It is basically brute force volume scattering within the mesh, but part of the SSS code for faster performance. The main difference with actual volume scattering is that we assume the boundaries are diffuse and that all lighting is coming through this boundary from outside the volume. This gives much more accurate results for thin features and low density. Some challenges remain however: * Significantly more noisy than BSSRDF. Adding Dwivedi sampling may help here, but it's unclear still how much it helps in real world cases. * Due to this being a volumetric method, geometry like eyes or mouth can darken the skin on the outside. We may be able to reduce this effect, or users can compensate for it by reducing the scattering radius in such areas. * Sharp corners are quite bright. This matches actual volume rendering and results in some other renderers, but maybe not so much real world objects. Differential Revision: https://developer.blender.org/D3054
166 lines
4.8 KiB
C++
166 lines
4.8 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef __VOLUME_H__
|
|
#define __VOLUME_H__
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
/* VOLUME EXTINCTION */
|
|
|
|
ccl_device void volume_extinction_setup(ShaderData *sd, float3 weight)
|
|
{
|
|
if(sd->flag & SD_EXTINCTION) {
|
|
sd->closure_transparent_extinction += weight;
|
|
}
|
|
else {
|
|
sd->flag |= SD_EXTINCTION;
|
|
sd->closure_transparent_extinction = weight;
|
|
}
|
|
}
|
|
|
|
/* HENYEY-GREENSTEIN CLOSURE */
|
|
|
|
typedef ccl_addr_space struct HenyeyGreensteinVolume {
|
|
SHADER_CLOSURE_BASE;
|
|
|
|
float g;
|
|
} HenyeyGreensteinVolume;
|
|
|
|
/* Given cosine between rays, return probability density that a photon bounces
|
|
* to that direction. The g parameter controls how different it is from the
|
|
* uniform sphere. g=0 uniform diffuse-like, g=1 close to sharp single ray. */
|
|
ccl_device float single_peaked_henyey_greenstein(float cos_theta, float g)
|
|
{
|
|
return ((1.0f - g * g) / safe_powf(1.0f + g * g - 2.0f * g * cos_theta, 1.5f)) * (M_1_PI_F * 0.25f);
|
|
};
|
|
|
|
ccl_device int volume_henyey_greenstein_setup(HenyeyGreensteinVolume *volume)
|
|
{
|
|
volume->type = CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID;
|
|
|
|
/* clamp anisotropy to avoid delta function */
|
|
volume->g = signf(volume->g) * min(fabsf(volume->g), 1.0f - 1e-3f);
|
|
|
|
return SD_SCATTER;
|
|
}
|
|
|
|
ccl_device bool volume_henyey_greenstein_merge(const ShaderClosure *a, const ShaderClosure *b)
|
|
{
|
|
const HenyeyGreensteinVolume *volume_a = (const HenyeyGreensteinVolume*)a;
|
|
const HenyeyGreensteinVolume *volume_b = (const HenyeyGreensteinVolume*)b;
|
|
|
|
return (volume_a->g == volume_b->g);
|
|
}
|
|
|
|
ccl_device float3 volume_henyey_greenstein_eval_phase(const ShaderClosure *sc, const float3 I, float3 omega_in, float *pdf)
|
|
{
|
|
const HenyeyGreensteinVolume *volume = (const HenyeyGreensteinVolume*)sc;
|
|
float g = volume->g;
|
|
|
|
/* note that I points towards the viewer */
|
|
if(fabsf(g) < 1e-3f) {
|
|
*pdf = M_1_PI_F * 0.25f;
|
|
}
|
|
else {
|
|
float cos_theta = dot(-I, omega_in);
|
|
*pdf = single_peaked_henyey_greenstein(cos_theta, g);
|
|
}
|
|
|
|
return make_float3(*pdf, *pdf, *pdf);
|
|
}
|
|
|
|
ccl_device float3 henyey_greenstrein_sample(float3 D, float g, float randu, float randv, float *pdf)
|
|
{
|
|
/* match pdf for small g */
|
|
float cos_theta;
|
|
bool isotropic = fabsf(g) < 1e-3f;
|
|
|
|
if(isotropic) {
|
|
cos_theta = (1.0f - 2.0f * randu);
|
|
if(pdf) {
|
|
*pdf = M_1_PI_F * 0.25f;
|
|
}
|
|
}
|
|
else {
|
|
float k = (1.0f - g * g) / (1.0f - g + 2.0f * g * randu);
|
|
cos_theta = (1.0f + g * g - k * k) / (2.0f * g);
|
|
if(pdf) {
|
|
*pdf = single_peaked_henyey_greenstein(cos_theta, g);
|
|
}
|
|
}
|
|
|
|
float sin_theta = safe_sqrtf(1.0f - cos_theta * cos_theta);
|
|
float phi = M_2PI_F * randv;
|
|
float3 dir = make_float3(sin_theta * cosf(phi), sin_theta * sinf(phi), cos_theta);
|
|
|
|
float3 T, B;
|
|
make_orthonormals(D, &T, &B);
|
|
dir = dir.x * T + dir.y * B + dir.z * D;
|
|
|
|
return dir;
|
|
}
|
|
|
|
ccl_device int volume_henyey_greenstein_sample(const ShaderClosure *sc, float3 I, float3 dIdx, float3 dIdy, float randu, float randv,
|
|
float3 *eval, float3 *omega_in, float3 *domega_in_dx, float3 *domega_in_dy, float *pdf)
|
|
{
|
|
const HenyeyGreensteinVolume *volume = (const HenyeyGreensteinVolume*)sc;
|
|
float g = volume->g;
|
|
|
|
/* note that I points towards the viewer and so is used negated */
|
|
*omega_in = henyey_greenstrein_sample(-I, g, randu, randv, pdf);
|
|
*eval = make_float3(*pdf, *pdf, *pdf); /* perfect importance sampling */
|
|
|
|
#ifdef __RAY_DIFFERENTIALS__
|
|
/* todo: implement ray differential estimation */
|
|
*domega_in_dx = make_float3(0.0f, 0.0f, 0.0f);
|
|
*domega_in_dy = make_float3(0.0f, 0.0f, 0.0f);
|
|
#endif
|
|
|
|
return LABEL_VOLUME_SCATTER;
|
|
}
|
|
|
|
/* VOLUME CLOSURE */
|
|
|
|
ccl_device float3 volume_phase_eval(const ShaderData *sd, const ShaderClosure *sc, float3 omega_in, float *pdf)
|
|
{
|
|
kernel_assert(sc->type == CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID);
|
|
|
|
return volume_henyey_greenstein_eval_phase(sc, sd->I, omega_in, pdf);
|
|
}
|
|
|
|
ccl_device int volume_phase_sample(const ShaderData *sd, const ShaderClosure *sc, float randu,
|
|
float randv, float3 *eval, float3 *omega_in, differential3 *domega_in, float *pdf)
|
|
{
|
|
int label;
|
|
|
|
switch(sc->type) {
|
|
case CLOSURE_VOLUME_HENYEY_GREENSTEIN_ID:
|
|
label = volume_henyey_greenstein_sample(sc, sd->I, sd->dI.dx, sd->dI.dy, randu, randv, eval, omega_in, &domega_in->dx, &domega_in->dy, pdf);
|
|
break;
|
|
default:
|
|
*eval = make_float3(0.0f, 0.0f, 0.0f);
|
|
label = LABEL_NONE;
|
|
break;
|
|
}
|
|
|
|
return label;
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif
|