This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/collada/AnimationImporter.cpp
Sergey Sharybin 79312c1912 Depsgraph: Remove duplicated sets of recalc/update flags
There were at least three copies of those:

- OB_RECALC* family of flags, which are rudiment of an old
  dependency graph system.
- PSYS_RECALC* which were used by old dependency graph system
  as a separate set since the graph itself did not handle
  particle systems.
- DEG_TAG_* which was used to tag IDs.

Now there is a single set, which defines what can be tagged
and queried for an update. It also has some aggregate flags
to make queries simpler.

Lets once and for all solve the madness of those flags, stick
to a single set, which will not overlap with anything or require
any extra conversion.

Technically, shouldn't be measurable user difference, but some
of the agregate flags for few dependency graph components did
change.

Fixes T58632: Particle don't update rotation settings
2018-12-07 11:37:38 +01:00

2046 lines
62 KiB
C++

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Contributor(s): Chingiz Dyussenov, Arystanbek Dyussenov, Nathan Letwory, Sukhitha Jayathilake.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/collada/AnimationImporter.cpp
* \ingroup collada
*/
#include <stddef.h>
/* COLLADABU_ASSERT, may be able to remove later */
#include "COLLADABUPlatform.h"
#include "DNA_armature_types.h"
#include "ED_keyframing.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_string.h"
#include "BLI_string_utils.h"
#include "BLT_translation.h"
#include "BKE_action.h"
#include "BKE_armature.h"
#include "BKE_fcurve.h"
#include "BKE_object.h"
#include "MEM_guardedalloc.h"
#include "collada_utils.h"
#include "AnimationImporter.h"
#include "ArmatureImporter.h"
#include "MaterialExporter.h"
#include <algorithm>
// first try node name, if not available (since is optional), fall back to original id
template<class T>
static const char *bc_get_joint_name(T *node)
{
const std::string& id = node->getName();
return id.size() ? id.c_str() : node->getOriginalId().c_str();
}
FCurve *AnimationImporter::create_fcurve(int array_index, const char *rna_path)
{
FCurve *fcu = (FCurve *)MEM_callocN(sizeof(FCurve), "FCurve");
fcu->flag = (FCURVE_VISIBLE | FCURVE_AUTO_HANDLES | FCURVE_SELECTED);
fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
fcu->array_index = array_index;
return fcu;
}
void AnimationImporter::add_bezt(FCurve *fcu, float frame, float value, eBezTriple_Interpolation ipo)
{
//float fps = (float)FPS;
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
bez.vec[1][0] = frame;
bez.vec[1][1] = value;
bez.ipo = ipo; /* use default interpolation mode here... */
bez.f1 = bez.f2 = bez.f3 = SELECT;
bez.h1 = bez.h2 = HD_AUTO;
insert_bezt_fcurve(fcu, &bez, INSERTKEY_NOFLAGS);
calchandles_fcurve(fcu);
}
// create one or several fcurves depending on the number of parameters being animated
void AnimationImporter::animation_to_fcurves(COLLADAFW::AnimationCurve *curve)
{
COLLADAFW::FloatOrDoubleArray& input = curve->getInputValues();
COLLADAFW::FloatOrDoubleArray& output = curve->getOutputValues();
float fps = (float)FPS;
size_t dim = curve->getOutDimension();
unsigned int i;
std::vector<FCurve *>& fcurves = curve_map[curve->getUniqueId()];
switch (dim) {
case 1: // X, Y, Z or angle
case 3: // XYZ
case 4:
case 16: // matrix
{
for (i = 0; i < dim; i++) {
FCurve *fcu = (FCurve *)MEM_callocN(sizeof(FCurve), "FCurve");
fcu->flag = (FCURVE_VISIBLE | FCURVE_AUTO_HANDLES | FCURVE_SELECTED);
fcu->array_index = 0;
fcu->auto_smoothing = FCURVE_SMOOTH_CONT_ACCEL;
for (unsigned int j = 0; j < curve->getKeyCount(); j++) {
BezTriple bez;
memset(&bez, 0, sizeof(BezTriple));
// input, output
bez.vec[1][0] = bc_get_float_value(input, j) * fps;
bez.vec[1][1] = bc_get_float_value(output, j * dim + i);
bez.h1 = bez.h2 = HD_AUTO;
if (curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER ||
curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_STEP)
{
COLLADAFW::FloatOrDoubleArray& intan = curve->getInTangentValues();
COLLADAFW::FloatOrDoubleArray& outtan = curve->getOutTangentValues();
// intangent
bez.vec[0][0] = bc_get_float_value(intan, (j * 2 * dim) + (2 * i)) * fps;
bez.vec[0][1] = bc_get_float_value(intan, (j * 2 * dim) + (2 * i) + 1);
// outtangent
bez.vec[2][0] = bc_get_float_value(outtan, (j * 2 * dim) + (2 * i)) * fps;
bez.vec[2][1] = bc_get_float_value(outtan, (j * 2 * dim) + (2 * i) + 1);
if (curve->getInterpolationType() == COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER) {
bez.ipo = BEZT_IPO_BEZ;
bez.h1 = bez.h2 = HD_AUTO_ANIM;
}
else {
bez.ipo = BEZT_IPO_CONST;
}
}
else {
bez.ipo = BEZT_IPO_LIN;
}
// bez.ipo = U.ipo_new; /* use default interpolation mode here... */
bez.f1 = bez.f2 = bez.f3 = SELECT;
insert_bezt_fcurve(fcu, &bez, INSERTKEY_NOFLAGS);
}
calchandles_fcurve(fcu);
fcurves.push_back(fcu);
unused_curves.push_back(fcu);
}
}
break;
default:
fprintf(stderr, "Output dimension of %d is not yet supported (animation id = %s)\n", (int)dim, curve->getOriginalId().c_str());
}
}
void AnimationImporter::fcurve_deg_to_rad(FCurve *cu)
{
for (unsigned int i = 0; i < cu->totvert; i++) {
// TODO convert handles too
cu->bezt[i].vec[1][1] *= DEG2RADF(1.0f);
cu->bezt[i].vec[0][1] *= DEG2RADF(1.0f);
cu->bezt[i].vec[2][1] *= DEG2RADF(1.0f);
}
}
void AnimationImporter::fcurve_is_used(FCurve *fcu)
{
unused_curves.erase(std::remove(unused_curves.begin(), unused_curves.end(), fcu), unused_curves.end());
}
void AnimationImporter::add_fcurves_to_object(Main *bmain, Object *ob, std::vector<FCurve *>& curves, char *rna_path, int array_index, Animation *animated)
{
bAction *act;
if (!ob->adt || !ob->adt->action) act = verify_adt_action(bmain, (ID *)&ob->id, 1);
else act = ob->adt->action;
std::vector<FCurve *>::iterator it;
int i;
#if 0
char *p = strstr(rna_path, "rotation_euler");
bool is_rotation = p && *(p + strlen("rotation_euler")) == '\0';
// convert degrees to radians for rotation
if (is_rotation)
fcurve_deg_to_rad(fcu);
#endif
for (it = curves.begin(), i = 0; it != curves.end(); it++, i++) {
FCurve *fcu = *it;
fcu->rna_path = BLI_strdupn(rna_path, strlen(rna_path));
if (array_index == -1) fcu->array_index = i;
else fcu->array_index = array_index;
if (ob->type == OB_ARMATURE) {
bActionGroup *grp = NULL;
const char *bone_name = bc_get_joint_name(animated->node);
if (bone_name) {
/* try to find group */
grp = BKE_action_group_find_name(act, bone_name);
/* no matching groups, so add one */
if (grp == NULL) {
/* Add a new group, and make it active */
grp = (bActionGroup *)MEM_callocN(sizeof(bActionGroup), "bActionGroup");
grp->flag = AGRP_SELECTED;
BLI_strncpy(grp->name, bone_name, sizeof(grp->name));
BLI_addtail(&act->groups, grp);
BLI_uniquename(&act->groups, grp, CTX_DATA_(BLT_I18NCONTEXT_ID_ACTION, "Group"), '.',
offsetof(bActionGroup, name), 64);
}
/* add F-Curve to group */
action_groups_add_channel(act, grp, fcu);
fcurve_is_used(fcu);
}
#if 0
if (is_rotation) {
fcurves_actionGroup_map[grp].push_back(fcu);
}
#endif
}
else {
BLI_addtail(&act->curves, fcu);
fcurve_is_used(fcu);
}
}
}
AnimationImporter::~AnimationImporter()
{
// free unused FCurves
for (std::vector<FCurve *>::iterator it = unused_curves.begin(); it != unused_curves.end(); it++)
free_fcurve(*it);
if (unused_curves.size())
fprintf(stderr, "removed %d unused curves\n", (int)unused_curves.size());
}
bool AnimationImporter::write_animation(const COLLADAFW::Animation *anim)
{
if (anim->getAnimationType() == COLLADAFW::Animation::ANIMATION_CURVE) {
COLLADAFW::AnimationCurve *curve = (COLLADAFW::AnimationCurve *)anim;
// XXX Don't know if it's necessary
// Should we check outPhysicalDimension?
