This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/split/kernel_do_volume.h
Mai Lavelle 087331c495 Cycles: Replace __MAX_CLOSURE__ build option with runtime integrator variable
Goal is to reduce OpenCL kernel recompilations.

Currently viewport renders are still set to use 64 closures as this seems to
be faster and we don't want to cause a performance regression there. Needs
to be investigated.

Reviewed By: brecht

Differential Revision: https://developer.blender.org/D2775
2017-11-09 01:04:06 -05:00

221 lines
7.7 KiB
C++

/*
* Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
#if defined(__BRANCHED_PATH__) && defined(__VOLUME__)
ccl_device_inline void kernel_split_branched_path_volume_indirect_light_init(KernelGlobals *kg, int ray_index)
{
kernel_split_branched_path_indirect_loop_init(kg, ray_index);
ADD_RAY_FLAG(kernel_split_state.ray_state, ray_index, RAY_BRANCHED_VOLUME_INDIRECT);
}
ccl_device_noinline bool kernel_split_branched_path_volume_indirect_light_iter(KernelGlobals *kg, int ray_index)
{
SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
ShaderData *sd = kernel_split_sd(sd, ray_index);
PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
ShaderData *emission_sd = AS_SHADER_DATA(&kernel_split_state.sd_DL_shadow[ray_index]);
/* GPU: no decoupled ray marching, scatter probalistically */
int num_samples = kernel_data.integrator.volume_samples;
float num_samples_inv = 1.0f/num_samples;
Ray volume_ray = branched_state->ray;
volume_ray.t = (!IS_STATE(&branched_state->ray_state, 0, RAY_HIT_BACKGROUND)) ? branched_state->isect.t : FLT_MAX;
bool heterogeneous = volume_stack_is_heterogeneous(kg, branched_state->path_state.volume_stack);
for(int j = branched_state->next_sample; j < num_samples; j++) {
ccl_global PathState *ps = &kernel_split_state.path_state[ray_index];
*ps = branched_state->path_state;
ccl_global Ray *pray = &kernel_split_state.ray[ray_index];
*pray = branched_state->ray;
ccl_global float3 *tp = &kernel_split_state.throughput[ray_index];
*tp = branched_state->throughput * num_samples_inv;
/* branch RNG state */
path_state_branch(ps, j, num_samples);
/* integrate along volume segment with distance sampling */
VolumeIntegrateResult result = kernel_volume_integrate(
kg, ps, sd, &volume_ray, L, tp, heterogeneous);
# ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* direct lighting */
kernel_path_volume_connect_light(kg, sd, emission_sd, *tp, &branched_state->path_state, L);
/* indirect light bounce */
if(!kernel_path_volume_bounce(kg, sd, tp, ps, &L->state, pray)) {
continue;
}
/* start the indirect path */
branched_state->next_closure = 0;
branched_state->next_sample = j+1;
/* Attempting to share too many samples is slow for volumes as it causes us to
* loop here more and have many calls to kernel_volume_integrate which evaluates
* shaders. The many expensive shader evaluations cause the work load to become
* unbalanced and many threads to become idle in this kernel. Limiting the
* number of shared samples here helps quite a lot.
*/
if(branched_state->shared_sample_count < 2) {
if(kernel_split_branched_indirect_start_shared(kg, ray_index)) {
continue;
}
}
return true;
}
# endif
}
branched_state->next_sample = num_samples;
branched_state->waiting_on_shared_samples = (branched_state->shared_sample_count > 0);
if(branched_state->waiting_on_shared_samples) {
return true;
}
kernel_split_branched_path_indirect_loop_end(kg, ray_index);
/* todo: avoid this calculation using decoupled ray marching */
float3 throughput = kernel_split_state.throughput[ray_index];
