This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/gpu/intern/gpu_draw.c

1657 lines
46 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup gpu
*
* Utility functions for dealing with OpenGL texture & material context,
* mipmap generation and light objects.
*
* These are some obscure rendering functions shared between the game engine (not anymore)
* and the blender, in this module to avoid duplication
* and abstract them away from the rest a bit.
*/
#include <string.h>
#include "BLI_blenlib.h"
#include "BLI_linklist.h"
#include "BLI_math.h"
#include "BLI_threads.h"
#include "BLI_utildefines.h"
#include "DNA_light_types.h"
#include "DNA_material_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_node_types.h"
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_fluid_types.h"
#include "DNA_view3d_types.h"
#include "DNA_particle_types.h"
#include "MEM_guardedalloc.h"
#include "IMB_colormanagement.h"
#include "IMB_imbuf.h"
#include "IMB_imbuf_types.h"
#include "BKE_colorband.h"
#include "BKE_global.h"
#include "BKE_image.h"
#include "BKE_main.h"
#include "BKE_material.h"
#include "BKE_movieclip.h"
#include "BKE_node.h"
#include "BKE_scene.h"
#include "GPU_draw.h"
#include "GPU_extensions.h"
#include "GPU_glew.h"
#include "GPU_platform.h"
#include "GPU_texture.h"
#include "PIL_time.h"
#include "manta_fluid_API.h"
static void gpu_free_image_immediate(Image *ima);
//* Checking powers of two for images since OpenGL ES requires it */
#ifdef WITH_DDS
static bool is_power_of_2_resolution(int w, int h)
{
return is_power_of_2_i(w) && is_power_of_2_i(h);
}
#endif
static bool is_over_resolution_limit(GLenum textarget, int w, int h)
{
int size = (textarget == GL_TEXTURE_2D) ? GPU_max_texture_size() : GPU_max_cube_map_size();
int reslimit = (U.glreslimit != 0) ? min_ii(U.glreslimit, size) : size;
return (w > reslimit || h > reslimit);
}
static int smaller_power_of_2_limit(int num)
{
int reslimit = (U.glreslimit != 0) ? min_ii(U.glreslimit, GPU_max_texture_size()) :
GPU_max_texture_size();
/* take texture clamping into account */
if (num > reslimit) {
return reslimit;
}
return power_of_2_min_i(num);
}
/* Current OpenGL state caching for GPU_set_tpage */
static struct GPUTextureState {
/* also controls min/mag filtering */
bool domipmap;
/* only use when 'domipmap' is set */
bool linearmipmap;
/* store this so that new images created while texture painting won't be set to mipmapped */
bool texpaint;
float anisotropic;
} GTS = {1, 0, 0, 1.0f};
/* Mipmap settings */
void GPU_set_mipmap(Main *bmain, bool mipmap)
{
if (GTS.domipmap != mipmap) {
GPU_free_images(bmain);
GTS.domipmap = mipmap;
}
}
void GPU_set_linear_mipmap(bool linear)
{
if (GTS.linearmipmap != linear) {
GTS.linearmipmap = linear;
}
}
bool GPU_get_mipmap(void)
{
return GTS.domipmap && !GTS.texpaint;
}
bool GPU_get_linear_mipmap(void)
{
return GTS.linearmipmap;
}
static GLenum gpu_get_mipmap_filter(bool mag)
{
/* linearmipmap is off by default *when mipmapping is off,
* use unfiltered display */
if (mag) {
if (GTS.domipmap) {
return GL_LINEAR;
}
else {
return GL_NEAREST;
}
}
else {
if (GTS.domipmap) {
if (GTS.linearmipmap) {
return GL_LINEAR_MIPMAP_LINEAR;
}
else {
return GL_LINEAR_MIPMAP_NEAREST;
}
}
else {
return GL_NEAREST;
}
}
}
/* Anisotropic filtering settings */
void GPU_set_anisotropic(Main *bmain, float value)
{
if (GTS.anisotropic != value) {
GPU_free_images(bmain);
/* Clamp value to the maximum value the graphics card supports */
const float max = GPU_max_texture_anisotropy();
if (value > max) {
value = max;
}
GTS.anisotropic = value;
}
}
float GPU_get_anisotropic(void)
{
return GTS.anisotropic;
}
/* Set OpenGL state for an MTFace */
static GPUTexture **gpu_get_tile_gputexture(ImageTile *tile, GLenum textarget)
{
if (textarget == GL_TEXTURE_2D) {
return &tile->gputexture[TEXTARGET_TEXTURE_2D];
}
else if (textarget == GL_TEXTURE_CUBE_MAP) {
return &tile->gputexture[TEXTARGET_TEXTURE_CUBE_MAP];
}
return NULL;
}
static uint gpu_texture_create_from_ibuf(Image *ima, ImBuf *ibuf, int textarget)
{
uint bindcode = 0;
const bool mipmap = GPU_get_mipmap();
#ifdef WITH_DDS
if (ibuf->ftype == IMB_FTYPE_DDS) {
/* DDS is loaded directly in compressed form. */
GPU_create_gl_tex_compressed(&bindcode, textarget, ima, ibuf);
return bindcode;
}
#endif
/* Regular uncompressed texture. */
float *rect_float = ibuf->rect_float;
uchar *rect = (uchar *)ibuf->rect;
bool compress_as_srgb = false;
if (rect_float == NULL) {
/* Byte image is in original colorspace from the file. If the file is sRGB
* scene linear, or non-color data no conversion is needed. Otherwise we
* compress as scene linear + sRGB transfer function to avoid precision loss
* in common cases.
