322 lines
8.3 KiB
GLSL
322 lines
8.3 KiB
GLSL
/**
|
|
* Adapted from :
|
|
* Real-Time Polygonal-Light Shading with Linearly Transformed Cosines.
|
|
* Eric Heitz, Jonathan Dupuy, Stephen Hill and David Neubelt.
|
|
* ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH 2016) 35(4), 2016.
|
|
* Project page: https://eheitzresearch.wordpress.com/415-2/
|
|
**/
|
|
|
|
#define USE_LTC
|
|
|
|
#ifndef UTIL_TEX
|
|
#define UTIL_TEX
|
|
uniform sampler2DArray utilTex;
|
|
#define texelfetch_noise_tex(coord) texelFetch(utilTex, ivec3(ivec2(coord) % LUT_SIZE, 2.0), 0)
|
|
#endif /* UTIL_TEX */
|
|
|
|
/* Diffuse *clipped* sphere integral. */
|
|
float diffuse_sphere_integral_lut(float avg_dir_z, float form_factor)
|
|
{
|
|
vec2 uv = vec2(avg_dir_z * 0.5 + 0.5, form_factor);
|
|
uv = uv * (LUT_SIZE - 1.0) / LUT_SIZE + 0.5 / LUT_SIZE;
|
|
|
|
return texture(utilTex, vec3(uv, 1.0)).w;
|
|
}
|
|
|
|
float diffuse_sphere_integral_cheap(float avg_dir_z, float form_factor)
|
|
{
|
|
return max((form_factor * form_factor + avg_dir_z) / (form_factor + 1.0), 0.0);
|
|
}
|
|
|
|
/**
|
|
* An extended version of the implementation from
|
|
* "How to solve a cubic equation, revisited"
|
|
* http://momentsingraphics.de/?p=105
|
|
**/
|
|
vec3 solve_cubic(vec4 coefs)
|
|
{
|
|
/* Normalize the polynomial */
|
|
coefs.xyz /= coefs.w;
|
|
/* Divide middle coefficients by three */
|
|
coefs.yz /= 3.0;
|
|
|
|
float A = coefs.w;
|
|
float B = coefs.z;
|
|
float C = coefs.y;
|
|
float D = coefs.x;
|
|
|
|
/* Compute the Hessian and the discriminant */
|
|
vec3 delta = vec3(
|
|
-coefs.z*coefs.z + coefs.y,
|
|
-coefs.y*coefs.z + coefs.x,
|
|
dot(vec2(coefs.z, -coefs.y), coefs.xy)
|
|
);
|
|
|
|
/* Discriminant */
|
|
float discr = dot(vec2(4.0 * delta.x, -delta.y), delta.zy);
|
|
|
|
vec2 xlc, xsc;
|
|
|
|
/* Algorithm A */
|
|
{
|
|
float A_a = 1.0;
|
|
float C_a = delta.x;
|
|
float D_a = -2.0 * B * delta.x + delta.y;
|
|
|
|
/* Take the cubic root of a normalized complex number */
|
|
float theta = atan(sqrt(discr), -D_a) / 3.0;
|
|
|
|
float x_1a = 2.0 * sqrt(-C_a) * cos(theta);
|
|
float x_3a = 2.0 * sqrt(-C_a) * cos(theta + (2.0 / 3.0) * M_PI);
|
|
|
|
float xl;
|
|
if ((x_1a + x_3a) > 2.0 * B) {
|
|
xl = x_1a;
|
|
}
|
|
else {
|
|
xl = x_3a;
|
|
}
|
|
|
|
xlc = vec2(xl - B, A);
|
|
}
|
|
|
|
/* Algorithm D */
|
|
{
|
|
float A_d = D;
|
|
float C_d = delta.z;
|
|
float D_d = -D * delta.y + 2.0 * C * delta.z;
|
|
|
|
/* Take the cubic root of a normalized complex number */
|
|
float theta = atan(D * sqrt(discr), -D_d) / 3.0;
|
|
|
|
float x_1d = 2.0 * sqrt(-C_d) * cos(theta);
|
|
float x_3d = 2.0 * sqrt(-C_d) * cos(theta + (2.0 / 3.0) * M_PI);
|
|
|
|
float xs;
|
|
if (x_1d + x_3d < 2.0 * C)
|
|
xs = x_1d;
|
|
else
|
|
xs = x_3d;
|
|
|
|
xsc = vec2(-D, xs + C);
|
|
}
|
|
|
|
float E = xlc.y * xsc.y;
|
|
float F = -xlc.x * xsc.y - xlc.y * xsc.x;
|
|
float G = xlc.x * xsc.x;
|
|
|
|
vec2 xmc = vec2(C * F - B * G, -B * F + C * E);
|
|
|
|
vec3 root = vec3(xsc.x / xsc.y,
|
|
xmc.x / xmc.y,
|
|
xlc.x / xlc.y);
|
|
|
|
if (root.x < root.y && root.x < root.z) {
|
|
root.xyz = root.yxz;
|
|
}
|
|