if (curve->getInPhysicalDimension() != COLLADAFW::PHYSICAL_DIMENSION_TIME) {
fprintf(stderr, "Inputs physical dimension is not time.\n");
return true;
}
// a curve can have mixed interpolation type,
// in this case curve->getInterpolationTypes returns a list of interpolation types per key
COLLADAFW::AnimationCurve::InterpolationType interp = curve->getInterpolationType();
if (interp != COLLADAFW::AnimationCurve::INTERPOLATION_MIXED) {
switch (interp) {
case COLLADAFW::AnimationCurve::INTERPOLATION_LINEAR:
case COLLADAFW::AnimationCurve::INTERPOLATION_BEZIER:
case COLLADAFW::AnimationCurve::INTERPOLATION_STEP:
animation_to_fcurves(curve);
break;
default:
// TODO there're also CARDINAL, HERMITE, BSPLINE and STEP types
fprintf(stderr, "CARDINAL, HERMITE and BSPLINE anim interpolation types not supported yet.\n");
break;
}
}
else {
// not supported yet
fprintf(stderr, "MIXED anim interpolation type is not supported yet.\n");
}
}
else {
fprintf(stderr, "FORMULA animation type is not supported yet.\n");
}
return true;
}
// called on post-process stage after writeVisualScenes
bool AnimationImporter::write_animation_list(const COLLADAFW::AnimationList *animlist)
{
const COLLADAFW::UniqueId& animlist_id = animlist->getUniqueId();
animlist_map[animlist_id] = animlist;
#if 0
// should not happen
if (uid_animated_map.find(animlist_id) == uid_animated_map.end()) {
return true;
}
// for bones rna_path is like: pose.bones["bone-name"].rotation
#endif
return true;
}
// \todo refactor read_node_transform to not automatically apply anything,
// but rather return the transform matrix, so caller can do with it what is
// necessary. Same for \ref get_node_mat
void AnimationImporter::read_node_transform(COLLADAFW::Node *node, Object *ob)
{
float mat[4][4];
TransformReader::get_node_mat(mat, node, &uid_animated_map, ob);
if (ob) {
copy_m4_m4(ob->obmat, mat);
BKE_object_apply_mat4(ob, ob->obmat, 0, 0);
}
}
#if 0
virtual void AnimationImporter::change_eul_to_quat(Object *ob, bAction *act)
{
bActionGroup *grp;
int i;
for (grp = (bActionGroup *)act->groups.first; grp; grp = grp->next) {
FCurve *eulcu[3] = {NULL, NULL, NULL};
if (fcurves_actionGroup_map.find(grp) == fcurves_actionGroup_map.end())
continue;
std::vector<FCurve *> &rot_fcurves = fcurves_actionGroup_map[grp];
if (rot_fcurves.size() > 3) continue;
for (i = 0; i < rot_fcurves.size(); i++)
eulcu[rot_fcurves[i]->array_index] = rot_fcurves[i];
char joint_path[100];
char rna_path[100];
BLI_snprintf(joint_path, sizeof(joint_path), "pose.bones[\"%s\"]", grp->name);
BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_quaternion", joint_path);
FCurve *quatcu[4] = {
create_fcurve(0, rna_path),
create_fcurve(1, rna_path),
create_fcurve(2, rna_path),
create_fcurve(3, rna_path)
};
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, grp->name);
float m4[4][4], irest[3][3];
invert_m4_m4(m4, chan->bone->arm_mat);
copy_m3_m4(irest, m4);
for (i = 0; i < 3; i++) {
FCurve *cu = eulcu[i];
if (!cu) continue;
for (int j = 0; j < cu->totvert; j++) {
float frame = cu->bezt[j].vec[1][0];
float eul[3] = {
eulcu[0] ? evaluate_fcurve(eulcu[0], frame) : 0.0f,
eulcu[1] ? evaluate_fcurve(eulcu[1], frame) : 0.0f,
eulcu[2] ? evaluate_fcurve(eulcu[2], frame) : 0.0f
};
// make eul relative to bone rest pose
float rot[3][3], rel[3][3], quat[4];
/*eul_to_mat3(rot, eul);
mul_m3_m3m3(rel, irest, rot);
mat3_to_quat(quat, rel);
*/
eul_to_quat(quat, eul);
for (int k = 0; k < 4; k++)
create_bezt(quatcu[k], frame, quat[k], U.ipo_new);
}
}
// now replace old Euler curves
for (i = 0; i < 3; i++) {
if (!eulcu[i]) continue;
action_groups_remove_channel(act, eulcu[i]);
free_fcurve(eulcu[i]);
}
chan->rotmode = ROT_MODE_QUAT;
for (i = 0; i < 4; i++)
action_groups_add_channel(act, grp, quatcu[i]);
}
bPoseChannel *pchan;
for (pchan = (bPoseChannel *)ob->pose->chanbase.first; pchan; pchan = pchan->next) {
pchan->rotmode = ROT_MODE_QUAT;
}
}
#endif
//sets the rna_path and array index to curve
void AnimationImporter::modify_fcurve(std::vector<FCurve *> *curves, const char *rna_path, int array_index)
{
std::vector<FCurve *>::iterator it;
int i;
for (it = curves->begin(), i = 0; it != curves->end(); it++, i++) {
FCurve *fcu = *it;
fcu->rna_path = BLI_strdup(rna_path);
if (array_index == -1) fcu->array_index = i;
else fcu->array_index = array_index;
fcurve_is_used(fcu);
}
}
void AnimationImporter::unused_fcurve(std::vector<FCurve *> *curves)
{
// when an error happens and we can't actually use curve remove it from unused_curves
std::vector<FCurve *>::iterator it;
for (it = curves->begin(); it != curves->end(); it++) {
FCurve *fcu = *it;
fcurve_is_used(fcu);
}
}
void AnimationImporter::find_frames(std::vector<float> *frames, std::vector<FCurve *> *curves)
{
std::vector<FCurve *>::iterator iter;
for (iter = curves->begin(); iter != curves->end(); iter++) {
FCurve *fcu = *iter;
for (unsigned int k = 0; k < fcu->totvert; k++) {
//get frame value from bezTriple
float fra = fcu->bezt[k].vec[1][0];
//if frame already not added add frame to frames
if (std::find(frames->begin(), frames->end(), fra) == frames->end())
frames->push_back(fra);
}
}
}
//creates the rna_paths and array indices of fcurves from animations using transformation and bound animation class of each animation.