*
* We must also convert to premultiplied for correct texture interpolation
* and consistency with float images. */
if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) {
compress_as_srgb = !IMB_colormanagement_space_is_scene_linear(ibuf->rect_colorspace);
rect = MEM_mallocN(sizeof(uchar) * 4 * ibuf->x * ibuf->y, __func__);
if (rect == NULL) {
return bindcode;
}
/* Texture storage of images is defined by the alpha mode of the image. The
* downside of this is that there can be artifacts near alpha edges. However,
* this allows us to use sRGB texture formats and preserves color values in
* zero alpha areas, and appears generally closer to what game engines that we
* want to be compatible with do. */
const bool store_premultiplied = ima ? (ima->alpha_mode == IMA_ALPHA_PREMUL) : true;
IMB_colormanagement_imbuf_to_byte_texture(
rect, 0, 0, ibuf->x, ibuf->y, ibuf, compress_as_srgb, store_premultiplied);
}
}
else {
/* Float image is already in scene linear colorspace or non-color data by
* convention, no colorspace conversion needed. But we do require 4 channels
* currently. */
const bool store_premultiplied = ima ? (ima->alpha_mode != IMA_ALPHA_STRAIGHT) : false;
if (ibuf->channels != 4 || !store_premultiplied) {
rect_float = MEM_mallocN(sizeof(float) * 4 * ibuf->x * ibuf->y, __func__);
if (rect_float == NULL) {
return bindcode;
}
IMB_colormanagement_imbuf_to_float_texture(
rect_float, 0, 0, ibuf->x, ibuf->y, ibuf, store_premultiplied);
}
}
/* Create OpenGL texture. */
GPU_create_gl_tex(&bindcode,
(uint *)rect,
rect_float,
ibuf->x,
ibuf->y,
textarget,
mipmap,
compress_as_srgb,
ima);
/* Free buffers if needed. */
if (rect && rect != (uchar *)ibuf->rect) {
MEM_freeN(rect);
}
if (rect_float && rect_float != ibuf->rect_float) {
MEM_freeN(rect_float);
}
return bindcode;
}
static GPUTexture **gpu_get_movieclip_gputexture(MovieClip *clip,
MovieClipUser *cuser,
GLenum textarget)
{
MovieClip_RuntimeGPUTexture *tex;
for (tex = clip->runtime.gputextures.first; tex; tex = tex->next) {
if (memcmp(&tex->user, cuser, sizeof(MovieClipUser)) == 0) {
break;
}
}
if (tex == NULL) {
tex = MEM_mallocN(sizeof(MovieClip_RuntimeGPUTexture), __func__);
for (int i = 0; i < TEXTARGET_COUNT; i++) {
tex->gputexture[i] = NULL;
}
memcpy(&tex->user, cuser, sizeof(MovieClipUser));
BLI_addtail(&clip->runtime.gputextures, tex);
}
if (textarget == GL_TEXTURE_2D) {
return &tex->gputexture[TEXTARGET_TEXTURE_2D];
}
else if (textarget == GL_TEXTURE_CUBE_MAP) {
return &tex->gputexture[TEXTARGET_TEXTURE_CUBE_MAP];
}
return NULL;
}
static void gpu_texture_update_scaled(
uchar *rect, float *rect_float, int full_w, int full_h, int x, int y, int w, int h)
{
/* Partial update with scaling. */
int limit_w = smaller_power_of_2_limit(full_w);
int limit_h = smaller_power_of_2_limit(full_h);
float xratio = limit_w / (float)full_w;
float yratio = limit_h / (float)full_h;
/* Find sub coordinates in scaled image. Take ceiling because we will be
* losing 1 pixel due to rounding errors in x,y. */
int sub_x = x * xratio;
int sub_y = y * yratio;
int sub_w = (int)ceil(xratio * w);
int sub_h = (int)ceil(yratio * h);
/* ...but take back if we are over the limit! */
if (sub_w + sub_x > limit_w) {
sub_w--;
}
if (sub_h + sub_y > limit_h) {
sub_h--;
}
/* Scale pixels. */
ImBuf *ibuf = IMB_allocFromBuffer((uint *)rect, rect_float, w, h, 4);
IMB_scaleImBuf(ibuf, sub_w, sub_h);
if (ibuf->rect_float) {
glTexSubImage2D(
GL_TEXTURE_2D, 0, sub_x, sub_y, sub_w, sub_h, GL_RGBA, GL_FLOAT, ibuf->rect_float);
}
else {
glTexSubImage2D(
GL_TEXTURE_2D, 0, sub_x, sub_y, sub_w, sub_h, GL_RGBA, GL_UNSIGNED_BYTE, ibuf->rect);
}
IMB_freeImBuf(ibuf);
}
static void gpu_texture_update_unscaled(
uchar *rect, float *rect_float, int x, int y, int w, int h, GLint tex_stride, GLint tex_offset)
{
/* Partial update without scaling. Stride and offset are used to copy only a
* subset of a possible larger buffer than what we are updating. */
GLint row_length;
glGetIntegerv(GL_UNPACK_ROW_LENGTH, &row_length);
glPixelStorei(GL_UNPACK_ROW_LENGTH, tex_stride);
if (rect_float == NULL) {
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_UNSIGNED_BYTE, rect + tex_offset);
}
else {
glTexSubImage2D(GL_TEXTURE_2D, 0, x, y, w, h, GL_RGBA, GL_FLOAT, rect_float + tex_offset);
}
glPixelStorei(GL_UNPACK_ROW_LENGTH, row_length);
}
static void gpu_texture_update_from_ibuf(Image *ima, ImBuf *ibuf, int x, int y, int w, int h)
{
/* Partial update of texture for texture painting. This is often much
* quicker than fully updating the texture for high resolution images.
