This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/draw/modes/shaders/armature_envelope_outline_vert.glsl

157 lines
4.4 KiB
GLSL

uniform mat4 ViewMatrix;
uniform mat4 ViewMatrixInverse;
uniform mat4 ViewProjectionMatrix;
uniform mat4 ProjectionMatrix;
uniform vec2 viewportSize;
uniform float lineThickness = 2.0;
/* ---- Instantiated Attribs ---- */
in vec2 pos0;
in vec2 pos1;
in vec2 pos2;
/* ---- Per instance Attribs ---- */
/* Assumed to be in world coordinate already. */
in vec4 headSphere;
in vec4 tailSphere;
in vec4 outlineColorSize;
in vec3 xAxis;
flat out vec4 finalColor;
/* project to screen space */
vec2 proj(vec4 pos)
{
return (0.5 * (pos.xy / pos.w) + 0.5) * viewportSize;
}
vec2 compute_dir(vec2 v0, vec2 v1, vec2 v2)
{
vec2 dir = normalize(v2 - v0);
dir = vec2(dir.y, -dir.x);
return dir;
}
mat3 compute_mat(vec4 sphere, vec3 bone_vec, out float z_ofs)
{
bool is_persp = (ProjectionMatrix[3][3] == 0.0);
vec3 cam_ray = (is_persp) ? sphere.xyz - ViewMatrixInverse[3].xyz
: -ViewMatrixInverse[2].xyz;
/* Sphere center distance from the camera (persp) in world space. */
float cam_dist = length(cam_ray);
/* Compute view aligned orthonormal space. */
vec3 z_axis = cam_ray / cam_dist;
vec3 x_axis = normalize(cross(bone_vec, z_axis));
vec3 y_axis = cross(z_axis, x_axis);
z_ofs = 0.0;
if (is_persp) {
/* For perspective, the projected sphere radius
* can be bigger than the center disc. Compute the
* max angular size and compensate by sliding the disc
* towards the camera and scale it accordingly. */
const float half_pi = 3.1415926 * 0.5;
float rad = sphere.w;
/* Let be :
* V the view vector origin.
* O the sphere origin.
* T the point on the target circle.
* We compute the angle between (OV) and (OT). */
float a = half_pi - asin(rad / cam_dist);
float cos_b = cos(a);
float sin_b = sqrt(clamp(1.0 - cos_b * cos_b, 0.0, 1.0));
x_axis *= sin_b;
y_axis *= sin_b;
z_ofs = -rad * cos_b;
}
return mat3(x_axis, y_axis, z_axis);
}
struct Bone { vec3 vec; float sinb; };
bool bone_blend_starts(vec3 p, Bone b)
{
/* we just want to know when the head sphere starts interpolating. */
return dot(p, b.vec) > -b.sinb;
}
vec3 get_outline_point(
vec2 pos, vec4 sph_near, vec4 sph_far,
mat3 mat_near, mat3 mat_far, float z_ofs_near, float z_ofs_far, Bone b)
{
/* Compute outline position on the nearest sphere and check
* if it penetrates the capsule body. If it does, put this
* vertex on the farthest sphere. */
vec3 wpos = mat_near * vec3(pos * sph_near.w, z_ofs_near);
if (bone_blend_starts(wpos, b)) {
wpos = sph_far.xyz + mat_far * vec3(pos * sph_far.w, z_ofs_far);
}
else {
wpos += sph_near.xyz;
}
return wpos;
}
void main()
{
float dst_head = distance(headSphere.xyz, ViewMatrixInverse[3].xyz);
float dst_tail = distance(tailSphere.xyz, ViewMatrixInverse[3].xyz);
// float dst_head = -dot(headSphere.xyz, ViewMatrix[2].xyz);
// float dst_tail = -dot(tailSphere.xyz, ViewMatrix[2].xyz);
vec4 sph_near, sph_far;
if ((dst_head > dst_tail) && (ProjectionMatrix[3][3] == 0.0)) {
sph_near = tailSphere;
sph_far = headSphere;
}
else {
sph_near = headSphere;
sph_far = tailSphere;
}
vec3 bone_vec = (sph_far.xyz - sph_near.xyz) + 1e-8;
Bone b;
float bone_lenrcp = 1.0 / max(1e-8, sqrt(dot(bone_vec, bone_vec)));
b.sinb = (sph_far.w - sph_near.w) * bone_lenrcp * sph_near.w;
b.vec = bone_vec * bone_lenrcp;
float z_ofs_near, z_ofs_far;
mat3 mat_near = compute_mat(sph_near, bone_vec, z_ofs_near);
mat3 mat_far = compute_mat(sph_far, bone_vec, z_ofs_far);
vec3 wpos0 = get_outline_point(pos0, sph_near, sph_far, mat_near, mat_far, z_ofs_near, z_ofs_far, b);
vec3 wpos1 = get_outline_point(pos1, sph_near, sph_far, mat_near, mat_far, z_ofs_near, z_ofs_far, b);
vec3 wpos2 = get_outline_point(pos2, sph_near, sph_far, mat_near, mat_far, z_ofs_near, z_ofs_far, b);
vec4 V = ViewMatrix * vec4(wpos1, 1.0);
float pres_fac = (ProjectionMatrix[3][3] == 0.0) ? abs(V.z) : 1.0;
vec4 p0 = ViewProjectionMatrix * vec4(wpos0, 1.0);
vec4 p1 = ProjectionMatrix * V;
vec4 p2 = ViewProjectionMatrix * vec4(wpos2, 1.0);
/* compute position from 3 vertex because the change in direction
* can happen very quicky and lead to very thin edges. */
vec2 ss0 = proj(p0);
vec2 ss1 = proj(p1);
vec2 ss2 = proj(p2);
vec2 edge_dir = compute_dir(ss0, ss1, ss2);
bool outer = ((gl_VertexID & 1) == 1);
vec2 t = outlineColorSize.w * (lineThickness / viewportSize);
t *= pres_fac;
t = (outer) ? t : vec2(0.0);
gl_Position = p1;
gl_Position.xy += t * edge_dir;
finalColor = vec4(outlineColorSize.rgb, 1.0);
}