void AnimationImporter:: Assign_transform_animations(COLLADAFW::Transformation *transform,
const COLLADAFW::AnimationList::AnimationBinding *binding,
std::vector<FCurve *> *curves, bool is_joint, char *joint_path)
{
COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
//to check if the no of curves are valid
bool xyz = ((tm_type == COLLADAFW::Transformation::TRANSLATE || tm_type == COLLADAFW::Transformation::SCALE) && binding->animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
if (!((!xyz && curves->size() == 1) || (xyz && curves->size() == 3) || is_matrix)) {
fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, (int)curves->size());
return;
}
char rna_path[100];
switch (tm_type) {
case COLLADAFW::Transformation::TRANSLATE:
case COLLADAFW::Transformation::SCALE:
{
bool loc = tm_type == COLLADAFW::Transformation::TRANSLATE;
if (is_joint)
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, loc ? "location" : "scale");
else
BLI_strncpy(rna_path, loc ? "location" : "scale", sizeof(rna_path));
switch (binding->animationClass) {
case COLLADAFW::AnimationList::POSITION_X:
modify_fcurve(curves, rna_path, 0);
break;
case COLLADAFW::AnimationList::POSITION_Y:
modify_fcurve(curves, rna_path, 1);
break;
case COLLADAFW::AnimationList::POSITION_Z:
modify_fcurve(curves, rna_path, 2);
break;
case COLLADAFW::AnimationList::POSITION_XYZ:
modify_fcurve(curves, rna_path, -1);
break;
default:
unused_fcurve(curves);
fprintf(stderr, "AnimationClass %d is not supported for %s.\n",
binding->animationClass, loc ? "TRANSLATE" : "SCALE");
}
break;
}
case COLLADAFW::Transformation::ROTATE:
{
if (is_joint)
BLI_snprintf(rna_path, sizeof(rna_path), "%s.rotation_euler", joint_path);
else
BLI_strncpy(rna_path, "rotation_euler", sizeof(rna_path));
std::vector<FCurve *>::iterator iter;
for (iter = curves->begin(); iter != curves->end(); iter++) {
FCurve *fcu = *iter;
//if transform is rotation the fcurves values must be turned in to radian.
if (is_rotation)
fcurve_deg_to_rad(fcu);
}
COLLADAFW::Rotate *rot = (COLLADAFW::Rotate *)transform;
COLLADABU::Math::Vector3& axis = rot->getRotationAxis();
switch (binding->animationClass) {
case COLLADAFW::AnimationList::ANGLE:
if (COLLADABU::Math::Vector3::UNIT_X == axis) {
modify_fcurve(curves, rna_path, 0);
}
else if (COLLADABU::Math::Vector3::UNIT_Y == axis) {
modify_fcurve(curves, rna_path, 1);
}
else if (COLLADABU::Math::Vector3::UNIT_Z == axis) {
modify_fcurve(curves, rna_path, 2);
}
else
unused_fcurve(curves);
break;
case COLLADAFW::AnimationList::AXISANGLE:
// TODO convert axis-angle to quat? or XYZ?
default:
unused_fcurve(curves);
fprintf(stderr, "AnimationClass %d is not supported for ROTATE transformation.\n",
binding->animationClass);
}
break;
}
case COLLADAFW::Transformation::MATRIX:
#if 0
{
COLLADAFW::Matrix *mat = (COLLADAFW::Matrix*)transform;
COLLADABU::Math::Matrix4 mat4 = mat->getMatrix();
switch (binding->animationClass) {
case COLLADAFW::AnimationList::TRANSFORM:
}
}
#endif
unused_fcurve(curves);
break;
case COLLADAFW::Transformation::SKEW:
case COLLADAFW::Transformation::LOOKAT:
unused_fcurve(curves);
fprintf(stderr, "Animation of SKEW and LOOKAT transformations is not supported yet.\n");
break;
}
}
//creates the rna_paths and array indices of fcurves from animations using color and bound animation class of each animation.
void AnimationImporter:: Assign_color_animations(const COLLADAFW::UniqueId& listid, ListBase *AnimCurves, const char *anim_type)
{
char rna_path[100];
BLI_strncpy(rna_path, anim_type, sizeof(rna_path));
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
if (animlist == NULL)
{
fprintf(stderr, "Collada: No animlist found for ID: %s of type %s\n", listid.toAscii().c_str(), anim_type);
return;
}
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
//all the curves belonging to the current binding
std::vector<FCurve *> animcurves;
for (unsigned int j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
switch (bindings[j].animationClass) {
case COLLADAFW::AnimationList::COLOR_R:
modify_fcurve(&animcurves, rna_path, 0);
break;
case COLLADAFW::AnimationList::COLOR_G:
modify_fcurve(&animcurves, rna_path, 1);
break;
case COLLADAFW::AnimationList::COLOR_B:
modify_fcurve(&animcurves, rna_path, 2);
break;
case COLLADAFW::AnimationList::COLOR_RGB:
case COLLADAFW::AnimationList::COLOR_RGBA: // to do-> set intensity
modify_fcurve(&animcurves, rna_path, -1);
break;
default:
unused_fcurve(&animcurves);
fprintf(stderr, "AnimationClass %d is not supported for %s.\n",
bindings[j].animationClass, "COLOR");
}
std::vector<FCurve *>::iterator iter;
//Add the curves of the current animation to the object
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
BLI_addtail(AnimCurves, fcu);
fcurve_is_used(fcu);
}
}
}
void AnimationImporter:: Assign_float_animations(const COLLADAFW::UniqueId& listid, ListBase *AnimCurves, const char *anim_type)
{
char rna_path[100];
if (animlist_map.find(listid) == animlist_map.end()) {
return;
}
else {
//anim_type has animations
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
//all the curves belonging to the current binding
std::vector<FCurve *> animcurves;
for (unsigned int j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
BLI_strncpy(rna_path, anim_type, sizeof(rna_path));
modify_fcurve(&animcurves, rna_path, 0);
std::vector<FCurve *>::iterator iter;
//Add the curves of the current animation to the object
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
/* All anim_types whose values are to be converted from Degree to Radians can be ORed here */
if (STREQ("spot_size", anim_type)) {
/* NOTE: Do NOT convert if imported file was made by blender <= 2.69.10
* Reason: old blender versions stored spot_size in radians (was a bug)
*/
if (this->import_from_version == "" || BLI_natstrcmp(this->import_from_version.c_str(), "2.69.10") != -1) {
fcurve_deg_to_rad(fcu);
}
}
/** XXX What About animtype "rotation" ? */
BLI_addtail(AnimCurves, fcu);
fcurve_is_used(fcu);
}
}
}
}
float AnimationImporter::convert_to_focal_length(float in_xfov, int fov_type, float aspect, float sensorx)
{
// NOTE: Needs more testing (As we curretnly have no official test data for this)
float xfov = (fov_type == CAMERA_YFOV) ? (2.0f * atanf(aspect * tanf(DEG2RADF(in_xfov) * 0.5f))) : DEG2RADF(in_xfov);
return fov_to_focallength(xfov, sensorx);
}
/*
* Lens animations must be stored in COLLADA by using FOV,
* while blender internally uses focal length.
* The imported animation curves must be converted appropriately.