* Assumes the OpenGL texture is bound to 0. */
const bool scaled = is_over_resolution_limit(GL_TEXTURE_2D, ibuf->x, ibuf->y);
if (scaled) {
/* Extra padding to account for bleed from neighboring pixels. */
const int padding = 4;
const int xmax = min_ii(x + w + padding, ibuf->x);
const int ymax = min_ii(y + h + padding, ibuf->y);
x = max_ii(x - padding, 0);
y = max_ii(y - padding, 0);
w = xmax - x;
h = ymax - y;
}
/* Get texture data pointers. */
float *rect_float = ibuf->rect_float;
uchar *rect = (uchar *)ibuf->rect;
GLint tex_stride = ibuf->x;
GLint tex_offset = ibuf->channels * (y * ibuf->x + x);
if (rect_float == NULL) {
/* Byte pixels. */
if (!IMB_colormanagement_space_is_data(ibuf->rect_colorspace)) {
const bool compress_as_srgb = !IMB_colormanagement_space_is_scene_linear(
ibuf->rect_colorspace);
rect = MEM_mallocN(sizeof(uchar) * 4 * w * h, __func__);
if (rect == NULL) {
return;
}
tex_stride = w;
tex_offset = 0;
/* Convert to scene linear with sRGB compression, and premultiplied for
* correct texture interpolation. */
const bool store_premultiplied = (ima->alpha_mode == IMA_ALPHA_PREMUL);
IMB_colormanagement_imbuf_to_byte_texture(
rect, x, y, w, h, ibuf, compress_as_srgb, store_premultiplied);
}
}
else {
/* Float pixels. */
const bool store_premultiplied = (ima->alpha_mode != IMA_ALPHA_STRAIGHT);
if (ibuf->channels != 4 || scaled || !store_premultiplied) {
rect_float = MEM_mallocN(sizeof(float) * 4 * w * h, __func__);
if (rect_float == NULL) {
return;
}
tex_stride = w;
tex_offset = 0;
IMB_colormanagement_imbuf_to_float_texture(
rect_float, x, y, w, h, ibuf, store_premultiplied);
}
}
if (scaled) {
/* Slower update where we first have to scale the input pixels. */
gpu_texture_update_scaled(rect, rect_float, ibuf->x, ibuf->y, x, y, w, h);
}
else {
/* Fast update at same resolution. */
gpu_texture_update_unscaled(rect, rect_float, x, y, w, h, tex_stride, tex_offset);
}
/* Free buffers if needed. */
if (rect && rect != (uchar *)ibuf->rect) {
MEM_freeN(rect);
}
if (rect_float && rect_float != ibuf->rect_float) {
MEM_freeN(rect_float);
}
}
GPUTexture *GPU_texture_from_blender(Image *ima, ImageUser *iuser, int textarget)
{
if (ima == NULL) {
return NULL;
}
/* currently, gpu refresh tagging is used by ima sequences */
if (ima->gpuflag & IMA_GPU_REFRESH) {
gpu_free_image_immediate(ima);
ima->gpuflag &= ~IMA_GPU_REFRESH;
}
/* Tag as in active use for garbage collector. */
BKE_image_tag_time(ima);
ImageTile *tile = BKE_image_get_tile_from_iuser(ima, iuser);
if (tile == NULL) {
/* TODO(lukas): When a tile gets deleted, the materials using the image
* aren't rebuilt and therefore continue to use it.
* This workaround isn't ideal, the result should be a pink color
* (for a missing tile). With the current behavior, new tiles also won't
* be detected. */
tile = BKE_image_get_tile(ima, 0);
}
/* Test if we already have a texture. */
GPUTexture **tex = gpu_get_tile_gputexture(tile, textarget);
if (*tex) {
return *tex;
}
/* Check if we have a valid image. If not, we return a dummy
* texture with zero bindcode so we don't keep trying. */
uint bindcode = 0;
if (tile->ok == 0) {
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
/* check if we have a valid image buffer */
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL);
if (ibuf == NULL) {
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
bindcode = gpu_texture_create_from_ibuf(ima, ibuf, textarget);
BKE_image_release_ibuf(ima, ibuf, NULL);
*tex = GPU_texture_from_bindcode(textarget, bindcode);
GPU_texture_orig_size_set(*tex, ibuf->x, ibuf->y);
return *tex;
}
GPUTexture *GPU_texture_from_movieclip(MovieClip *clip, MovieClipUser *cuser, int textarget)
{
if (clip == NULL) {
return NULL;
}
GPUTexture **tex = gpu_get_movieclip_gputexture(clip, cuser, textarget);
if (*tex) {
return *tex;
}
/* check if we have a valid image buffer */
uint bindcode = 0;
ImBuf *ibuf = BKE_movieclip_get_ibuf(clip, cuser);
if (ibuf == NULL) {
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
bindcode = gpu_texture_create_from_ibuf(NULL, ibuf, textarget);
IMB_freeImBuf(ibuf);
*tex = GPU_texture_from_bindcode(textarget, bindcode);
return *tex;
}
void GPU_free_texture_movieclip(struct MovieClip *clip)
{
/* number of gpu textures to keep around as cache
* We don't want to keep too many GPU textures for
* movie clips around, as they can be large.*/
const int MOVIECLIP_NUM_GPUTEXTURES = 1;
while (BLI_listbase_count(&clip->runtime.gputextures) > MOVIECLIP_NUM_GPUTEXTURES) {
MovieClip_RuntimeGPUTexture *tex = BLI_pophead(&clip->runtime.gputextures);
for (int i = 0; i < TEXTARGET_COUNT; i++) {
/* free glsl image binding */
if (tex->gputexture[i]) {
GPU_texture_free(tex->gputexture[i]);
tex->gputexture[i] = NULL;
}
}
MEM_freeN(tex);
}
}
static void **gpu_gen_cube_map(uint *rect, float *frect, int rectw, int recth)
{
size_t block_size = frect ? sizeof(float[4]) : sizeof(uchar[4]);
void **sides = NULL;
int h = recth / 2;
int w = rectw / 3;
if (w != h) {
return sides;
}
/* PosX, NegX, PosY, NegY, PosZ, NegZ */
sides = MEM_mallocN(sizeof(void *) * 6, "");
for (int i = 0; i < 6; i++) {
sides[i] = MEM_mallocN(block_size * w * h, "");
}
/* divide image into six parts */
/* ______________________
* | | | |
* | NegX | NegY | PosX |
* |______|______|______|
* | | | |
* | NegZ | PosZ | PosY |
* |______|______|______|
*/
if (frect) {
float(*frectb)[4] = (float(*)[4])frect;
float(**fsides)[4] = (float(**)[4])sides;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
memcpy(&fsides[0][x * h + y], &frectb[(recth - y - 1) * rectw + 2 * w + x], block_size);
