This commit re-implements the resample curve node to use the new curves type instead of CurveEval. The largest changes come from the need to keep track of offsets into the point attribute arrays, and the fact that the attributes for all curves are stored in a flat array. Another difference is that a bit more of the logic is handled by building of the field network inputs. The idea is to let the field evaluator handle potential optimizations while making the rest of the code simpler. When resampling 1 million small poly curves,the node is about 6 times faster compared to 3.1 on my hardware (500ms to 80ms). This also adds support for Catmull Rom curve inputs. Differential Revision: https://developer.blender.org/D14435
182 lines
3.8 KiB
C++
182 lines
3.8 KiB
C++
/* SPDX-License-Identifier: GPL-2.0-or-later */
|
|
|
|
#pragma once
|
|
|
|
/** \file
|
|
* \ingroup bli
|
|
*/
|
|
|
|
#include "BLI_cpp_type.hh"
|
|
#include "BLI_span.hh"
|
|
|
|
namespace blender {
|
|
|
|
/**
|
|
* A generic span. It behaves just like a blender::Span<T>, but the type is only known at run-time.
|
|
*/
|
|
class GSpan {
|
|
protected:
|
|
const CPPType *type_;
|
|
const void *data_;
|
|
int64_t size_;
|
|
|
|
public:
|
|
GSpan(const CPPType &type, const void *buffer, int64_t size)
|
|
: type_(&type), data_(buffer), size_(size)
|
|
{
|
|
BLI_assert(size >= 0);
|
|
BLI_assert(buffer != nullptr || size == 0);
|
|
BLI_assert(type.pointer_has_valid_alignment(buffer));
|
|
}
|
|
|
|
GSpan(const CPPType &type) : GSpan(type, nullptr, 0)
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
GSpan(Span<T> array)
|
|
: GSpan(CPPType::get<T>(), static_cast<const void *>(array.data()), array.size())
|
|
{
|
|
}
|
|
|
|
const CPPType &type() const
|
|
{
|
|
return *type_;
|
|
}
|
|
|
|
bool is_empty() const
|
|
{
|
|
return size_ == 0;
|
|
}
|
|
|
|
int64_t size() const
|
|
{
|
|
return size_;
|
|
}
|
|
|
|
const void *data() const
|
|
{
|
|
return data_;
|
|
}
|
|
|
|
const void *operator[](int64_t index) const
|
|
{
|
|
BLI_assert(index < size_);
|
|
return POINTER_OFFSET(data_, type_->size() * index);
|
|
}
|
|
|
|
template<typename T> Span<T> typed() const
|
|
{
|
|
BLI_assert(type_->is<T>());
|
|
return Span<T>(static_cast<const T *>(data_), size_);
|
|
}
|
|
|
|
GSpan slice(const int64_t start, int64_t size) const
|
|
{
|
|
BLI_assert(start >= 0);
|
|
BLI_assert(size >= 0);
|
|
const int64_t new_size = std::max<int64_t>(0, std::min(size, size_ - start));
|
|
return GSpan(*type_, POINTER_OFFSET(data_, type_->size() * start), new_size);
|
|
}
|
|
|
|
GSpan slice(const IndexRange range) const
|
|
{
|
|
return this->slice(range.start(), range.size());
|
|
}
|
|
};
|
|
|
|
/**
|
|
* A generic mutable span. It behaves just like a blender::MutableSpan<T>, but the type is only
|
|
* known at run-time.
|
|
*/
|
|
class GMutableSpan {
|
|
protected:
|
|
const CPPType *type_;
|
|
void *data_;
|
|
int64_t size_;
|
|
|
|
public:
|
|
GMutableSpan(const CPPType &type, void *buffer, int64_t size)
|
|
: type_(&type), data_(buffer), size_(size)
|
|
{
|
|
BLI_assert(size >= 0);
|
|
BLI_assert(buffer != nullptr || size == 0);
|
|
BLI_assert(type.pointer_has_valid_alignment(buffer));
|
|
}
|
|
|
|
GMutableSpan(const CPPType &type) : GMutableSpan(type, nullptr, 0)
|
|
{
|
|
}
|
|
|
|
template<typename T>
|
|
GMutableSpan(MutableSpan<T> array)
|
|
: GMutableSpan(CPPType::get<T>(), static_cast<void *>(array.begin()), array.size())
|
|
{
|
|
}
|
|
|
|
operator GSpan() const
|
|
{
|
|
return GSpan(*type_, data_, size_);
|
|
}
|
|
|
|
const CPPType &type() const
|
|
{
|
|
return *type_;
|
|
}
|
|
|
|
bool is_empty() const
|
|
{
|
|
return size_ == 0;
|
|
}
|
|
|
|
int64_t size() const
|
|
{
|
|
return size_;
|
|
}
|
|
|
|
void *data() const
|
|
{
|
|
return data_;
|
|
}
|
|
|
|
void *operator[](int64_t index) const
|
|
{
|
|
BLI_assert(index >= 0);
|
|
BLI_assert(index < size_);
|
|
return POINTER_OFFSET(data_, type_->size() * index);
|
|
}
|
|
|
|
template<typename T> MutableSpan<T> typed() const
|
|
{
|
|
BLI_assert(type_->is<T>());
|
|
return MutableSpan<T>(static_cast<T *>(data_), size_);
|
|
}
|
|
|
|
GMutableSpan slice(const int64_t start, int64_t size) const
|
|
{
|
|
BLI_assert(start >= 0);
|
|
BLI_assert(size >= 0);
|
|
const int64_t new_size = std::max<int64_t>(0, std::min(size, size_ - start));
|
|
return GMutableSpan(*type_, POINTER_OFFSET(data_, type_->size() * start), new_size);
|
|
}
|
|
|
|
GMutableSpan slice(IndexRange range) const
|
|
{
|
|
return this->slice(range.start(), range.size());
|
|
}
|
|
|
|
/**
|
|
* Copy all values from another span into this span. This invokes undefined behavior when the
|
|
* destination contains uninitialized data and T is not trivially copy constructible.
|
|
* The size of both spans is expected to be the same.
|
|
*/
|
|
void copy_from(GSpan values)
|
|
{
|
|
BLI_assert(type_ == &values.type());
|
|
BLI_assert(size_ == values.size());
|
|
type_->copy_assign_n(values.data(), data_, size_);
|
|
}
|
|
};
|
|
|
|
} // namespace blender
|