else if (root.z < root.x && root.z < root.y) {
|
|
root.xyz = root.xzy;
|
|
}
|
|
|
|
return root;
|
|
}
|
|
|
|
/* from Real-Time Area Lighting: a Journey from Research to Production
|
|
* Stephen Hill and Eric Heitz */
|
|
vec3 edge_integral_vec(vec3 v1, vec3 v2)
|
|
{
|
|
float x = dot(v1, v2);
|
|
float y = abs(x);
|
|
|
|
float a = 0.8543985 + (0.4965155 + 0.0145206 * y) * y;
|
|
float b = 3.4175940 + (4.1616724 + y) * y;
|
|
float v = a / b;
|
|
|
|
float theta_sintheta = (x > 0.0) ? v : 0.5 * inversesqrt(max(1.0 - x * x, 1e-7)) - v;
|
|
|
|
return cross(v1, v2) * theta_sintheta;
|
|
}
|
|
|
|
mat3 ltc_matrix(vec4 lut)
|
|
{
|
|
/* load inverse matrix */
|
|
mat3 Minv = mat3(
|
|
vec3( 1, 0, lut.y),
|
|
vec3( 0, lut.z, 0),
|
|
vec3(lut.w, 0, lut.x)
|
|
);
|
|
|
|
return Minv;
|
|
}
|
|
|
|
void ltc_transform_quad(vec3 N, vec3 V, mat3 Minv, inout vec3 corners[4])
|
|
{
|
|
/* Avoid dot(N, V) == 1 in ortho mode, leading T1 normalize to fail. */
|
|
V = normalize(V + 1e-8);
|
|
|
|
/* construct orthonormal basis around N */
|
|
vec3 T1, T2;
|
|
T1 = normalize(V - N * dot(N, V));
|
|
T2 = cross(N, T1);
|
|
|
|
/* rotate area light in (T1, T2, R) basis */
|
|
Minv = Minv * transpose(mat3(T1, T2, N));
|
|
|
|
/* Apply LTC inverse matrix. */
|
|
corners[0] = normalize(Minv * corners[0]);
|
|
corners[1] = normalize(Minv * corners[1]);
|
|
corners[2] = normalize(Minv * corners[2]);
|
|
corners[3] = normalize(Minv * corners[3]);
|
|
}
|
|
|
|
/* If corners have already pass through ltc_transform_quad(), then N **MUST** be vec3(0.0, 0.0, 1.0),
|
|
* corresponding to the Up axis of the shading basis. */
|
|
float ltc_evaluate_quad(vec3 corners[4], vec3 N)
|
|
{
|
|
/* Approximation using a sphere of the same solid angle than the quad.
|
|
* Finding the clipped sphere diffuse integral is easier than clipping the quad. */
|
|
vec3 avg_dir;
|
|
avg_dir = edge_integral_vec(corners[0], corners[1]);
|
|
avg_dir += edge_integral_vec(corners[1], corners[2]);
|
|
avg_dir += edge_integral_vec(corners[2], corners[3]);
|
|
avg_dir += edge_integral_vec(corners[3], corners[0]);
|
|
|
|
float form_factor = length(avg_dir);
|
|
float avg_dir_z = dot(N, avg_dir / form_factor);
|
|
|
|
#if 1 /* use tabulated horizon-clipped sphere */
|
|
return form_factor * diffuse_sphere_integral_lut(avg_dir_z, form_factor);
|
|
#else /* Less accurate version, a bit cheaper. */
|
|
return form_factor * diffuse_sphere_integral_cheap(avg_dir_z, form_factor);
|
|
#endif
|
|
}
|
|
|
|
/* If disk does not need to be transformed and is already front facing. */
|
|
float ltc_evaluate_disk_simple(float disk_radius, float NL)
|
|
{
|
|
float r_sqr = disk_radius * disk_radius;
|
|
float one_r_sqr = 1.0 + r_sqr;
|
|
float form_factor = r_sqr * inversesqrt(one_r_sqr * one_r_sqr);
|
|
|
|
#if 1 /* use tabulated horizon-clipped sphere */
|
|
return form_factor * diffuse_sphere_integral_lut(NL, form_factor);
|
|
#else /* Less accurate version, a bit cheaper. */
|
|
return form_factor * diffuse_sphere_integral_cheap(NL, form_factor);
|
|
#endif
|
|
}
|
|
|
|
/* disk_points are WS vectors from the shading point to the disk "bounding domain" */
|
|