*/
void AnimationImporter::Assign_lens_animations(const COLLADAFW::UniqueId& listid, ListBase *AnimCurves, const double aspect, Camera *cam, const char *anim_type, int fov_type)
{
char rna_path[100];
if (animlist_map.find(listid) == animlist_map.end()) {
return;
}
else {
//anim_type has animations
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
//all the curves belonging to the current binding
std::vector<FCurve *> animcurves;
for (unsigned int j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
BLI_strncpy(rna_path, anim_type, sizeof(rna_path));
modify_fcurve(&animcurves, rna_path, 0);
std::vector<FCurve *>::iterator iter;
//Add the curves of the current animation to the object
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
for (unsigned int i = 0; i < fcu->totvert; i++) {
fcu->bezt[i].vec[0][1] = convert_to_focal_length(fcu->bezt[i].vec[0][1], fov_type, aspect, cam->sensor_x);
fcu->bezt[i].vec[1][1] = convert_to_focal_length(fcu->bezt[i].vec[1][1], fov_type, aspect, cam->sensor_x);
fcu->bezt[i].vec[2][1] = convert_to_focal_length(fcu->bezt[i].vec[2][1], fov_type, aspect, cam->sensor_x);
}
BLI_addtail(AnimCurves, fcu);
fcurve_is_used(fcu);
}
}
}
}
void AnimationImporter::apply_matrix_curves(Object *ob, std::vector<FCurve *>& animcurves, COLLADAFW::Node *root, COLLADAFW::Node *node,
COLLADAFW::Transformation *tm)
{
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL;
char joint_path[200];
if (is_joint)
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
std::vector<float> frames;
find_frames(&frames, &animcurves);
float irest_dae[4][4];
float rest[4][4], irest[4][4];
if (is_joint) {
get_joint_rest_mat(irest_dae, root, node);
invert_m4(irest_dae);
Bone *bone = BKE_armature_find_bone_name((bArmature *)ob->data, bone_name);
if (!bone) {
fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
return;
}
unit_m4(rest);
copy_m4_m4(rest, bone->arm_mat);
invert_m4_m4(irest, rest);
}
// new curves to assign matrix transform animation
FCurve *newcu[10]; // if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale
unsigned int totcu = 10;
const char *tm_str = NULL;
char rna_path[200];
for (int i = 0; i < totcu; i++) {
int axis = i;
if (i < 4) {
tm_str = "rotation_quaternion";
axis = i;
}
else if (i < 7) {
tm_str = "location";
axis = i - 4;
}
else {
tm_str = "scale";
axis = i - 7;
}
if (is_joint)
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
else
BLI_strncpy(rna_path, tm_str, sizeof(rna_path));
newcu[i] = create_fcurve(axis, rna_path);
newcu[i]->totvert = frames.size();
}
if (frames.size() == 0)
return;
std::sort(frames.begin(), frames.end());
std::vector<float>::iterator it;
//float qref[4];
//unit_qt(qref);
// sample values at each frame
for (it = frames.begin(); it != frames.end(); it++) {
float fra = *it;
float mat[4][4];
float matfra[4][4];
unit_m4(matfra);
// calc object-space mat
evaluate_transform_at_frame(matfra, node, fra);
// for joints, we need a special matrix
if (is_joint) {
// special matrix: iR * M * iR_dae * R
// where R, iR are bone rest and inverse rest mats in world space (Blender bones),
// iR_dae is joint inverse rest matrix (DAE) and M is an evaluated joint world-space matrix (DAE)
float temp[4][4], par[4][4];
// calc M
calc_joint_parent_mat_rest(par, NULL, root, node);
mul_m4_m4m4(temp, par, matfra);
// evaluate_joint_world_transform_at_frame(temp, NULL, node, fra);
// calc special matrix
mul_m4_series(mat, irest, temp, irest_dae, rest);
}
else {
copy_m4_m4(mat, matfra);
}
float rot[4], loc[3], scale[3];
mat4_decompose(loc, rot, scale, mat);
// add keys
for (int i = 0; i < totcu; i++) {
if (i < 4)
add_bezt(newcu[i], fra, rot[i]);
else if (i < 7)
add_bezt(newcu[i], fra, loc[i - 4]);
else
add_bezt(newcu[i], fra, scale[i - 7]);
}
}
Main *bmain = CTX_data_main(mContext);
verify_adt_action(bmain, (ID *)&ob->id, 1);
ListBase *curves = &ob->adt->action->curves;
// add curves
for (int i = 0; i < totcu; i++) {
if (is_joint)
add_bone_fcurve(ob, node, newcu[i]);
else
BLI_addtail(curves, newcu[i]);
// fcurve_is_used(newcu[i]); // never added to unused
}
if (is_joint) {
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
chan->rotmode = ROT_MODE_QUAT;
}
else {
ob->rotmode = ROT_MODE_QUAT;
}
return;
}
/*
* This function returns the aspet ration from the Collada camera.
*
* Note:COLLADA allows to specify either XFov, or YFov alone.
* In that case the aspect ratio can be determined from
* the viewport aspect ratio (which is 1:1 ?)
* XXX: check this: its probably wrong!
* If both values are specified, then the aspect ration is simply xfov/yfov
* and if aspect ratio is efined, then .. well then its that one.
*/
static const double get_aspect_ratio(const COLLADAFW::Camera *camera)
{
double aspect = camera->getAspectRatio().getValue();
if (aspect == 0) {
const double yfov = camera->getYFov().getValue();
if (yfov == 0) {
aspect = 1; // assume yfov and xfov are equal
}
else {
const double xfov = camera->getXFov().getValue();
if (xfov==0)
aspect = 1;
else
aspect = xfov / yfov;
}
}
return aspect;
}
static ListBase &get_animation_curves(Main *bmain, Material *ma)
{
bAction *act;
if (!ma->adt || !ma->adt->action)
act = verify_adt_action(bmain, (ID *)&ma->id, 1);
else
act = ma->adt->action;
return act->curves;
}
void AnimationImporter::translate_Animations(COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node *>& root_map,
std::multimap<COLLADAFW::UniqueId, Object *>& object_map,
std::map<COLLADAFW::UniqueId, const COLLADAFW::Object *> FW_object_map,
std::map<COLLADAFW::UniqueId, Material*> uid_material_map)
{
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
COLLADAFW::UniqueId uid = node->getUniqueId();
COLLADAFW::Node *root = root_map.find(uid) == root_map.end() ? node : root_map[uid];
Object *ob;
if (is_joint)
ob = armature_importer->get_armature_for_joint(root);
else
ob = object_map.find(uid) == object_map.end() ? NULL : object_map.find(uid)->second;
if (!ob) {
fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
return;
}
AnimationImporter::AnimMix *animType = get_animation_type(node, FW_object_map);
bAction *act;
Main *bmain = CTX_data_main(mContext);
if ( (animType->transform) != 0) {
/* const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL; */ /* UNUSED */
char joint_path[200];
if (is_joint)
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
if (!ob->adt || !ob->adt->action)
act = verify_adt_action(bmain, (ID *)&ob->id, 1);
else
act = ob->adt->action;
//Get the list of animation curves of the object
ListBase *AnimCurves = &(act->curves);
const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
//for each transformation in node
for (unsigned int i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
COLLADAFW::Transformation::TransformationType tm_type = transform->getTransformationType();
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
const COLLADAFW::UniqueId& listid = transform->getAnimationList();
//check if transformation has animations
if (animlist_map.find(listid) == animlist_map.end()) {
continue;
}
else {
//transformation has animations
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
//all the curves belonging to the current binding
std::vector<FCurve *> animcurves;
for (unsigned int j = 0; j < bindings.getCount(); j++) {
animcurves = curve_map[bindings[j].animation];
if (is_matrix) {
apply_matrix_curves(ob, animcurves, root, node, transform);
}
else {
if (is_joint) {
add_bone_animation_sampled(ob, animcurves, root, node, transform);
}
else {
//calculate rnapaths and array index of fcurves according to transformation and animation class
Assign_transform_animations(transform, &bindings[j], &animcurves, is_joint, joint_path);
std::vector<FCurve *>::iterator iter;
//Add the curves of the current animation to the object
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
BLI_addtail(AnimCurves, fcu);
fcurve_is_used(fcu);
}
}
}
}
}
if (is_rotation && !is_joint) {
ob->rotmode = ROT_MODE_EUL;
}
}
}
if ((animType->light) != 0) {
Lamp *lamp = (Lamp *) ob->data;
if (!lamp->adt || !lamp->adt->action)
act = verify_adt_action(bmain, (ID *)&lamp->id, 1);
else
act = lamp->adt->action;
ListBase *AnimCurves = &(act->curves);
const COLLADAFW::InstanceLightPointerArray& nodeLights = node->getInstanceLights();
for (unsigned int i = 0; i < nodeLights.getCount(); i++) {
const COLLADAFW::Light *light = (COLLADAFW::Light *) FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
if ((animType->light & LIGHT_COLOR) != 0) {
const COLLADAFW::Color *col = &(light->getColor());
const COLLADAFW::UniqueId& listid = col->getAnimationList();
Assign_color_animations(listid, AnimCurves, "color");
}
if ((animType->light & LIGHT_FOA) != 0) {
const COLLADAFW::AnimatableFloat *foa = &(light->getFallOffAngle());
const COLLADAFW::UniqueId& listid = foa->getAnimationList();
Assign_float_animations(listid, AnimCurves, "spot_size");
}
if ( (animType->light & LIGHT_FOE) != 0) {