memcpy(&fsides[1][x * h + y], &frectb[(y + h) * rectw + w - 1 - x], block_size);
memcpy(
&fsides[3][y * w + x], &frectb[(recth - y - 1) * rectw + 2 * w - 1 - x], block_size);
memcpy(&fsides[5][y * w + x], &frectb[(h - y - 1) * rectw + w - 1 - x], block_size);
}
memcpy(&fsides[2][y * w], frectb[y * rectw + 2 * w], block_size * w);
memcpy(&fsides[4][y * w], frectb[y * rectw + w], block_size * w);
}
}
else {
uint **isides = (uint **)sides;
for (int y = 0; y < h; y++) {
for (int x = 0; x < w; x++) {
isides[0][x * h + y] = rect[(recth - y - 1) * rectw + 2 * w + x];
isides[1][x * h + y] = rect[(y + h) * rectw + w - 1 - x];
isides[3][y * w + x] = rect[(recth - y - 1) * rectw + 2 * w - 1 - x];
isides[5][y * w + x] = rect[(h - y - 1) * rectw + w - 1 - x];
}
memcpy(&isides[2][y * w], &rect[y * rectw + 2 * w], block_size * w);
memcpy(&isides[4][y * w], &rect[y * rectw + w], block_size * w);
}
}
return sides;
}
static void gpu_del_cube_map(void **cube_map)
{
int i;
if (cube_map == NULL) {
return;
}
for (i = 0; i < 6; i++) {
MEM_freeN(cube_map[i]);
}
MEM_freeN(cube_map);
}
/* Image *ima can be NULL */
void GPU_create_gl_tex(uint *bind,
uint *rect,
float *frect,
int rectw,
int recth,
int textarget,
bool mipmap,
bool use_srgb,
Image *ima)
{
ImBuf *ibuf = NULL;
if (textarget == GL_TEXTURE_2D && is_over_resolution_limit(textarget, rectw, recth)) {
int tpx = rectw;
int tpy = recth;
rectw = smaller_power_of_2_limit(rectw);
recth = smaller_power_of_2_limit(recth);
if (frect) {
ibuf = IMB_allocFromBuffer(NULL, frect, tpx, tpy, 4);
IMB_scaleImBuf(ibuf, rectw, recth);
frect = ibuf->rect_float;
}
else {
ibuf = IMB_allocFromBuffer(rect, NULL, tpx, tpy, 4);
IMB_scaleImBuf(ibuf, rectw, recth);
rect = ibuf->rect;
}
}
/* create image */
glGenTextures(1, (GLuint *)bind);
glBindTexture(textarget, *bind);
GLenum internal_format = (frect) ? GL_RGBA16F : (use_srgb) ? GL_SRGB8_ALPHA8 : GL_RGBA8;
if (textarget == GL_TEXTURE_2D) {
if (frect) {
glTexImage2D(GL_TEXTURE_2D, 0, internal_format, rectw, recth, 0, GL_RGBA, GL_FLOAT, frect);
}
else {
glTexImage2D(
GL_TEXTURE_2D, 0, internal_format, rectw, recth, 0, GL_RGBA, GL_UNSIGNED_BYTE, rect);
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
if (GPU_get_mipmap() && mipmap) {
glGenerateMipmap(GL_TEXTURE_2D);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
}
else {
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
}
else if (textarget == GL_TEXTURE_CUBE_MAP) {
int w = rectw / 3, h = recth / 2;
if (h == w && is_power_of_2_i(h) && !is_over_resolution_limit(textarget, h, w)) {
void **cube_map = gpu_gen_cube_map(rect, frect, rectw, recth);
GLenum type = frect ? GL_FLOAT : GL_UNSIGNED_BYTE;
if (cube_map) {
for (int i = 0; i < 6; i++) {
glTexImage2D(GL_TEXTURE_CUBE_MAP_POSITIVE_X + i,
0,
internal_format,
w,
h,
0,
GL_RGBA,
type,
cube_map[i]);
}
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
if (GPU_get_mipmap() && mipmap) {
glGenerateMipmap(GL_TEXTURE_CUBE_MAP);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
if (ima) {
ima->gpuflag |= IMA_GPU_MIPMAP_COMPLETE;
}
}
else {
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
}
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
glTexParameteri(GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE);
gpu_del_cube_map(cube_map);
}
else {
printf("Incorrect envmap size\n");
}
}
if (GLEW_EXT_texture_filter_anisotropic) {
glTexParameterf(textarget, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic());
}
glBindTexture(textarget, 0);
if (ibuf) {
IMB_freeImBuf(ibuf);
}
}
/**
* GPU_upload_dxt_texture() assumes that the texture is already bound and ready to go.
* This is so the viewport and the BGE can share some code.
* Returns false if the provided ImBuf doesn't have a supported DXT compression format
*/
bool GPU_upload_dxt_texture(ImBuf *ibuf, bool use_srgb)
{
#ifdef WITH_DDS
GLint format = 0;
int blocksize, height, width, i, size, offset = 0;
width = ibuf->x;
height = ibuf->y;
if (GLEW_EXT_texture_compression_s3tc) {
if (ibuf->dds_data.fourcc == FOURCC_DXT1) {
format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT1_EXT :
GL_COMPRESSED_RGBA_S3TC_DXT1_EXT;
}
else if (ibuf->dds_data.fourcc == FOURCC_DXT3) {
format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT3_EXT :
GL_COMPRESSED_RGBA_S3TC_DXT3_EXT;
}
else if (ibuf->dds_data.fourcc == FOURCC_DXT5) {
format = (use_srgb) ? GL_COMPRESSED_SRGB_ALPHA_S3TC_DXT5_EXT :
GL_COMPRESSED_RGBA_S3TC_DXT5_EXT;
}
}
if (format == 0) {
fprintf(stderr, "Unable to find a suitable DXT compression, falling back to uncompressed\n");
return false;
}
if (!is_power_of_2_resolution(width, height)) {
fprintf(
stderr,
"Unable to load non-power-of-two DXT image resolution, falling back to uncompressed\n");
return false;
}
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
if (GLEW_EXT_texture_filter_anisotropic) {
glTexParameterf(GL_TEXTURE_2D, GL_TEXTURE_MAX_ANISOTROPY_EXT, GPU_get_anisotropic());
}
blocksize = (ibuf->dds_data.fourcc == FOURCC_DXT1) ? 8 : 16;
for (i = 0; i < ibuf->dds_data.nummipmaps && (width || height); i++) {
if (width == 0) {
width = 1;
}
if (height == 0) {
height = 1;
}
size = ((width + 3) / 4) * ((height + 3) / 4) * blocksize;
glCompressedTexImage2D(
GL_TEXTURE_2D, i, format, width, height, 0, size, ibuf->dds_data.data + offset);
offset += size;
width >>= 1;
height >>= 1;
}
/* set number of mipmap levels we have, needed in case they don't go down to 1x1 */
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAX_LEVEL, i - 1);
return true;