kernel_volume_shadow(kg, emission_sd, &kernel_split_state.path_state[ray_index], &volume_ray, &throughput);
kernel_split_state.throughput[ray_index] = throughput;
return false;
}
#endif /* __BRANCHED_PATH__ && __VOLUME__ */
ccl_device void kernel_do_volume(KernelGlobals *kg)
{
#ifdef __VOLUME__
/* We will empty this queue in this kernel. */
if(ccl_global_id(0) == 0 && ccl_global_id(1) == 0) {
kernel_split_params.queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = 0;
# ifdef __BRANCHED_PATH__
kernel_split_params.queue_index[QUEUE_VOLUME_INDIRECT_ITER] = 0;
# endif /* __BRANCHED_PATH__ */
}
int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
if(*kernel_split_params.use_queues_flag) {
ray_index = get_ray_index(kg, ray_index,
QUEUE_ACTIVE_AND_REGENERATED_RAYS,
kernel_split_state.queue_data,
kernel_split_params.queue_size,
1);
}
ccl_global char *ray_state = kernel_split_state.ray_state;
PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
if(IS_STATE(ray_state, ray_index, RAY_ACTIVE) ||
IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND)) {
ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index];
ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
ccl_global Intersection *isect = &kernel_split_state.isect[ray_index];
ShaderData *sd = kernel_split_sd(sd, ray_index);
ShaderData *emission_sd = AS_SHADER_DATA(&kernel_split_state.sd_DL_shadow[ray_index]);
bool hit = ! IS_STATE(ray_state, ray_index, RAY_HIT_BACKGROUND);
/* Sanitize volume stack. */
if(!hit) {
kernel_volume_clean_stack(kg, state->volume_stack);
}
/* volume attenuation, emission, scatter */
if(state->volume_stack[0].shader != SHADER_NONE) {
Ray volume_ray = *ray;
volume_ray.t = (hit)? isect->t: FLT_MAX;
# ifdef __BRANCHED_PATH__
if(!kernel_data.integrator.branched || IS_FLAG(ray_state, ray_index, RAY_BRANCHED_INDIRECT)) {
# endif /* __BRANCHED_PATH__ */
bool heterogeneous = volume_stack_is_heterogeneous(kg, state->volume_stack);
{
/* integrate along volume segment with distance sampling */
VolumeIntegrateResult result = kernel_volume_integrate(
kg, state, sd, &volume_ray, L, throughput, heterogeneous);
# ifdef __VOLUME_SCATTER__
if(result == VOLUME_PATH_SCATTERED) {
/* direct lighting */
kernel_path_volume_connect_light(kg, sd, emission_sd, *throughput, state, L);
/* indirect light bounce */
if(kernel_path_volume_bounce(kg, sd, throughput, state, &L->state, ray)) {
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
}
else {
kernel_split_path_end(kg, ray_index);
}
}
# endif /* __VOLUME_SCATTER__ */
}
# ifdef __BRANCHED_PATH__
}
else {
kernel_split_branched_path_volume_indirect_light_init(kg, ray_index);
if(kernel_split_branched_path_volume_indirect_light_iter(kg, ray_index)) {
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
}
}
# endif /* __BRANCHED_PATH__ */
}
}
# ifdef __BRANCHED_PATH__
/* iter loop */
ray_index = get_ray_index(kg, ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0),
QUEUE_VOLUME_INDIRECT_ITER,
kernel_split_state.queue_data,
kernel_split_params.queue_size,
1);
if(IS_STATE(ray_state, ray_index, RAY_VOLUME_INDIRECT_NEXT_ITER)) {
/* for render passes, sum and reset indirect light pass variables
* for the next samples */
path_radiance_sum_indirect(&kernel_split_state.path_radiance[ray_index]);
path_radiance_reset_indirect(&kernel_split_state.path_radiance[ray_index]);
if(kernel_split_branched_path_volume_indirect_light_iter(kg, ray_index)) {
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
}
}
# endif /* __BRANCHED_PATH__ */
#endif /* __VOLUME__ */
}
CCL_NAMESPACE_END