const COLLADAFW::AnimatableFloat *foe = &(light->getFallOffExponent());
const COLLADAFW::UniqueId& listid = foe->getAnimationList();
Assign_float_animations(listid, AnimCurves, "spot_blend");
}
}
}
if (animType->camera != 0) {
Camera *cam = (Camera *) ob->data;
if (!cam->adt || !cam->adt->action)
act = verify_adt_action(bmain, (ID *)&cam->id, 1);
else
act = cam->adt->action;
ListBase *AnimCurves = &(act->curves);
const COLLADAFW::InstanceCameraPointerArray& nodeCameras = node->getInstanceCameras();
for (unsigned int i = 0; i < nodeCameras.getCount(); i++) {
const COLLADAFW::Camera *camera = (COLLADAFW::Camera *) FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
if ((animType->camera & CAMERA_XFOV) != 0) {
const COLLADAFW::AnimatableFloat *xfov = &(camera->getXFov());
const COLLADAFW::UniqueId& listid = xfov->getAnimationList();
double aspect = get_aspect_ratio(camera);
Assign_lens_animations(listid, AnimCurves, aspect, cam, "lens", CAMERA_XFOV);
}
else if ((animType->camera & CAMERA_YFOV) != 0) {
const COLLADAFW::AnimatableFloat *yfov = &(camera->getYFov());
const COLLADAFW::UniqueId& listid = yfov->getAnimationList();
double aspect = get_aspect_ratio(camera);
Assign_lens_animations(listid, AnimCurves, aspect, cam, "lens", CAMERA_YFOV);
}
else if ((animType->camera & CAMERA_XMAG) != 0) {
const COLLADAFW::AnimatableFloat *xmag = &(camera->getXMag());
const COLLADAFW::UniqueId& listid = xmag->getAnimationList();
Assign_float_animations(listid, AnimCurves, "ortho_scale");
}
else if ((animType->camera & CAMERA_YMAG) != 0) {
const COLLADAFW::AnimatableFloat *ymag = &(camera->getYMag());
const COLLADAFW::UniqueId& listid = ymag->getAnimationList();
Assign_float_animations(listid, AnimCurves, "ortho_scale");
}
if ((animType->camera & CAMERA_ZFAR) != 0) {
const COLLADAFW::AnimatableFloat *zfar = &(camera->getFarClippingPlane());
const COLLADAFW::UniqueId& listid = zfar->getAnimationList();
Assign_float_animations(listid, AnimCurves, "clip_end");
}
if ((animType->camera & CAMERA_ZNEAR) != 0) {
const COLLADAFW::AnimatableFloat *znear = &(camera->getNearClippingPlane());
const COLLADAFW::UniqueId& listid = znear->getAnimationList();
Assign_float_animations(listid, AnimCurves, "clip_start");
}
}
}
if (animType->material != 0) {
Material *ma = give_current_material(ob, 1);
if (!ma->adt || !ma->adt->action)
act = verify_adt_action(bmain, (ID *)&ma->id, 1);
else
act = ma->adt->action;
const COLLADAFW::InstanceGeometryPointerArray& nodeGeoms = node->getInstanceGeometries();
for (unsigned int i = 0; i < nodeGeoms.getCount(); i++) {
const COLLADAFW::MaterialBindingArray& matBinds = nodeGeoms[i]->getMaterialBindings();
for (unsigned int j = 0; j < matBinds.getCount(); j++) {
const COLLADAFW::UniqueId & matuid = matBinds[j].getReferencedMaterial();
const COLLADAFW::Effect *ef = (COLLADAFW::Effect *) (FW_object_map[matuid]);
if (ef != NULL) { /* can be NULL [#28909] */
Material *ma = uid_material_map[matuid];
if (!ma) {
fprintf(stderr, "Collada: Node %s refers to undefined material\n", node->getName().c_str());
continue;
}
ListBase &AnimCurves = get_animation_curves(bmain, ma);
const COLLADAFW::CommonEffectPointerArray& commonEffects = ef->getCommonEffects();
COLLADAFW::EffectCommon *efc = commonEffects[0];
if ((animType->material & MATERIAL_SHININESS) != 0) {
const COLLADAFW::FloatOrParam *shin = &(efc->getShininess());
const COLLADAFW::UniqueId& listid = shin->getAnimationList();
Assign_float_animations(listid, &AnimCurves, "specular_hardness");
}
if ((animType->material & MATERIAL_IOR) != 0) {
const COLLADAFW::FloatOrParam *ior = &(efc->getIndexOfRefraction());
const COLLADAFW::UniqueId& listid = ior->getAnimationList();
Assign_float_animations(listid, &AnimCurves, "raytrace_transparency.ior");
}
if ((animType->material & MATERIAL_SPEC_COLOR) != 0) {
const COLLADAFW::ColorOrTexture *cot = &(efc->getSpecular());
const COLLADAFW::UniqueId& listid = cot->getColor().getAnimationList();
Assign_color_animations(listid, &AnimCurves, "specular_color");
}
if ((animType->material & MATERIAL_DIFF_COLOR) != 0) {
const COLLADAFW::ColorOrTexture *cot = &(efc->getDiffuse());
const COLLADAFW::UniqueId& listid = cot->getColor().getAnimationList();
Assign_color_animations(listid, &AnimCurves, "diffuse_color");
}
}
}
}
}
delete animType;
}
void AnimationImporter::add_bone_animation_sampled(Object *ob, std::vector<FCurve *>& animcurves, COLLADAFW::Node *root, COLLADAFW::Node *node, COLLADAFW::Transformation *tm)
{
const char *bone_name = bc_get_joint_name(node);
char joint_path[200];
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
std::vector<float> frames;
find_frames(&frames, &animcurves);
// convert degrees to radians
if (tm->getTransformationType() == COLLADAFW::Transformation::ROTATE) {
std::vector<FCurve *>::iterator iter;
for (iter = animcurves.begin(); iter != animcurves.end(); iter++) {
FCurve *fcu = *iter;
fcurve_deg_to_rad(fcu);
}
}
float irest_dae[4][4];
float rest[4][4], irest[4][4];
get_joint_rest_mat(irest_dae, root, node);
invert_m4(irest_dae);
Bone *bone = BKE_armature_find_bone_name((bArmature *)ob->data, bone_name);
if (!bone) {
fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
return;
}
unit_m4(rest);
copy_m4_m4(rest, bone->arm_mat);
invert_m4_m4(irest, rest);
// new curves to assign matrix transform animation
FCurve *newcu[10]; // if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale
unsigned int totcu = 10;
const char *tm_str = NULL;
char rna_path[200];
for (int i = 0; i < totcu; i++) {
int axis = i;
if (i < 4) {
tm_str = "rotation_quaternion";
axis = i;
}
else if (i < 7) {
tm_str = "location";
axis = i - 4;
}
else {
tm_str = "scale";
axis = i - 7;
}
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
newcu[i] = create_fcurve(axis, rna_path);
newcu[i]->totvert = frames.size();
}
if (frames.size() == 0)
return;
std::sort(frames.begin(), frames.end());
float qref[4];
unit_qt(qref);
std::vector<float>::iterator it;
// sample values at each frame
for (it = frames.begin(); it != frames.end(); it++) {
float fra = *it;
float mat[4][4];
float matfra[4][4];
unit_m4(matfra);
// calc object-space mat
evaluate_transform_at_frame(matfra, node, fra);
// for joints, we need a special matrix
// special matrix: iR * M * iR_dae * R
// where R, iR are bone rest and inverse rest mats in world space (Blender bones),
// iR_dae is joint inverse rest matrix (DAE) and M is an evaluated joint world-space matrix (DAE)
float temp[4][4], par[4][4];
// calc M
calc_joint_parent_mat_rest(par, NULL, root, node);
mul_m4_m4m4(temp, par, matfra);
// evaluate_joint_world_transform_at_frame(temp, NULL, node, fra);
// calc special matrix
mul_m4_series(mat, irest, temp, irest_dae, rest);
float rot[4], loc[3], scale[3];
bc_rotate_from_reference_quat(rot, qref, mat);
copy_qt_qt(qref, rot);
copy_v3_v3(loc, mat[3]);
mat4_to_size(scale, mat);
// add keys
for (int i = 0; i < totcu; i++) {
if (i < 4)
add_bezt(newcu[i], fra, rot[i]);
else if (i < 7)
add_bezt(newcu[i], fra, loc[i - 4]);
else
add_bezt(newcu[i], fra, scale[i - 7]);
}
}
Main *bmain = CTX_data_main(mContext);
verify_adt_action(bmain, (ID *)&ob->id, 1);
// add curves
for (int i = 0; i < totcu; i++) {
add_bone_fcurve(ob, node, newcu[i]);
// fcurve_is_used(newcu[i]); // never added to unused
}
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
chan->rotmode = ROT_MODE_QUAT;
}
//Check if object is animated by checking if animlist_map holds the animlist_id of node transforms
AnimationImporter::AnimMix *AnimationImporter::get_animation_type(const COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, const COLLADAFW::Object *> FW_object_map)
{
AnimMix *types = new AnimMix();
const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
//for each transformation in node
for (unsigned int i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
const COLLADAFW::UniqueId& listid = transform->getAnimationList();
//check if transformation has animations
if (animlist_map.find(listid) == animlist_map.end()) {
continue;
}
else {
types->transform = types->transform | BC_NODE_TRANSFORM;
break;
}
}
const COLLADAFW::InstanceLightPointerArray& nodeLights = node->getInstanceLights();
for (unsigned int i = 0; i < nodeLights.getCount(); i++) {
const COLLADAFW::Light *light = (COLLADAFW::Light *) FW_object_map[nodeLights[i]->getInstanciatedObjectId()];
types->light = setAnimType(&(light->getColor()), (types->light), LIGHT_COLOR);
types->light = setAnimType(&(light->getFallOffAngle()), (types->light), LIGHT_FOA);
types->light = setAnimType(&(light->getFallOffExponent()), (types->light), LIGHT_FOE);
if (types->light != 0) break;
}
const COLLADAFW::InstanceCameraPointerArray& nodeCameras = node->getInstanceCameras();
for (unsigned int i = 0; i < nodeCameras.getCount(); i++) {
const COLLADAFW::Camera *camera = (COLLADAFW::Camera *) FW_object_map[nodeCameras[i]->getInstanciatedObjectId()];
if ( camera == NULL ) {
// Can happen if the node refers to an unknown camera.