#else
UNUSED_VARS(ibuf, use_srgb);
return false;
#endif
}
void GPU_create_gl_tex_compressed(unsigned int *bind, int textarget, Image *ima, ImBuf *ibuf)
{
/* For DDS we only support data, scene linear and sRGB. Converting to
* different colorspace would break the compression. */
const bool use_srgb = !(IMB_colormanagement_space_is_data(ibuf->rect_colorspace) ||
IMB_colormanagement_space_is_scene_linear(ibuf->rect_colorspace));
const bool mipmap = GPU_get_mipmap();
#ifndef WITH_DDS
(void)ibuf;
/* Fall back to uncompressed if DDS isn't enabled */
GPU_create_gl_tex(bind, ibuf->rect, NULL, ibuf->x, ibuf->y, textarget, mipmap, use_srgb, ima);
#else
glGenTextures(1, (GLuint *)bind);
glBindTexture(textarget, *bind);
if (textarget == GL_TEXTURE_2D && GPU_upload_dxt_texture(ibuf, use_srgb) == 0) {
glDeleteTextures(1, (GLuint *)bind);
GPU_create_gl_tex(bind, ibuf->rect, NULL, ibuf->x, ibuf->y, textarget, mipmap, use_srgb, ima);
}
glBindTexture(textarget, 0);
#endif
}
/* these two functions are called on entering and exiting texture paint mode,
* temporary disabling/enabling mipmapping on all images for quick texture
* updates with glTexSubImage2D. images that didn't change don't have to be
* re-uploaded to OpenGL */
void GPU_paint_set_mipmap(Main *bmain, bool mipmap)
{
if (!GTS.domipmap) {
return;
}
GTS.texpaint = !mipmap;
if (mipmap) {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
if (BKE_image_has_opengl_texture(ima)) {
if (ima->gpuflag & IMA_GPU_MIPMAP_COMPLETE) {
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
GPUTexture *tex = tile->gputexture[TEXTARGET_TEXTURE_2D];
if (tex != NULL) {
GPU_texture_bind(tex, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, gpu_get_mipmap_filter(0));
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
GPU_texture_unbind(tex);
}
}
}
else {
GPU_free_image(ima);
}
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
}
}
else {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
if (BKE_image_has_opengl_texture(ima)) {
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
GPUTexture *tex = tile->gputexture[TEXTARGET_TEXTURE_2D];
if (tex != NULL) {
GPU_texture_bind(tex, 0);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, gpu_get_mipmap_filter(1));
GPU_texture_unbind(tex);
}
}
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
}
}
}
void GPU_paint_update_image(Image *ima, ImageUser *iuser, int x, int y, int w, int h)
{
ImBuf *ibuf = BKE_image_acquire_ibuf(ima, iuser, NULL);
ImageTile *tile = BKE_image_get_tile_from_iuser(ima, iuser);
GPUTexture *tex = tile->gputexture[TEXTARGET_TEXTURE_2D];
if ((tex == NULL) || (ibuf == NULL) || (w == 0) || (h == 0)) {
/* Full reload of texture. */
GPU_free_image(ima);
}
else {
/* Partial update of texture. */
GPU_texture_bind(tex, 0);
gpu_texture_update_from_ibuf(ima, ibuf, x, y, w, h);
if (GPU_get_mipmap()) {
glGenerateMipmap(GL_TEXTURE_2D);
}
else {
ima->gpuflag &= ~IMA_GPU_MIPMAP_COMPLETE;
}
GPU_texture_unbind(tex);
}
BKE_image_release_ibuf(ima, ibuf, NULL);
}
/* *************************** Transfer functions *************************** */
#ifdef WITH_FLUID
enum {
TFUNC_FLAME_SPECTRUM = 0,
TFUNC_COLOR_RAMP = 1,
};
# define TFUNC_WIDTH 256
static void create_flame_spectrum_texture(float *data)
{
# define FIRE_THRESH 7
# define MAX_FIRE_ALPHA 0.06f
# define FULL_ON_FIRE 100
float *spec_pixels = MEM_mallocN(TFUNC_WIDTH * 4 * 16 * 16 * sizeof(float), "spec_pixels");
blackbody_temperature_to_rgb_table(data, TFUNC_WIDTH, 1500, 3000);
for (int i = 0; i < 16; i++) {
for (int j = 0; j < 16; j++) {
for (int k = 0; k < TFUNC_WIDTH; k++) {
int index = (j * TFUNC_WIDTH * 16 + i * TFUNC_WIDTH + k) * 4;
if (k >= FIRE_THRESH) {
spec_pixels[index] = (data[k * 4]);
spec_pixels[index + 1] = (data[k * 4 + 1]);
spec_pixels[index + 2] = (data[k * 4 + 2]);
spec_pixels[index + 3] = MAX_FIRE_ALPHA *
((k > FULL_ON_FIRE) ?
1.0f :
(k - FIRE_THRESH) / ((float)FULL_ON_FIRE - FIRE_THRESH));
}
else {
zero_v4(&spec_pixels[index]);
}
}
}
}
memcpy(data, spec_pixels, sizeof(float) * 4 * TFUNC_WIDTH);
MEM_freeN(spec_pixels);
# undef FIRE_THRESH
# undef MAX_FIRE_ALPHA
# undef FULL_ON_FIRE
}
static void create_color_ramp(const ColorBand *coba, float *data)
{
for (int i = 0; i < TFUNC_WIDTH; i++) {
BKE_colorband_evaluate(coba, (float)i / TFUNC_WIDTH, &data[i * 4]);
}
}
static GPUTexture *create_transfer_function(int type, const ColorBand *coba)
{
float *data = MEM_mallocN(sizeof(float) * 4 * TFUNC_WIDTH, __func__);
switch (type) {
case TFUNC_FLAME_SPECTRUM:
create_flame_spectrum_texture(data);
break;
case TFUNC_COLOR_RAMP:
create_color_ramp(coba, data);
break;
}
GPUTexture *tex = GPU_texture_create_1d(TFUNC_WIDTH, GPU_RGBA8, data, NULL);
MEM_freeN(data);
return tex;
}
static void swizzle_texture_channel_rrrr(GPUTexture *tex)
{
GPU_texture_bind(tex, 0);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_R, GL_RED);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_G, GL_RED);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_B, GL_RED);
glTexParameteri(GL_TEXTURE_3D, GL_TEXTURE_SWIZZLE_A, GL_RED);
GPU_texture_unbind(tex);
}
static GPUTexture *create_field_texture(FluidDomainSettings *mds)
{
float *field = NULL;
switch (mds->coba_field) {
case FLUID_DOMAIN_FIELD_DENSITY:
field = manta_smoke_get_density(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_HEAT:
field = manta_smoke_get_heat(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_FUEL:
field = manta_smoke_get_fuel(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_REACT:
field = manta_smoke_get_react(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_FLAME:
field = manta_smoke_get_flame(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_VELOCITY_X:
field = manta_get_velocity_x(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_VELOCITY_Y:
field = manta_get_velocity_y(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_VELOCITY_Z:
field = manta_get_velocity_z(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_COLOR_R:
field = manta_smoke_get_color_r(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_COLOR_G:
field = manta_smoke_get_color_g(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_COLOR_B:
field = manta_smoke_get_color_b(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_FORCE_X:
field = manta_get_force_x(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_FORCE_Y:
field = manta_get_force_y(mds->fluid);
break;
case FLUID_DOMAIN_FIELD_FORCE_Z:
field = manta_get_force_z(mds->fluid);
break;
default:
return NULL;
}
GPUTexture *tex = GPU_texture_create_nD(
mds->res[0], mds->res[1], mds->res[2], 3, field, GPU_R8, GPU_DATA_FLOAT, 0, true, NULL);
swizzle_texture_channel_rrrr(tex);
return tex;
}
static GPUTexture *create_density_texture(FluidDomainSettings *mds, int highres)
{
float *data = NULL, *source;
int cell_count = (highres) ? manta_smoke_turbulence_get_cells(mds->fluid) : mds->total_cells;
const bool has_color = (highres) ? manta_smoke_turbulence_has_colors(mds->fluid) :
manta_smoke_has_colors(mds->fluid);
int *dim = (highres) ? mds->res_noise : mds->res;
eGPUTextureFormat format = (has_color) ? GPU_RGBA8 : GPU_R8;
if (has_color) {
data = MEM_callocN(sizeof(float) * cell_count * 4, "smokeColorTexture");
}
if (highres) {
if (has_color) {
manta_smoke_turbulence_get_rgba(mds->fluid, data, 0);
}
else {
source = manta_smoke_turbulence_get_density(mds->fluid);
}
}
else {
if (has_color) {
manta_smoke_get_rgba(mds->fluid, data, 0);
}
else {
source = manta_smoke_get_density(mds->fluid);
}
}
GPUTexture *tex = GPU_texture_create_nD(dim[0],
dim[1],
dim[2],
3,
(has_color) ? data : source,
format,
GPU_DATA_FLOAT,
0,
true,
NULL);
if (data) {
MEM_freeN(data);
}
if (format == GPU_R8) {
/* Swizzle the RGBA components to read the Red channel so
* that the shader stay the same for colored and non color
* density textures. */
swizzle_texture_channel_rrrr(tex);
}
return tex;
}
static GPUTexture *create_flame_texture(FluidDomainSettings *mds, int highres)
{
float *source = NULL;
const bool has_fuel = (highres) ? manta_smoke_turbulence_has_fuel(mds->fluid) :
manta_smoke_has_fuel(mds->fluid);
int *dim = (highres) ? mds->res_noise : mds->res;
if (!has_fuel) {
return NULL;
}
if (highres) {
source = manta_smoke_turbulence_get_flame(mds->fluid);
}
else {
source = manta_smoke_get_flame(mds->fluid);
}
GPUTexture *tex = GPU_texture_create_nD(
dim[0], dim[1], dim[2], 3, source, GPU_R8, GPU_DATA_FLOAT, 0, true, NULL);
swizzle_texture_channel_rrrr(tex);
return tex;
}
#endif /* WITH_FLUID */
void GPU_free_smoke(FluidModifierData *mmd)
{
if (mmd->type & MOD_FLUID_TYPE_DOMAIN && mmd->domain) {
if (mmd->domain->tex) {
GPU_texture_free(mmd->domain->tex);
}
mmd->domain->tex = NULL;
if (mmd->domain->tex_shadow) {
GPU_texture_free(mmd->domain->tex_shadow);
}
mmd->domain->tex_shadow = NULL;
if (mmd->domain->tex_flame) {
GPU_texture_free(mmd->domain->tex_flame);
}
mmd->domain->tex_flame = NULL;
if (mmd->domain->tex_flame_coba) {
GPU_texture_free(mmd->domain->tex_flame_coba);
}
mmd->domain->tex_flame_coba = NULL;
if (mmd->domain->tex_coba) {
GPU_texture_free(mmd->domain->tex_coba);
}
mmd->domain->tex_coba = NULL;
if (mmd->domain->tex_field) {
GPU_texture_free(mmd->domain->tex_field);
}
mmd->domain->tex_field = NULL;
}
}
void GPU_create_smoke_coba_field(FluidModifierData *mmd)
{
#ifndef WITH_FLUID
UNUSED_VARS(mmd);
#else
if (mmd->type & MOD_FLUID_TYPE_DOMAIN) {
FluidDomainSettings *mds = mmd->domain;
if (!mds->tex_field) {
mds->tex_field = create_field_texture(mds);
}
if (!mds->tex_coba) {
mds->tex_coba = create_transfer_function(TFUNC_COLOR_RAMP, mds->coba);
}
}
#endif
}
void GPU_create_smoke(FluidModifierData *mmd, int highres)
{
#ifndef WITH_FLUID
UNUSED_VARS(mmd, highres);
#else
if (mmd->type & MOD_FLUID_TYPE_DOMAIN) {
FluidDomainSettings *mds = mmd->domain;
if (!mds->tex) {
mds->tex = create_density_texture(mds, highres);
}
if (!mds->tex_flame) {
mds->tex_flame = create_flame_texture(mds, highres);
}
if (!mds->tex_flame_coba && mds->tex_flame) {
mds->tex_flame_coba = create_transfer_function(TFUNC_FLAME_SPECTRUM, NULL);
}
if (!mds->tex_shadow) {
mds->tex_shadow = GPU_texture_create_nD(mds->res[0],
mds->res[1],
mds->res[2],
3,
manta_smoke_get_shadow(mds->fluid),
GPU_R8,
GPU_DATA_FLOAT,
0,
true,
NULL);
}
}
#endif /* WITH_FLUID */
}
void GPU_create_smoke_velocity(FluidModifierData *mmd)
{
#ifndef WITH_FLUID
UNUSED_VARS(mmd);
#else
if (mmd->type & MOD_FLUID_TYPE_DOMAIN) {
FluidDomainSettings *mds = mmd->domain;
const float *vel_x = manta_get_velocity_x(mds->fluid);
const float *vel_y = manta_get_velocity_y(mds->fluid);
const float *vel_z = manta_get_velocity_z(mds->fluid);
if (ELEM(NULL, vel_x, vel_y, vel_z)) {
return;
}
if (!mds->tex_velocity_x) {
mds->tex_velocity_x = GPU_texture_create_3d(
mds->res[0], mds->res[1], mds->res[2], GPU_R16F, vel_x, NULL);
mds->tex_velocity_y = GPU_texture_create_3d(
mds->res[0], mds->res[1], mds->res[2], GPU_R16F, vel_y, NULL);
mds->tex_velocity_z = GPU_texture_create_3d(
mds->res[0], mds->res[1], mds->res[2], GPU_R16F, vel_z, NULL);
}
}
#endif /* WITH_FLUID */
}
/* TODO Unify with the other GPU_free_smoke. */
