This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/gpu/intern/gpu_codegen.c
Lukas Stockner 7d8a186335 Fix T73133: UDIM texture count in Eevee is limited by OpenGL
Based on @fclem's suggestion in D6421, this commit implements support for
storing all tiles of a UDIM texture in a single 2D array texture on the GPU.

Previously, Eevee was binding one OpenGL texture per tile, quickly running
into hardware limits with nontrivial UDIM texture sets.
Workbench meanwhile had no UDIM support at all, as reusing the per-tile
approach would require splitting the mesh by tile as well as texture.

With this commit, both Workbench as well as Eevee now support huge numbers
of tiles, with the eventual limits being GPU memory and ultimately
GL_MAX_ARRAY_TEXTURE_LAYERS, which tends to be in the 1000s on modern GPUs.

Initially my plan was to have one array texture per unique size, but managing
the different textures and keeping everything consistent ended up being way
too complex.

Therefore, we now use a simpler version that allocates a texture that
is large enough to fit the largest tile and then packs all tiles into as many
layers as necessary.

As a result, each UDIM texture only binds two textures (one for the actual
images, one for metadata) regardless of how many tiles are used.

Note that this rolls back per-tile GPUTextures, meaning that we again have
per-Image GPUTextures like we did before the original UDIM commit,
but now with four instead of two types.

Reviewed By: fclem

Differential Revision: https://developer.blender.org/D6456
2020-01-16 02:06:49 +01:00