continue;
}
const bool is_perspective_type = camera->getCameraType() == COLLADAFW::Camera::PERSPECTIVE;
int addition;
const COLLADAFW::Animatable *mag;
const COLLADAFW::UniqueId listid = camera->getYMag().getAnimationList();
if (animlist_map.find(listid) != animlist_map.end()) {
mag = &(camera->getYMag());
addition = (is_perspective_type) ? CAMERA_YFOV: CAMERA_YMAG;
}
else {
mag = &(camera->getXMag());
addition = (is_perspective_type) ? CAMERA_XFOV: CAMERA_XMAG;
}
types->camera = setAnimType(mag, (types->camera), addition);
types->camera = setAnimType(&(camera->getFarClippingPlane()), (types->camera), CAMERA_ZFAR);
types->camera = setAnimType(&(camera->getNearClippingPlane()), (types->camera), CAMERA_ZNEAR);
if (types->camera != 0) break;
}
const COLLADAFW::InstanceGeometryPointerArray& nodeGeoms = node->getInstanceGeometries();
for (unsigned int i = 0; i < nodeGeoms.getCount(); i++) {
const COLLADAFW::MaterialBindingArray& matBinds = nodeGeoms[i]->getMaterialBindings();
for (unsigned int j = 0; j < matBinds.getCount(); j++) {
const COLLADAFW::UniqueId & matuid = matBinds[j].getReferencedMaterial();
const COLLADAFW::Effect *ef = (COLLADAFW::Effect *) (FW_object_map[matuid]);
if (ef != NULL) { /* can be NULL [#28909] */
const COLLADAFW::CommonEffectPointerArray& commonEffects = ef->getCommonEffects();
if (!commonEffects.empty()) {
COLLADAFW::EffectCommon *efc = commonEffects[0];
types->material = setAnimType(&(efc->getShininess()), (types->material), MATERIAL_SHININESS);
types->material = setAnimType(&(efc->getSpecular().getColor()), (types->material), MATERIAL_SPEC_COLOR);
types->material = setAnimType(&(efc->getDiffuse().getColor()), (types->material), MATERIAL_DIFF_COLOR);
// types->material = setAnimType(&(efc->get()), (types->material), MATERIAL_TRANSPARENCY);
types->material = setAnimType(&(efc->getIndexOfRefraction()), (types->material), MATERIAL_IOR);
}
}
}
}
return types;
}
int AnimationImporter::setAnimType(const COLLADAFW::Animatable *prop, int types, int addition)
{
int anim_type;
const COLLADAFW::UniqueId& listid = prop->getAnimationList();
if (animlist_map.find(listid) != animlist_map.end())
anim_type = types | addition;
else
anim_type = types;
return anim_type;
}
// Is not used anymore.
void AnimationImporter::find_frames_old(std::vector<float> *frames, COLLADAFW::Node *node, COLLADAFW::Transformation::TransformationType tm_type)
{
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
// for each <rotate>, <translate>, etc. there is a separate Transformation
const COLLADAFW::TransformationPointerArray& nodeTransforms = node->getTransformations();
unsigned int i;
// find frames at which to sample plus convert all rotation keys to radians
for (i = 0; i < nodeTransforms.getCount(); i++) {
COLLADAFW::Transformation *transform = nodeTransforms[i];
COLLADAFW::Transformation::TransformationType nodeTmType = transform->getTransformationType();
if (nodeTmType == tm_type) {
//get animation bindings for the current transformation
const COLLADAFW::UniqueId& listid = transform->getAnimationList();
//if transform is animated its animlist must exist.
if (animlist_map.find(listid) != animlist_map.end()) {
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
if (bindings.getCount()) {
//for each AnimationBinding get the fcurves which animate the transform
for (unsigned int j = 0; j < bindings.getCount(); j++) {
std::vector<FCurve *>& curves = curve_map[bindings[j].animation];
bool xyz = ((nodeTmType == COLLADAFW::Transformation::TRANSLATE || nodeTmType == COLLADAFW::Transformation::SCALE) && bindings[j].animationClass == COLLADAFW::AnimationList::POSITION_XYZ);
if ((!xyz && curves.size() == 1) || (xyz && curves.size() == 3) || is_matrix) {
std::vector<FCurve *>::iterator iter;
for (iter = curves.begin(); iter != curves.end(); iter++) {
FCurve *fcu = *iter;
//if transform is rotation the fcurves values must be turned in to radian.