void GPU_free_smoke_velocity(FluidModifierData *mmd)
{
if (mmd->type & MOD_FLUID_TYPE_DOMAIN && mmd->domain) {
if (mmd->domain->tex_velocity_x) {
GPU_texture_free(mmd->domain->tex_velocity_x);
}
if (mmd->domain->tex_velocity_y) {
GPU_texture_free(mmd->domain->tex_velocity_y);
}
if (mmd->domain->tex_velocity_z) {
GPU_texture_free(mmd->domain->tex_velocity_z);
}
mmd->domain->tex_velocity_x = NULL;
mmd->domain->tex_velocity_y = NULL;
mmd->domain->tex_velocity_z = NULL;
}
}
static LinkNode *image_free_queue = NULL;
static ThreadMutex img_queue_mutex = BLI_MUTEX_INITIALIZER;
static void gpu_queue_image_for_free(Image *ima)
{
BLI_mutex_lock(&img_queue_mutex);
BLI_linklist_prepend(&image_free_queue, ima);
BLI_mutex_unlock(&img_queue_mutex);
}
void GPU_free_unused_buffers(Main *bmain)
{
if (!BLI_thread_is_main()) {
return;
}
BLI_mutex_lock(&img_queue_mutex);
/* images */
for (LinkNode *node = image_free_queue; node; node = node->next) {
Image *ima = node->link;
/* check in case it was freed in the meantime */
if (bmain && BLI_findindex(&bmain->images, ima) != -1) {
GPU_free_image(ima);
}
}
BLI_linklist_free(image_free_queue, NULL);
image_free_queue = NULL;
BLI_mutex_unlock(&img_queue_mutex);
}
static void gpu_free_image_immediate(Image *ima)
{
LISTBASE_FOREACH (ImageTile *, tile, &ima->tiles) {
for (int i = 0; i < TEXTARGET_COUNT; i++) {
/* free glsl image binding */
if (tile->gputexture[i] != NULL) {
GPU_texture_free(tile->gputexture[i]);
tile->gputexture[i] = NULL;
}
}
}
ima->gpuflag &= ~(IMA_GPU_MIPMAP_COMPLETE);
}
void GPU_free_image(Image *ima)
{
if (!BLI_thread_is_main()) {
gpu_queue_image_for_free(ima);
return;
}
gpu_free_image_immediate(ima);
}
void GPU_free_images(Main *bmain)
{
if (bmain) {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
GPU_free_image(ima);
}
}
}
/* same as above but only free animated images */
void GPU_free_images_anim(Main *bmain)
{
if (bmain) {
for (Image *ima = bmain->images.first; ima; ima = ima->id.next) {
if (BKE_image_is_animated(ima)) {
GPU_free_image(ima);
}
}
}
}
void GPU_free_images_old(Main *bmain)
{
static int lasttime = 0;
int ctime = (int)PIL_check_seconds_timer();
/*
* Run garbage collector once for every collecting period of time
* if textimeout is 0, that's the option to NOT run the collector
*/
if (U.textimeout == 0 || ctime % U.texcollectrate || ctime == lasttime) {
return;
}
/* of course not! */
if (G.is_rendering) {
return;
}
lasttime = ctime;
Image *ima = bmain->images.first;
while (ima) {
if ((ima->flag & IMA_NOCOLLECT) == 0 && ctime - ima->lastused > U.textimeout) {
/* If it's in GL memory, deallocate and set time tag to current time
* This gives textures a "second chance" to be used before dying. */
if (BKE_image_has_opengl_texture(ima)) {
GPU_free_image(ima);
ima->lastused = ctime;
}
/* Otherwise, just kill the buffers */
else {
BKE_image_free_buffers(ima);
}
}
ima = ima->id.next;
}
}
static void gpu_disable_multisample(void)
{
#ifdef __linux__
/* changing multisample from the default (enabled) causes problems on some
* systems (NVIDIA/Linux) when the pixel format doesn't have a multisample buffer */
bool toggle_ok = true;
if (GPU_type_matches(GPU_DEVICE_NVIDIA, GPU_OS_UNIX, GPU_DRIVER_ANY)) {
int samples = 0;
glGetIntegerv(GL_SAMPLES, &samples);
if (samples == 0) {
toggle_ok = false;
}
}
if (toggle_ok) {
glDisable(GL_MULTISAMPLE);
}
#else
glDisable(GL_MULTISAMPLE);
#endif
}
/* Default OpenGL State
*
* This is called on startup, for opengl offscreen render.
* Generally we should always return to this state when
* temporarily modifying the state for drawing, though that are (undocumented)
* exceptions that we should try to get rid of. */
void GPU_state_init(void)
{
GPU_program_point_size(false);
glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS);
glDepthFunc(GL_LEQUAL);
glDisable(GL_BLEND);
glDisable(GL_DEPTH_TEST);
glDisable(GL_COLOR_LOGIC_OP);
glDisable(GL_STENCIL_TEST);
glDepthRange(0.0, 1.0);
glFrontFace(GL_CCW);
glCullFace(GL_BACK);
glDisable(GL_CULL_FACE);
gpu_disable_multisample();
/* This is a bit dangerous since addons could change this. */
glEnable(GL_PRIMITIVE_RESTART);
glPrimitiveRestartIndex((GLuint)0xFFFFFFFF);
/* TODO: Should become default. But needs at least GL 4.3 */
if (GLEW_ARB_ES3_compatibility) {
/* Takes predecence over GL_PRIMITIVE_RESTART */
glEnable(GL_PRIMITIVE_RESTART_FIXED_INDEX);
}
}
/** \name Framebuffer color depth, for selection codes
* \{ */
#define STATE_STACK_DEPTH 16
typedef struct {
eGPUAttrMask mask;
/* GL_ENABLE_BIT */
uint is_blend : 1;
uint is_cull_face : 1;
uint is_depth_test : 1;
uint is_dither : 1;
uint is_lighting : 1;
uint is_line_smooth : 1;
uint is_color_logic_op : 1;
uint is_multisample : 1;
uint is_polygon_offset_line : 1;
uint is_polygon_offset_fill : 1;
uint is_polygon_smooth : 1;
uint is_sample_alpha_to_coverage : 1;
uint is_scissor_test : 1;
uint is_stencil_test : 1;
bool is_clip_plane[6];
/* GL_DEPTH_BUFFER_BIT */
/* uint is_depth_test : 1; */
int depth_func;
double depth_clear_value;
bool depth_write_mask;
/* GL_SCISSOR_BIT */
int scissor_box[4];
/* uint is_scissor_test : 1; */
/* GL_VIEWPORT_BIT */
int viewport[4];
double near_far[2];
} GPUAttrValues;
typedef struct {
GPUAttrValues attr_stack[STATE_STACK_DEPTH];
uint top;
} GPUAttrStack;
static GPUAttrStack state = {
.top = 0,
};
#define AttrStack state
#define Attr state.attr_stack[state.top]
/**
* Replacement for glPush/PopAttributes
*
* We don't need to cover all the options of legacy OpenGL
* but simply the ones used by Blender.
