This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/split/kernel_subsurface_scatter.h
Brecht Van Lommel 0df9b2c715 Cycles: random walk subsurface scattering.
It is basically brute force volume scattering within the mesh, but part
of the SSS code for faster performance. The main difference with actual
volume scattering is that we assume the boundaries are diffuse and that
all lighting is coming through this boundary from outside the volume.

This gives much more accurate results for thin features and low density.
Some challenges remain however:

* Significantly more noisy than BSSRDF. Adding Dwivedi sampling may help
  here, but it's unclear still how much it helps in real world cases.
* Due to this being a volumetric method, geometry like eyes or mouth can
  darken the skin on the outside. We may be able to reduce this effect,
  or users can compensate for it by reducing the scattering radius in
  such areas.
* Sharp corners are quite bright. This matches actual volume rendering
  and results in some other renderers, but maybe not so much real world
  objects.

Differential Revision: https://developer.blender.org/D3054
2018-02-09 19:58:33 +01:00

307 lines
12 KiB
C++

/*
* Copyright 2011-2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
CCL_NAMESPACE_BEGIN
#if defined(__BRANCHED_PATH__) && defined(__SUBSURFACE__)
ccl_device_inline void kernel_split_branched_path_subsurface_indirect_light_init(KernelGlobals *kg, int ray_index)
{
kernel_split_branched_path_indirect_loop_init(kg, ray_index);
SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
branched_state->ss_next_closure = 0;
branched_state->ss_next_sample = 0;
branched_state->num_hits = 0;
branched_state->next_hit = 0;
ADD_RAY_FLAG(kernel_split_state.ray_state, ray_index, RAY_BRANCHED_SUBSURFACE_INDIRECT);
}
ccl_device_noinline bool kernel_split_branched_path_subsurface_indirect_light_iter(KernelGlobals *kg, int ray_index)
{
SplitBranchedState *branched_state = &kernel_split_state.branched_state[ray_index];
ShaderData *sd = kernel_split_sd(branched_state_sd, ray_index);
PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
ShaderData *emission_sd = AS_SHADER_DATA(&kernel_split_state.sd_DL_shadow[ray_index]);
for(int i = branched_state->ss_next_closure; i < sd->num_closure; i++) {
ShaderClosure *sc = &sd->closure[i];
if(!CLOSURE_IS_BSSRDF(sc->type))
continue;
/* set up random number generator */
if(branched_state->ss_next_sample == 0 && branched_state->next_hit == 0 &&
branched_state->next_closure == 0 && branched_state->next_sample == 0)
{
branched_state->lcg_state = lcg_state_init_addrspace(&branched_state->path_state,
0x68bc21eb);
}
int num_samples = kernel_data.integrator.subsurface_samples * 3;
float num_samples_inv = 1.0f/num_samples;
uint bssrdf_rng_hash = cmj_hash(branched_state->path_state.rng_hash, i);
/* do subsurface scatter step with copy of shader data, this will
* replace the BSSRDF with a diffuse BSDF closure */
for(int j = branched_state->ss_next_sample; j < num_samples; j++) {
ccl_global PathState *hit_state = &kernel_split_state.path_state[ray_index];
*hit_state = branched_state->path_state;
hit_state->rng_hash = bssrdf_rng_hash;
path_state_branch(hit_state, j, num_samples);
ccl_global LocalIntersection *ss_isect = &branched_state->ss_isect;
float bssrdf_u, bssrdf_v;
path_branched_rng_2D(kg,
bssrdf_rng_hash,
hit_state,
j,
num_samples,
PRNG_BSDF_U,
&bssrdf_u,
&bssrdf_v);
/* intersection is expensive so avoid doing multiple times for the same input */
if(branched_state->next_hit == 0 && branched_state->next_closure == 0 && branched_state->next_sample == 0) {
uint lcg_state = branched_state->lcg_state;
LocalIntersection ss_isect_private;
branched_state->num_hits = subsurface_scatter_multi_intersect(kg,
&ss_isect_private,
sd,
hit_state,
sc,
&lcg_state,
bssrdf_u, bssrdf_v,
true);
branched_state->lcg_state = lcg_state;
*ss_isect = ss_isect_private;
}
hit_state->rng_offset += PRNG_BOUNCE_NUM;
#ifdef __VOLUME__
Ray volume_ray = branched_state->ray;
bool need_update_volume_stack =
kernel_data.integrator.use_volumes &&
sd->object_flag & SD_OBJECT_INTERSECTS_VOLUME;
#endif /* __VOLUME__ */
/* compute lighting with the BSDF closure */
for(int hit = branched_state->next_hit; hit < branched_state->num_hits; hit++) {
ShaderData *bssrdf_sd = kernel_split_sd(sd, ray_index);
*bssrdf_sd = *sd; /* note: copy happens each iteration of inner loop, this is
* important as the indirect path will write into bssrdf_sd */
LocalIntersection ss_isect_private = *ss_isect;
subsurface_scatter_multi_setup(kg,
&ss_isect_private,
hit,
bssrdf_sd,
hit_state,
sc);
*ss_isect = ss_isect_private;
#ifdef __VOLUME__
if(need_update_volume_stack) {
