
 | 
						|
            col.prop(scene, "pov_radio_media")
 | 
						|
            col.prop(scene, "pov_radio_normal")
 | 
						|
 | 
						|
            col = split.column()
 | 
						|
            col.prop(scene, "pov_radio_always_sample")
 | 
						|
 | 
						|
 | 
						|
classes = [
 | 
						|
    PovrayRender,
 | 
						|
    RENDER_PT_povray_radiosity]
 | 
						|
 | 
						|
 | 
						|
def register():
 | 
						|
    register = bpy.types.register
 | 
						|
    for cls in classes:
 | 
						|
        register(cls)
 | 
						|
 | 
						|
def unregister():
 | 
						|
    unregister = bpy.types.unregister
 | 
						|
    for cls in classes:
 | 
						|
        unregister(cls)
 | 
						|
 | 
						|
if __name__ == "__main__":
 | 
						|
    register()
 | 
						|
 |