2333 lines
68 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2005 Blender Foundation.
* All rights reserved.
*/
/** \file
* \ingroup gpu
*
* Convert material node-trees to GLSL.
*/
#include "MEM_guardedalloc.h"
#include "DNA_customdata_types.h"
#include "DNA_image_types.h"
#include "DNA_material_types.h"
#include "DNA_node_types.h"
#include "BLI_blenlib.h"
#include "BLI_hash_mm2a.h"
#include "BLI_link_utils.h"
#include "BLI_utildefines.h"
#include "BLI_dynstr.h"
#include "BLI_ghash.h"
#include "BLI_threads.h"
#include "PIL_time.h"
#include "GPU_extensions.h"
#include "GPU_glew.h"
#include "GPU_material.h"
#include "GPU_shader.h"
#include "GPU_uniformbuffer.h"
#include "GPU_vertex_format.h"
#include "BLI_sys_types.h" /* for intptr_t support */
#include "gpu_codegen.h"
#include "gpu_material_library.h"
#include <string.h>
#include <stdarg.h>
extern char datatoc_gpu_shader_material_glsl[];
extern char datatoc_gpu_shader_geometry_glsl[];
extern char datatoc_gpu_shader_common_obinfos_lib_glsl[];
extern char datatoc_common_view_lib_glsl[];
/* -------------------- GPUPass Cache ------------------ */
/**
* Internal shader cache: This prevent the shader recompilation / stall when
* using undo/redo AND also allows for GPUPass reuse if the Shader code is the
* same for 2 different Materials. Unused GPUPasses are free by Garbage collection.
*/
/* Only use one linklist that contains the GPUPasses grouped by hash. */
static GPUPass *pass_cache = NULL;
static SpinLock pass_cache_spin;
static uint32_t gpu_pass_hash(const char *frag_gen, const char *defs, GPUVertAttrLayers *attrs)
{
BLI_HashMurmur2A hm2a;
BLI_hash_mm2a_init(&hm2a, 0);
BLI_hash_mm2a_add(&hm2a, (uchar *)frag_gen, strlen(frag_gen));
if (attrs) {
for (int att_idx = 0; att_idx < attrs->totlayer; att_idx++) {
char *name = attrs->layer[att_idx].name;
BLI_hash_mm2a_add(&hm2a, (uchar *)name, strlen(name));
}
}
if (defs) {
BLI_hash_mm2a_add(&hm2a, (uchar *)defs, strlen(defs));
}
return BLI_hash_mm2a_end(&hm2a);
}
/* Search by hash only. Return first pass with the same hash.
* There is hash collision if (pass->next && pass->next->hash == hash) */
static GPUPass *gpu_pass_cache_lookup(uint32_t hash)
{
BLI_spin_lock(&pass_cache_spin);
/* Could be optimized with a Lookup table. */
for (GPUPass *pass = pass_cache; pass; pass = pass->next) {
if (pass->hash == hash) {
BLI_spin_unlock(&pass_cache_spin);
return pass;
}
}
BLI_spin_unlock(&pass_cache_spin);
return NULL;
}
/* Check all possible passes with the same hash. */
static GPUPass *gpu_pass_cache_resolve_collision(GPUPass *pass,
const char *vert,
const char *geom,
const char *frag,
const char *defs,
uint32_t hash)
{
BLI_spin_lock(&pass_cache_spin);
/* Collision, need to strcmp the whole shader. */
for (; pass && (pass->hash == hash); pass = pass->next) {
if ((defs != NULL) && (strcmp(pass->defines, defs) != 0)) { /* Pass */
}
else if ((geom != NULL) && (strcmp(pass->geometrycode, geom) != 0)) { /* Pass */
}
else if ((strcmp(pass->fragmentcode, frag) == 0) && (strcmp(pass->vertexcode, vert) == 0)) {
BLI_spin_unlock(&pass_cache_spin);
return pass;
}
}
BLI_spin_unlock(&pass_cache_spin);
return NULL;
}
/* -------------------- GPU Codegen ------------------ */
/* type definitions and constants */
#define MAX_FUNCTION_NAME 64
#define MAX_PARAMETER 32
typedef enum {
FUNCTION_QUAL_IN,
FUNCTION_QUAL_OUT,
FUNCTION_QUAL_INOUT,
} GPUFunctionQual;
typedef struct GPUFunction {
char name[MAX_FUNCTION_NAME];
eGPUType paramtype[MAX_PARAMETER];
GPUFunctionQual paramqual[MAX_PARAMETER];
int totparam;
GPUMaterialLibrary *library;
} GPUFunction;
/* Indices match the eGPUType enum */
static const char *GPU_DATATYPE_STR[17] = {
"",
"float",
"vec2",
"vec3",
"vec4",
NULL,
NULL,
NULL,
NULL,
"mat3",
NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
"mat4",
};
/* GLSL code parsing for finding function definitions.
* These are stored in a hash for lookup when creating a material. */
static GHash *FUNCTION_HASH = NULL;
#if 0
static char *FUNCTION_PROTOTYPES = NULL;