float ltc_evaluate_disk(vec3 N, vec3 V, mat3 Minv, vec3 disk_points[3])
|
|
{
|
|
/* Avoid dot(N, V) == 1 in ortho mode, leading T1 normalize to fail. */
|
|
V = normalize(V + 1e-8);
|
|
|
|
/* construct orthonormal basis around N */
|
|
vec3 T1, T2;
|
|
T1 = normalize(V - N * dot(V, N));
|
|
T2 = cross(N, T1);
|
|
|
|
/* rotate area light in (T1, T2, R) basis */
|
|
mat3 R = transpose(mat3(T1, T2, N));
|
|
|
|
/* Intermediate step: init ellipse. */
|
|
vec3 L_[3];
|
|
L_[0] = mul(R, disk_points[0]);
|
|
L_[1] = mul(R, disk_points[1]);
|
|
L_[2] = mul(R, disk_points[2]);
|
|
|
|
vec3 C = 0.5 * (L_[0] + L_[2]);
|
|
vec3 V1 = 0.5 * (L_[1] - L_[2]);
|
|
vec3 V2 = 0.5 * (L_[1] - L_[0]);
|
|
|
|
/* Transform ellipse by Minv. */
|
|
C = Minv * C;
|
|
V1 = Minv * V1;
|
|
V2 = Minv * V2;
|
|
|
|
/* Compute eigenvectors of new ellipse. */
|
|
|
|
float d11 = dot(V1, V1);
|
|
float d22 = dot(V2, V2);
|
|
float d12 = dot(V1, V2);
|
|
float a, b; /* Eigenvalues */
|
|
const float threshold = 0.0007; /* Can be adjusted. Fix artifacts. */
|
|
if (abs(d12) / sqrt(d11 * d22) > threshold) {
|
|
float tr = d11 + d22;
|
|
float det = -d12 * d12 + d11 * d22;
|
|
|
|
/* use sqrt matrix to solve for eigenvalues */
|
|
det = sqrt(det);
|
|
float u = 0.5 * sqrt(tr - 2.0 * det);
|
|
float v = 0.5 * sqrt(tr + 2.0 * det);
|
|
float e_max = (u + v);
|
|
float e_min = (u - v);
|
|
e_max *= e_max;
|
|
e_min *= e_min;
|
|
|
|
vec3 V1_, V2_;
|
|
if (d11 > d22) {
|
|
V1_ = d12 * V1 + (e_max - d11) * V2;
|
|
V2_ = d12 * V1 + (e_min - d11) * V2;
|
|
}
|
|
else {
|
|
V1_ = d12 * V2 + (e_max - d22) * V1;
|
|
V2_ = d12 * V2 + (e_min - d22) * V1;
|
|
}
|
|
|
|
a = 1.0 / e_max;
|
|
b = 1.0 / e_min;
|
|
V1 = normalize(V1_);
|
|
V2 = normalize(V2_);
|
|
}
|
|
else {
|
|
a = 1.0 / d11;
|
|
b = 1.0 / d22;
|
|
V1 *= sqrt(a);
|
|
V2 *= sqrt(b);
|
|
}
|
|
|
|
/* Now find front facing ellipse with same solid angle. */
|
|
|
|
vec3 V3 = normalize(cross(V1, V2));
|
|
if (dot(C, V3) < 0.0)
|
|
V3 *= -1.0;
|
|
|
|
float L = dot(V3, C);
|
|
float x0 = dot(V1, C) / L;
|
|
float y0 = dot(V2, C) / L;
|
|
|
|
a *= L*L;
|
|
b *= L*L;
|
|
|
|
float c0 = a * b;
|
|
float c1 = a * b * (1.0 + x0 * x0 + y0 * y0) - a - b;
|
|
float c2 = 1.0 - a * (1.0 + x0 * x0) - b * (1.0 + y0 * y0);
|
|
float c3 = 1.0;
|
|
|
|
vec3 roots = solve_cubic(vec4(c0, c1, c2, c3));
|
|
float e1 = roots.x;
|
|
float e2 = roots.y;
|
|
float e3 = roots.z;
|
|
|
|
vec3 avg_dir = vec3(a * x0 / (a - e2), b * y0 / (b - e2), 1.0);
|
|
|
|
mat3 rotate = mat3(V1, V2, V3);
|
|
|
|
avg_dir = rotate * avg_dir;
|
|
avg_dir = normalize(avg_dir);
|
|
|
|
/* L1, L2 are the extends of the front facing ellipse. */
|
|
float L1 = sqrt(-e2/e3);
|
|
float L2 = sqrt(-e2/e1);
|
|
|
|
/* Find the sphere and compute lighting. */
|
|
float form_factor = max(0.0, L1 * L2 * inversesqrt((1.0 + L1 * L1) * (1.0 + L2 * L2)));
|
|
|
|
#if 1 /* use tabulated horizon-clipped sphere */
|
|
return form_factor * diffuse_sphere_integral_lut(avg_dir.z, form_factor);
|
|
#else /* Less accurate version, a bit cheaper. */
|
|
return form_factor * diffuse_sphere_integral_cheap(avg_dir.z, form_factor);
|
|
#endif
|
|
}
|