if (is_rotation)
fcurve_deg_to_rad(fcu);
for (unsigned int k = 0; k < fcu->totvert; k++) {
//get frame value from bezTriple
float fra = fcu->bezt[k].vec[1][0];
//if frame already not added add frame to frames
if (std::find(frames->begin(), frames->end(), fra) == frames->end())
frames->push_back(fra);
}
}
}
else {
fprintf(stderr, "expected %d curves, got %d\n", xyz ? 3 : 1, (int)curves.size());
}
}
}
}
}
}
}
// prerequisites:
// animlist_map - map animlist id -> animlist
// curve_map - map anim id -> curve(s)
Object *AnimationImporter::translate_animation_OLD(COLLADAFW::Node *node,
std::map<COLLADAFW::UniqueId, Object *>& object_map,
std::map<COLLADAFW::UniqueId, COLLADAFW::Node *>& root_map,
COLLADAFW::Transformation::TransformationType tm_type,
Object *par_job)
{
bool is_rotation = tm_type == COLLADAFW::Transformation::ROTATE;
bool is_matrix = tm_type == COLLADAFW::Transformation::MATRIX;
bool is_joint = node->getType() == COLLADAFW::Node::JOINT;
COLLADAFW::Node *root = root_map.find(node->getUniqueId()) == root_map.end() ? node : root_map[node->getUniqueId()];
Object *ob = is_joint ? armature_importer->get_armature_for_joint(node) : object_map[node->getUniqueId()];
const char *bone_name = is_joint ? bc_get_joint_name(node) : NULL;
if (!ob) {
fprintf(stderr, "cannot find Object for Node with id=\"%s\"\n", node->getOriginalId().c_str());
return NULL;
}
// frames at which to sample
std::vector<float> frames;
find_frames_old(&frames, node, tm_type);
unsigned int i;
float irest_dae[4][4];
float rest[4][4], irest[4][4];
if (is_joint) {
get_joint_rest_mat(irest_dae, root, node);
invert_m4(irest_dae);
Bone *bone = BKE_armature_find_bone_name((bArmature *)ob->data, bone_name);
if (!bone) {
fprintf(stderr, "cannot find bone \"%s\"\n", bone_name);
return NULL;
}
unit_m4(rest);
copy_m4_m4(rest, bone->arm_mat);
invert_m4_m4(irest, rest);
}
Object *job = NULL;
#ifdef ARMATURE_TEST
FCurve *job_curves[10];
job = get_joint_object(root, node, par_job);
#endif
if (frames.size() == 0)
return job;
std::sort(frames.begin(), frames.end());
const char *tm_str = NULL;
switch (tm_type) {
case COLLADAFW::Transformation::ROTATE:
tm_str = "rotation_quaternion";
break;
case COLLADAFW::Transformation::SCALE:
tm_str = "scale";
break;
case COLLADAFW::Transformation::TRANSLATE:
tm_str = "location";
break;
case COLLADAFW::Transformation::MATRIX:
break;
default:
return job;
}
char rna_path[200];
char joint_path[200];
if (is_joint)
armature_importer->get_rna_path_for_joint(node, joint_path, sizeof(joint_path));
// new curves
FCurve *newcu[10]; // if tm_type is matrix, then create 10 curves: 4 rot, 3 loc, 3 scale
unsigned int totcu = is_matrix ? 10 : (is_rotation ? 4 : 3);
for (i = 0; i < totcu; i++) {
int axis = i;
if (is_matrix) {
if (i < 4) {
tm_str = "rotation_quaternion";
axis = i;
}
else if (i < 7) {
tm_str = "location";
axis = i - 4;
}
else {
tm_str = "scale";
axis = i - 7;
}
}
if (is_joint)
BLI_snprintf(rna_path, sizeof(rna_path), "%s.%s", joint_path, tm_str);
else
BLI_strncpy(rna_path, tm_str, sizeof(rna_path));
newcu[i] = create_fcurve(axis, rna_path);
#ifdef ARMATURE_TEST
if (is_joint)
job_curves[i] = create_fcurve(axis, tm_str);
#endif
}
std::vector<float>::iterator it;
// sample values at each frame
for (it = frames.begin(); it != frames.end(); it++) {
float fra = *it;
float mat[4][4];
float matfra[4][4];
unit_m4(matfra);
// calc object-space mat
evaluate_transform_at_frame(matfra, node, fra);
// for joints, we need a special matrix
if (is_joint) {
// special matrix: iR * M * iR_dae * R
// where R, iR are bone rest and inverse rest mats in world space (Blender bones),
// iR_dae is joint inverse rest matrix (DAE) and M is an evaluated joint world-space matrix (DAE)
float temp[4][4], par[4][4];
// calc M
calc_joint_parent_mat_rest(par, NULL, root, node);
mul_m4_m4m4(temp, par, matfra);
// evaluate_joint_world_transform_at_frame(temp, NULL, node, fra);
// calc special matrix
mul_m4_series(mat, irest, temp, irest_dae, rest);
}
else {
copy_m4_m4(mat, matfra);
}
float val[4] = {};
float rot[4], loc[3], scale[3];
switch (tm_type) {
case COLLADAFW::Transformation::ROTATE:
mat4_to_quat(val, mat);
break;
case COLLADAFW::Transformation::SCALE:
mat4_to_size(val, mat);
break;
case COLLADAFW::Transformation::TRANSLATE:
copy_v3_v3(val, mat[3]);
break;
case COLLADAFW::Transformation::MATRIX:
mat4_to_quat(rot, mat);
copy_v3_v3(loc, mat[3]);
mat4_to_size(scale, mat);
break;
default:
break;
}
// add keys
for (i = 0; i < totcu; i++) {
if (is_matrix) {
if (i < 4)
add_bezt(newcu[i], fra, rot[i]);
else if (i < 7)
add_bezt(newcu[i], fra, loc[i - 4]);
else
add_bezt(newcu[i], fra, scale[i - 7]);
}
else {
add_bezt(newcu[i], fra, val[i]);
}
}
#ifdef ARMATURE_TEST
if (is_joint) {
switch (tm_type) {
case COLLADAFW::Transformation::ROTATE:
mat4_to_quat(val, matfra);
break;
case COLLADAFW::Transformation::SCALE:
mat4_to_size(val, matfra);
break;
case COLLADAFW::Transformation::TRANSLATE:
copy_v3_v3(val, matfra[3]);
break;
case MATRIX:
mat4_to_quat(rot, matfra);
copy_v3_v3(loc, matfra[3]);
mat4_to_size(scale, matfra);
break;
default:
break;
}
for (i = 0; i < totcu; i++) {
if (is_matrix) {
if (i < 4)
add_bezt(job_curves[i], fra, rot[i]);
else if (i < 7)
add_bezt(job_curves[i], fra, loc[i - 4]);
else
add_bezt(job_curves[i], fra, scale[i - 7]);
}
else {
add_bezt(job_curves[i], fra, val[i]);
}
}
}
#endif
}
Main *bmain = CTX_data_main(mContext);
verify_adt_action(bmain, (ID *)&ob->id, 1);
ListBase *curves = &ob->adt->action->curves;
// add curves
for (i = 0; i < totcu; i++) {
if (is_joint)
add_bone_fcurve(ob, node, newcu[i]);
else
BLI_addtail(curves, newcu[i]);
#ifdef ARMATURE_TEST
if (is_joint)
BLI_addtail(&job->adt->action->curves, job_curves[i]);
#endif
}
if (is_rotation || is_matrix) {
if (is_joint) {
bPoseChannel *chan = BKE_pose_channel_find_name(ob->pose, bone_name);
chan->rotmode = ROT_MODE_QUAT;
}
else {
ob->rotmode = ROT_MODE_QUAT;
}
}
return job;
}
// internal, better make it private
// warning: evaluates only rotation and only assigns matrix transforms now
// prerequisites: animlist_map, curve_map
void AnimationImporter::evaluate_transform_at_frame(float mat[4][4], COLLADAFW::Node *node, float fra)
{
const COLLADAFW::TransformationPointerArray& tms = node->getTransformations();
unit_m4(mat);
for (unsigned int i = 0; i < tms.getCount(); i++) {
COLLADAFW::Transformation *tm = tms[i];
COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
float m[4][4];
unit_m4(m);
std::string nodename = node->getName().size() ? node->getName() : node->getOriginalId();
if (!evaluate_animation(tm, m, fra, nodename.c_str())) {
switch (type) {
case COLLADAFW::Transformation::ROTATE:
dae_rotate_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::TRANSLATE:
dae_translate_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::SCALE:
dae_scale_to_mat4(tm, m);
break;
case COLLADAFW::Transformation::MATRIX:
dae_matrix_to_mat4(tm, m);
break;
default:
fprintf(stderr, "unsupported transformation type %d\n", type);
}
}
float temp[4][4];
copy_m4_m4(temp, mat);
mul_m4_m4m4(mat, temp, m);
}
}
static void report_class_type_unsupported(const char *path,
const COLLADAFW::AnimationList::AnimationClass animclass,
const COLLADAFW::Transformation::TransformationType type)
{
if (animclass == COLLADAFW::AnimationList::UNKNOWN_CLASS) {
fprintf(stderr, "%s: UNKNOWN animation class\n", path);
}
else {
fprintf(stderr, "%s: animation class %d is not supported yet for transformation type %d\n", path, animclass, type);
}
}
// return true to indicate that mat contains a sane value
bool AnimationImporter::evaluate_animation(COLLADAFW::Transformation *tm, float mat[4][4], float fra, const char *node_id)
{
const COLLADAFW::UniqueId& listid = tm->getAnimationList();