static GPUShader *FUNCTION_LIB = NULL;
#endif
static int gpu_str_prefix(const char *str, const char *prefix)
{
while (*str && *prefix) {
if (*str != *prefix) {
return 0;
}
str++;
prefix++;
}
return (*prefix == '\0');
}
static char *gpu_str_skip_token(char *str, char *token, int max)
{
int len = 0;
/* skip a variable/function name */
while (*str) {
if (ELEM(*str, ' ', '(', ')', ',', ';', '\t', '\n', '\r')) {
break;
}
else {
if (token && len < max - 1) {
*token = *str;
token++;
len++;
}
str++;
}
}
if (token) {
*token = '\0';
}
/* skip the next special characters:
* note the missing ')' */
while (*str) {
if (ELEM(*str, ' ', '(', ',', ';', '\t', '\n', '\r')) {
str++;
}
else {
break;
}
}
return str;
}
static void gpu_parse_material_library(GHash *hash, GPUMaterialLibrary *library)
{
GPUFunction *function;
eGPUType type;
GPUFunctionQual qual;
int i;
char *code = library->code;
while ((code = strstr(code, "void "))) {
function = MEM_callocN(sizeof(GPUFunction), "GPUFunction");
function->library = library;
code = gpu_str_skip_token(code, NULL, 0);
code = gpu_str_skip_token(code, function->name, MAX_FUNCTION_NAME);
/* get parameters */
while (*code && *code != ')') {
/* test if it's an input or output */
qual = FUNCTION_QUAL_IN;
if (gpu_str_prefix(code, "out ")) {
qual = FUNCTION_QUAL_OUT;
}
if (gpu_str_prefix(code, "inout ")) {
qual = FUNCTION_QUAL_INOUT;
}
if ((qual != FUNCTION_QUAL_IN) || gpu_str_prefix(code, "in ")) {
code = gpu_str_skip_token(code, NULL, 0);
}
/* test for type */
type = GPU_NONE;
for (i = 1; i < ARRAY_SIZE(GPU_DATATYPE_STR); i++) {
if (GPU_DATATYPE_STR[i] && gpu_str_prefix(code, GPU_DATATYPE_STR[i])) {
type = i;
break;
}
}
if (!type && gpu_str_prefix(code, "samplerCube")) {
type = GPU_TEXCUBE;
}
if (!type && gpu_str_prefix(code, "sampler2DShadow")) {
type = GPU_SHADOW2D;
}
if (!type && gpu_str_prefix(code, "sampler1DArray")) {
type = GPU_TEX1D_ARRAY;
}
if (!type && gpu_str_prefix(code, "sampler2DArray")) {
type = GPU_TEX2D_ARRAY;
}
if (!type && gpu_str_prefix(code, "sampler2D")) {
type = GPU_TEX2D;
}
if (!type && gpu_str_prefix(code, "sampler3D")) {
type = GPU_TEX3D;
}
if (!type && gpu_str_prefix(code, "Closure")) {
type = GPU_CLOSURE;
}
if (type) {
/* add parameter */
code = gpu_str_skip_token(code, NULL, 0);
code = gpu_str_skip_token(code, NULL, 0);
function->paramqual[function->totparam] = qual;
function->paramtype[function->totparam] = type;
function->totparam++;
}
else {
fprintf(stderr, "GPU invalid function parameter in %s.\n", function->name);
break;
}
}
if (function->name[0] == '\0' || function->totparam == 0) {
fprintf(stderr, "GPU functions parse error.\n");
MEM_freeN(function);
break;
}
BLI_ghash_insert(hash, function->name, function);
}
}
#if 0
static char *gpu_generate_function_prototyps(GHash *hash)
{
DynStr *ds = BLI_dynstr_new();
GHashIterator *ghi;
GPUFunction *function;
char *name, *prototypes;
int a;
/* automatically generate function prototypes to add to the top of the
* generated code, to avoid have to add the actual code & recompile all */
ghi = BLI_ghashIterator_new(hash);
for (; !BLI_ghashIterator_done(ghi); BLI_ghashIterator_step(ghi)) {
name = BLI_ghashIterator_getValue(ghi);
function = BLI_ghashIterator_getValue(ghi);
BLI_dynstr_appendf(ds, "void %s(", name);
for (a = 0; a < function->totparam; a++) {
if (function->paramqual[a] == FUNCTION_QUAL_OUT) {
BLI_dynstr_append(ds, "out ");
}
else if (function->paramqual[a] == FUNCTION_QUAL_INOUT) {
BLI_dynstr_append(ds, "inout ");
}
if (function->paramtype[a] == GPU_TEX2D) {
BLI_dynstr_append(ds, "sampler2D");
}
else if (function->paramtype[a] == GPU_SHADOW2D) {
BLI_dynstr_append(ds, "sampler2DShadow");
}
else {
BLI_dynstr_append(ds, GPU_DATATYPE_STR[function->paramtype[a]]);
}
# if 0
BLI_dynstr_appendf(ds, " param%d", a);
# endif
if (a != function->totparam - 1) {
BLI_dynstr_append(ds, ", ");
}
}
BLI_dynstr_append(ds, ");\n");
}
BLI_dynstr_append(ds, "\n");
prototypes = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
return prototypes;
}
#endif