/* Setup ray from previous surface point to the new one. */
float3 P = ray_offset(bssrdf_sd->P, -bssrdf_sd->Ng);
volume_ray.D = normalize_len(P - volume_ray.P, &volume_ray.t);
for(int k = 0; k < VOLUME_STACK_SIZE; k++) {
hit_state->volume_stack[k] = branched_state->path_state.volume_stack[k];
}
kernel_volume_stack_update_for_subsurface(kg,
emission_sd,
&volume_ray,
hit_state->volume_stack);
}
#endif /* __VOLUME__ */
#ifdef __EMISSION__
if(branched_state->next_closure == 0 && branched_state->next_sample == 0) {
/* direct light */
if(kernel_data.integrator.use_direct_light) {
int all = (kernel_data.integrator.sample_all_lights_direct) ||
(hit_state->flag & PATH_RAY_SHADOW_CATCHER);
kernel_branched_path_surface_connect_light(kg,
bssrdf_sd,
emission_sd,
hit_state,
branched_state->throughput,
num_samples_inv,
L,
all);
}
}
#endif /* __EMISSION__ */
/* indirect light */
if(kernel_split_branched_path_surface_indirect_light_iter(kg,
ray_index,
num_samples_inv,
bssrdf_sd,
false,
false))
{
branched_state->ss_next_closure = i;
branched_state->ss_next_sample = j;
branched_state->next_hit = hit;
return true;
}
branched_state->next_closure = 0;
}
branched_state->next_hit = 0;
}
branched_state->ss_next_sample = 0;
}
branched_state->ss_next_closure = sd->num_closure;
branched_state->waiting_on_shared_samples = (branched_state->shared_sample_count > 0);
if(branched_state->waiting_on_shared_samples) {
return true;
}
kernel_split_branched_path_indirect_loop_end(kg, ray_index);
return false;
}
#endif /* __BRANCHED_PATH__ && __SUBSURFACE__ */
ccl_device void kernel_subsurface_scatter(KernelGlobals *kg)
{
int thread_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
if(thread_index == 0) {
/* We will empty both queues in this kernel. */
kernel_split_params.queue_index[QUEUE_ACTIVE_AND_REGENERATED_RAYS] = 0;
kernel_split_params.queue_index[QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS] = 0;
}
int ray_index = ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0);
ray_index = get_ray_index(kg, ray_index,
QUEUE_ACTIVE_AND_REGENERATED_RAYS,
kernel_split_state.queue_data,
kernel_split_params.queue_size,
1);
get_ray_index(kg, thread_index,
QUEUE_HITBG_BUFF_UPDATE_TOREGEN_RAYS,
kernel_split_state.queue_data,
kernel_split_params.queue_size,
1);
#ifdef __SUBSURFACE__
ccl_global char *ray_state = kernel_split_state.ray_state;
if(IS_STATE(ray_state, ray_index, RAY_ACTIVE)) {
ccl_global PathState *state = &kernel_split_state.path_state[ray_index];
PathRadiance *L = &kernel_split_state.path_radiance[ray_index];
ccl_global Ray *ray = &kernel_split_state.ray[ray_index];
ccl_global float3 *throughput = &kernel_split_state.throughput[ray_index];
ccl_global SubsurfaceIndirectRays *ss_indirect = &kernel_split_state.ss_rays[ray_index];
ShaderData *sd = kernel_split_sd(sd, ray_index);
ShaderData *emission_sd = AS_SHADER_DATA(&kernel_split_state.sd_DL_shadow[ray_index]);
if(sd->flag & SD_BSSRDF) {
#ifdef __BRANCHED_PATH__
if(!kernel_data.integrator.branched) {
#endif
if(kernel_path_subsurface_scatter(kg,
sd,
emission_sd,
L,
state,
ray,
throughput,
ss_indirect))
{
kernel_split_path_end(kg, ray_index);
}
#ifdef __BRANCHED_PATH__
}
else if(IS_FLAG(ray_state, ray_index, RAY_BRANCHED_INDIRECT)) {
float bssrdf_u, bssrdf_v;
path_state_rng_2D(kg,
state,
PRNG_BSDF_U,
&bssrdf_u, &bssrdf_v);
const ShaderClosure *sc = shader_bssrdf_pick(sd, throughput, &bssrdf_u);
/* do bssrdf scatter step if we picked a bssrdf closure */
if(sc) {
uint lcg_state = lcg_state_init_addrspace(state, 0x68bc21eb);
subsurface_scatter_step(kg,
sd,
state,
sc,
&lcg_state,
bssrdf_u, bssrdf_v,
false);
}
}
else {
kernel_split_branched_path_subsurface_indirect_light_init(kg, ray_index);
if(kernel_split_branched_path_subsurface_indirect_light_iter(kg, ray_index)) {
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
}
}
#endif
}
}
# ifdef __BRANCHED_PATH__
if(ccl_global_id(0) == 0 && ccl_global_id(1) == 0) {
kernel_split_params.queue_index[QUEUE_SUBSURFACE_INDIRECT_ITER] = 0;
}
/* iter loop */
ray_index = get_ray_index(kg, ccl_global_id(1) * ccl_global_size(0) + ccl_global_id(0),
QUEUE_SUBSURFACE_INDIRECT_ITER,
kernel_split_state.queue_data,
kernel_split_params.queue_size,
1);
if(IS_STATE(ray_state, ray_index, RAY_SUBSURFACE_INDIRECT_NEXT_ITER)) {
/* for render passes, sum and reset indirect light pass variables
* for the next samples */
path_radiance_sum_indirect(&kernel_split_state.path_radiance[ray_index]);
path_radiance_reset_indirect(&kernel_split_state.path_radiance[ray_index]);
if(kernel_split_branched_path_subsurface_indirect_light_iter(kg, ray_index)) {
ASSIGN_RAY_STATE(ray_state, ray_index, RAY_REGENERATED);
}
}
# endif /* __BRANCHED_PATH__ */
#endif /* __SUBSURFACE__ */
}
CCL_NAMESPACE_END