COLLADAFW::Transformation::TransformationType type = tm->getTransformationType();
if (type != COLLADAFW::Transformation::ROTATE &&
type != COLLADAFW::Transformation::SCALE &&
type != COLLADAFW::Transformation::TRANSLATE &&
type != COLLADAFW::Transformation::MATRIX)
{
fprintf(stderr, "animation of transformation %d is not supported yet\n", type);
return false;
}
if (animlist_map.find(listid) == animlist_map.end())
return false;
const COLLADAFW::AnimationList *animlist = animlist_map[listid];
const COLLADAFW::AnimationList::AnimationBindings& bindings = animlist->getAnimationBindings();
if (bindings.getCount()) {
float vec[3];
bool is_scale = (type == COLLADAFW::Transformation::SCALE);
bool is_translate = (type == COLLADAFW::Transformation::TRANSLATE);
if (is_scale)
dae_scale_to_v3(tm, vec);
else if (is_translate)
dae_translate_to_v3(tm, vec);
for (unsigned int index = 0; index < bindings.getCount(); index++) {
const COLLADAFW::AnimationList::AnimationBinding& binding = bindings[index];
std::vector<FCurve *>& curves = curve_map[binding.animation];
COLLADAFW::AnimationList::AnimationClass animclass = binding.animationClass;
char path[100];
switch (type) {
case COLLADAFW::Transformation::ROTATE:
BLI_snprintf(path, sizeof(path), "%s.rotate (binding %u)", node_id, index);
break;
case COLLADAFW::Transformation::SCALE:
BLI_snprintf(path, sizeof(path), "%s.scale (binding %u)", node_id, index);
break;
case COLLADAFW::Transformation::TRANSLATE:
BLI_snprintf(path, sizeof(path), "%s.translate (binding %u)", node_id, index);
break;
case COLLADAFW::Transformation::MATRIX:
BLI_snprintf(path, sizeof(path), "%s.matrix (binding %u)", node_id, index);
break;
default:
break;
}
if (type == COLLADAFW::Transformation::ROTATE) {
if (curves.size() != 1) {
fprintf(stderr, "expected 1 curve, got %d\n", (int)curves.size());
return false;
}
// TODO support other animclasses
if (animclass != COLLADAFW::AnimationList::ANGLE) {
report_class_type_unsupported(path, animclass, type);
return false;
}
COLLADABU::Math::Vector3& axis = ((COLLADAFW::Rotate *)tm)->getRotationAxis();
float ax[3] = {(float)axis[0], (float)axis[1], (float)axis[2]};
float angle = evaluate_fcurve(curves[0], fra);
axis_angle_to_mat4(mat, ax, angle);
return true;
}
else if (is_scale || is_translate) {
bool is_xyz = animclass == COLLADAFW::AnimationList::POSITION_XYZ;
if ((!is_xyz && curves.size() != 1) || (is_xyz && curves.size() != 3)) {
if (is_xyz)
fprintf(stderr, "%s: expected 3 curves, got %d\n", path, (int)curves.size());
else
fprintf(stderr, "%s: expected 1 curve, got %d\n", path, (int)curves.size());
return false;
}
switch (animclass) {
case COLLADAFW::AnimationList::POSITION_X:
vec[0] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_Y:
vec[1] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_Z:
vec[2] = evaluate_fcurve(curves[0], fra);
break;
case COLLADAFW::AnimationList::POSITION_XYZ:
vec[0] = evaluate_fcurve(curves[0], fra);
vec[1] = evaluate_fcurve(curves[1], fra);
vec[2] = evaluate_fcurve(curves[2], fra);
break;
default:
report_class_type_unsupported(path, animclass, type);
break;
}
}
else if (type == COLLADAFW::Transformation::MATRIX) {
// for now, of matrix animation, support only the case when all values are packed into one animation
if (curves.size() != 16) {
fprintf(stderr, "%s: expected 16 curves, got %d\n", path, (int)curves.size());
return false;
}
COLLADABU::Math::Matrix4 matrix;
int mi = 0, mj = 0;
for (std::vector<FCurve *>::iterator it = curves.begin(); it != curves.end(); it++) {
matrix.setElement(mi, mj, evaluate_fcurve(*it, fra));
mj++;
if (mj == 4) {
mi++;
mj = 0;
}
fcurve_is_used(*it);
}
unit_converter->dae_matrix_to_mat4_(mat, matrix);
return true;
}
}
if (is_scale)
size_to_mat4(mat, vec);
else
copy_v3_v3(mat[3], vec);
return is_scale || is_translate;
}
return false;
}
// gives a world-space mat of joint at rest position
void AnimationImporter::get_joint_rest_mat(float mat[4][4], COLLADAFW::Node *root, COLLADAFW::Node *node)
{
// if bind mat is not available,
// use "current" node transform, i.e. all those tms listed inside <node>
if (!armature_importer->get_joint_bind_mat(mat, node)) {
float par[4][4], m[4][4];
calc_joint_parent_mat_rest(par, NULL, root, node);
get_node_mat(m, node, NULL, NULL);
mul_m4_m4m4(mat, par, m);
}
}
// gives a world-space mat, end's mat not included
bool AnimationImporter::calc_joint_parent_mat_rest(float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end)
{
float m[4][4];
if (node == end) {
par ? copy_m4_m4(mat, par) : unit_m4(mat);
return true;
}
// use bind matrix if available or calc "current" world mat
if (!armature_importer->get_joint_bind_mat(m, node)) {
if (par) {
float temp[4][4];
get_node_mat(temp, node, NULL, NULL);
mul_m4_m4m4(m, par, temp);
}
else {
get_node_mat(m, node, NULL, NULL);
}
}
COLLADAFW::NodePointerArray& children = node->getChildNodes();
for (unsigned int i = 0; i < children.getCount(); i++) {
if (calc_joint_parent_mat_rest(mat, m, children[i], end))
return true;
}
return false;
}
#ifdef ARMATURE_TEST
Object *AnimationImporter::get_joint_object(COLLADAFW::Node *root, COLLADAFW::Node *node, Object *par_job)
{
if (joint_objects.find(node->getUniqueId()) == joint_objects.end()) {
Object *job = bc_add_object(scene, OB_EMPTY, (char *)get_joint_name(node));
job->lay = BKE_scene_base_find(scene, job)->lay = 2;
mul_v3_fl(job->size, 0.5f);
DEG_id_tag_update(&job->id, ID_RECALC_TRANSFORM);
verify_adt_action((ID *)&job->id, 1);
job->rotmode = ROT_MODE_QUAT;
float mat[4][4];
get_joint_rest_mat(mat, root, node);
if (par_job) {
float temp[4][4], ipar[4][4];
invert_m4_m4(ipar, par_job->obmat);
copy_m4_m4(temp, mat);
mul_m4_m4m4(mat, ipar, temp);
}
bc_decompose(mat, job->loc, NULL, job->quat, job->size);
if (par_job) {
job->parent = par_job;
DEG_id_tag_update(&par_job->id, ID_RECALC_TRANSFORM);
job->parsubstr[0] = 0;
}
BKE_object_where_is_calc(scene, job);
// after parenting and layer change
DEG_relations_tag_update(CTX_data_main(C));
joint_objects[node->getUniqueId()] = job;
}
return joint_objects[node->getUniqueId()];
}
#endif
#if 0
// recursively evaluates joint tree until end is found, mat then is world-space matrix of end
// mat must be identity on enter, node must be root
bool AnimationImporter::evaluate_joint_world_transform_at_frame(float mat[4][4], float par[4][4], COLLADAFW::Node *node, COLLADAFW::Node *end, float fra)
{
float m[4][4];
if (par) {
float temp[4][4];
evaluate_transform_at_frame(temp, node, node == end ? fra : 0.0f);
mul_m4_m4m4(m, par, temp);
}
else {
evaluate_transform_at_frame(m, node, node == end ? fra : 0.0f);
}
if (node == end) {
copy_m4_m4(mat, m);
return true;
}
else {
COLLADAFW::NodePointerArray& children = node->getChildNodes();
for (int i = 0; i < children.getCount(); i++) {
if (evaluate_joint_world_transform_at_frame(mat, m, children[i], end, fra))
return true;
}
}
return false;
}
#endif
void AnimationImporter::add_bone_fcurve(Object *ob, COLLADAFW::Node *node, FCurve *fcu)
{
const char *bone_name = bc_get_joint_name(node);
bAction *act = ob->adt->action;
/* try to find group */
bActionGroup *grp = BKE_action_group_find_name(act, bone_name);
/* no matching groups, so add one */
if (grp == NULL) {
/* Add a new group, and make it active */
grp = (bActionGroup *)MEM_callocN(sizeof(bActionGroup), "bActionGroup");
grp->flag = AGRP_SELECTED;
BLI_strncpy(grp->name, bone_name, sizeof(grp->name));
BLI_addtail(&act->groups, grp);
BLI_uniquename(&act->groups, grp, CTX_DATA_(BLT_I18NCONTEXT_ID_ACTION, "Group"), '.',
offsetof(bActionGroup, name), 64);
}
/* add F-Curve to group */
action_groups_add_channel(act, grp, fcu);
}
void AnimationImporter::set_import_from_version(std::string import_from_version)
{
this->import_from_version = import_from_version;
}