static GPUFunction *gpu_lookup_function(const char *name)
{
return BLI_ghash_lookup(FUNCTION_HASH, (const void *)name);
}
void gpu_codegen_init(void)
{
GPU_code_generate_glsl_lib();
}
void gpu_codegen_exit(void)
{
extern Material defmaterial; /* render module abuse... */
if (defmaterial.gpumaterial.first) {
GPU_material_free(&defmaterial.gpumaterial);
}
if (FUNCTION_HASH) {
BLI_ghash_free(FUNCTION_HASH, NULL, MEM_freeN);
FUNCTION_HASH = NULL;
}
GPU_shader_free_builtin_shaders();
#if 0
if (FUNCTION_PROTOTYPES) {
MEM_freeN(FUNCTION_PROTOTYPES);
FUNCTION_PROTOTYPES = NULL;
}
if (FUNCTION_LIB) {
GPU_shader_free(FUNCTION_LIB);
FUNCTION_LIB = NULL;
}
#endif
}
/* GLSL code generation */
static void codegen_convert_datatype(DynStr *ds, int from, int to, const char *tmp, int id)
{
char name[1024];
BLI_snprintf(name, sizeof(name), "%s%d", tmp, id);
if (from == to) {
BLI_dynstr_append(ds, name);
}
else if (to == GPU_FLOAT) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "dot(%s.rgb, vec3(0.2126, 0.7152, 0.0722))", name);
}
else if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "(%s.r + %s.g + %s.b) / 3.0", name, name, name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "%s.r", name);
}
}
else if (to == GPU_VEC2) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "vec2((%s.r + %s.g + %s.b) / 3.0, %s.a)", name, name, name, name);
}
else if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "vec2((%s.r + %s.g + %s.b) / 3.0, 1.0)", name, name, name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "vec2(%s, 1.0)", name);
}
}
else if (to == GPU_VEC3) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "%s.rgb", name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "vec3(%s.r, %s.r, %s.r)", name, name, name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "vec3(%s, %s, %s)", name, name, name);
}
}
else if (to == GPU_VEC4) {
if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "vec4(%s, 1.0)", name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "vec4(%s.r, %s.r, %s.r, %s.g)", name, name, name, name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "vec4(%s, %s, %s, 1.0)", name, name, name);
}
}
else if (to == GPU_CLOSURE) {
if (from == GPU_VEC4) {
BLI_dynstr_appendf(ds, "closure_emission(%s.rgb)", name);
}
else if (from == GPU_VEC3) {
BLI_dynstr_appendf(ds, "closure_emission(%s.rgb)", name);
}
else if (from == GPU_VEC2) {
BLI_dynstr_appendf(ds, "closure_emission(%s.rrr)", name);
}
else if (from == GPU_FLOAT) {
BLI_dynstr_appendf(ds, "closure_emission(vec3(%s, %s, %s))", name, name, name);
}
}
else {
BLI_dynstr_append(ds, name);
}
}
static void codegen_print_datatype(DynStr *ds, const eGPUType type, float *data)
{
int i;
BLI_dynstr_appendf(ds, "%s(", GPU_DATATYPE_STR[type]);
for (i = 0; i < type; i++) {
BLI_dynstr_appendf(ds, "%.12f", data[i]);
if (i == type - 1) {
BLI_dynstr_append(ds, ")");
}
else {
BLI_dynstr_append(ds, ", ");
}
}
}
static int codegen_input_has_texture(GPUInput *input)
{
if (input->link) {
return 0;
}
else {
return (input->source == GPU_SOURCE_TEX);
}
}
const char *GPU_builtin_name(eGPUBuiltin builtin)
{
if (builtin == GPU_VIEW_MATRIX) {
return "unfviewmat";
}
else if (builtin == GPU_OBJECT_MATRIX) {
return "unfobmat";
}
else if (builtin == GPU_INVERSE_VIEW_MATRIX) {
return "unfinvviewmat";
}
else if (builtin == GPU_INVERSE_OBJECT_MATRIX) {
return "unfinvobmat";
}
else if (builtin == GPU_LOC_TO_VIEW_MATRIX) {
return "unflocaltoviewmat";
}
else if (builtin == GPU_INVERSE_LOC_TO_VIEW_MATRIX) {
return "unfinvlocaltoviewmat";
}
else if (builtin == GPU_VIEW_POSITION) {
return "varposition";
}
else if (builtin == GPU_WORLD_NORMAL) {
return "varwnormal";
}
else if (builtin == GPU_VIEW_NORMAL) {
return "varnormal";
}
else if (builtin == GPU_OBJECT_COLOR) {
return "unfobjectcolor";
}
else if (builtin == GPU_AUTO_BUMPSCALE) {
return "unfobautobumpscale";
}
else if (builtin == GPU_CAMERA_TEXCO_FACTORS) {
return "unfcameratexfactors";
}
else if (builtin == GPU_PARTICLE_SCALAR_PROPS) {
return "unfparticlescalarprops";
}
else if (builtin == GPU_PARTICLE_LOCATION) {