*/
void gpuPushAttr(eGPUAttrMask mask)
{
Attr.mask = mask;
if ((mask & GPU_DEPTH_BUFFER_BIT) != 0) {
Attr.is_depth_test = glIsEnabled(GL_DEPTH_TEST);
glGetIntegerv(GL_DEPTH_FUNC, &Attr.depth_func);
glGetDoublev(GL_DEPTH_CLEAR_VALUE, &Attr.depth_clear_value);
glGetBooleanv(GL_DEPTH_WRITEMASK, (GLboolean *)&Attr.depth_write_mask);
}
if ((mask & GPU_ENABLE_BIT) != 0) {
Attr.is_blend = glIsEnabled(GL_BLEND);
for (int i = 0; i < 6; i++) {
Attr.is_clip_plane[i] = glIsEnabled(GL_CLIP_PLANE0 + i);
}
Attr.is_cull_face = glIsEnabled(GL_CULL_FACE);
Attr.is_depth_test = glIsEnabled(GL_DEPTH_TEST);
Attr.is_dither = glIsEnabled(GL_DITHER);
Attr.is_line_smooth = glIsEnabled(GL_LINE_SMOOTH);
Attr.is_color_logic_op = glIsEnabled(GL_COLOR_LOGIC_OP);
Attr.is_multisample = glIsEnabled(GL_MULTISAMPLE);
Attr.is_polygon_offset_line = glIsEnabled(GL_POLYGON_OFFSET_LINE);
Attr.is_polygon_offset_fill = glIsEnabled(GL_POLYGON_OFFSET_FILL);
Attr.is_polygon_smooth = glIsEnabled(GL_POLYGON_SMOOTH);
Attr.is_sample_alpha_to_coverage = glIsEnabled(GL_SAMPLE_ALPHA_TO_COVERAGE);
Attr.is_scissor_test = glIsEnabled(GL_SCISSOR_TEST);
Attr.is_stencil_test = glIsEnabled(GL_STENCIL_TEST);
}
if ((mask & GPU_SCISSOR_BIT) != 0) {
Attr.is_scissor_test = glIsEnabled(GL_SCISSOR_TEST);
glGetIntegerv(GL_SCISSOR_BOX, (GLint *)&Attr.scissor_box);
}
if ((mask & GPU_VIEWPORT_BIT) != 0) {
glGetDoublev(GL_DEPTH_RANGE, (GLdouble *)&Attr.near_far);
glGetIntegerv(GL_VIEWPORT, (GLint *)&Attr.viewport);
}
if ((mask & GPU_BLEND_BIT) != 0) {
Attr.is_blend = glIsEnabled(GL_BLEND);
}
BLI_assert(AttrStack.top < STATE_STACK_DEPTH);
AttrStack.top++;
}
static void restore_mask(GLenum cap, const bool value)
{
if (value) {
glEnable(cap);
}
else {
glDisable(cap);
}
}
void gpuPopAttr(void)
{
BLI_assert(AttrStack.top > 0);
AttrStack.top--;
GLint mask = Attr.mask;
if ((mask & GPU_DEPTH_BUFFER_BIT) != 0) {
restore_mask(GL_DEPTH_TEST, Attr.is_depth_test);
glDepthFunc(Attr.depth_func);
glClearDepth(Attr.depth_clear_value);
glDepthMask(Attr.depth_write_mask);
}
if ((mask & GPU_ENABLE_BIT) != 0) {
restore_mask(GL_BLEND, Attr.is_blend);
for (int i = 0; i < 6; i++) {
restore_mask(GL_CLIP_PLANE0 + i, Attr.is_clip_plane[i]);
}
restore_mask(GL_CULL_FACE, Attr.is_cull_face);
restore_mask(GL_DEPTH_TEST, Attr.is_depth_test);
restore_mask(GL_DITHER, Attr.is_dither);
restore_mask(GL_LINE_SMOOTH, Attr.is_line_smooth);
restore_mask(GL_COLOR_LOGIC_OP, Attr.is_color_logic_op);
restore_mask(GL_MULTISAMPLE, Attr.is_multisample);
restore_mask(GL_POLYGON_OFFSET_LINE, Attr.is_polygon_offset_line);
restore_mask(GL_POLYGON_OFFSET_FILL, Attr.is_polygon_offset_fill);
restore_mask(GL_POLYGON_SMOOTH, Attr.is_polygon_smooth);
restore_mask(GL_SAMPLE_ALPHA_TO_COVERAGE, Attr.is_sample_alpha_to_coverage);
restore_mask(GL_SCISSOR_TEST, Attr.is_scissor_test);
restore_mask(GL_STENCIL_TEST, Attr.is_stencil_test);
}
if ((mask & GPU_VIEWPORT_BIT) != 0) {
glViewport(Attr.viewport[0], Attr.viewport[1], Attr.viewport[2], Attr.viewport[3]);
glDepthRange(Attr.near_far[0], Attr.near_far[1]);
}
if ((mask & GPU_SCISSOR_BIT) != 0) {
restore_mask(GL_SCISSOR_TEST, Attr.is_scissor_test);
glScissor(Attr.scissor_box[0], Attr.scissor_box[1], Attr.scissor_box[2], Attr.scissor_box[3]);
}
if ((mask & GPU_BLEND_BIT) != 0) {
restore_mask(GL_BLEND, Attr.is_blend);
}
}
#undef Attr
#undef AttrStack
/** \} */