return "unfparticleco";
}
else if (builtin == GPU_PARTICLE_VELOCITY) {
return "unfparticlevel";
}
else if (builtin == GPU_PARTICLE_ANG_VELOCITY) {
return "unfparticleangvel";
}
else if (builtin == GPU_OBJECT_INFO) {
return "unfobjectinfo";
}
else if (builtin == GPU_VOLUME_DENSITY) {
return "sampdensity";
}
else if (builtin == GPU_VOLUME_FLAME) {
return "sampflame";
}
else if (builtin == GPU_VOLUME_TEMPERATURE) {
return "unftemperature";
}
else if (builtin == GPU_BARYCENTRIC_TEXCO) {
return "unfbarycentrictex";
}
else if (builtin == GPU_BARYCENTRIC_DIST) {
return "unfbarycentricdist";
}
else {
return "";
}
}
/* assign only one texid per buffer to avoid sampling the same texture twice */
static void codegen_set_texid(GHash *bindhash, GPUInput *input, int *texid, void *key1, int key2)
{
GHashPair pair = {key1, POINTER_FROM_INT(key2)};
if (BLI_ghash_haskey(bindhash, &pair)) {
/* Reuse existing texid */
input->texid = POINTER_AS_INT(BLI_ghash_lookup(bindhash, &pair));
}
else {
/* Allocate new texid */
input->texid = *texid;
(*texid)++;
input->bindtex = true;
void *key = BLI_ghashutil_pairalloc(key1, POINTER_FROM_INT(key2));
BLI_ghash_insert(bindhash, key, POINTER_FROM_INT(input->texid));
}
}
static void codegen_set_unique_ids(ListBase *nodes)
{
GHash *bindhash;
GPUNode *node;
GPUInput *input;
GPUOutput *output;
int id = 1, texid = 0;
bindhash = BLI_ghash_pair_new("codegen_set_unique_ids1 gh");
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
/* set id for unique names of uniform variables */
input->id = id++;
/* set texid used for settings texture slot */
if (codegen_input_has_texture(input)) {
input->bindtex = false;
if (input->ima) {
/* input is texture from image */
codegen_set_texid(bindhash, input, &texid, input->ima, input->type);
}
else if (input->coba) {
/* input is color band texture, check coba pointer */
codegen_set_texid(bindhash, input, &texid, input->coba, 0);
}
else {
/* Either input->ima or input->coba should be non-NULL. */
BLI_assert(0);
}
}
}
for (output = node->outputs.first; output; output = output->next) {
/* set id for unique names of tmp variables storing output */
output->id = id++;
}
}
BLI_ghash_free(bindhash, BLI_ghashutil_pairfree, NULL);
}
/**
* It will create an UBO for GPUMaterial if there is any GPU_DYNAMIC_UBO.
*/
static int codegen_process_uniforms_functions(GPUMaterial *material, DynStr *ds, ListBase *nodes)
{
GPUNode *node;
GPUInput *input;
const char *name;
int builtins = 0;
ListBase ubo_inputs = {NULL, NULL};
/* print uniforms */
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_TEX) {
/* create exactly one sampler for each texture */
if (codegen_input_has_texture(input) && input->bindtex) {
const char *type;
if (input->coba || input->type == GPU_TEX1D_ARRAY) {
type = "sampler1DArray";
}
else if (input->type == GPU_TEX2D_ARRAY) {
type = "sampler2DArray";
}
else {
BLI_assert(input->type == GPU_TEX2D);
type = "sampler2D";
}
BLI_dynstr_appendf(ds, "uniform %s samp%d;\n", type, input->texid);
}
}
else if (input->source == GPU_SOURCE_BUILTIN) {
/* only define each builtin uniform/varying once */
if (!(builtins & input->builtin)) {
builtins |= input->builtin;
name = GPU_builtin_name(input->builtin);
if (gpu_str_prefix(name, "samp")) {
if ((input->builtin == GPU_VOLUME_DENSITY) || (input->builtin == GPU_VOLUME_FLAME)) {
BLI_dynstr_appendf(ds, "uniform sampler3D %s;\n", name);
}
}
else if (gpu_str_prefix(name, "unf")) {
BLI_dynstr_appendf(ds, "uniform %s %s;\n", GPU_DATATYPE_STR[input->type], name);
}
else {
BLI_dynstr_appendf(ds, "in %s %s;\n", GPU_DATATYPE_STR[input->type], name);
}
}
}
else if (input->source == GPU_SOURCE_STRUCT) {
/* Add other struct here if needed. */
BLI_dynstr_appendf(ds, "Closure strct%d = CLOSURE_DEFAULT;\n", input->id);
}
else if (input->source == GPU_SOURCE_UNIFORM) {
if (!input->link) {
/* We handle the UBOuniforms separately. */
BLI_addtail(&ubo_inputs, BLI_genericNodeN(input));
}
}
else if (input->source == GPU_SOURCE_CONSTANT) {
BLI_dynstr_appendf(ds, "const %s cons%d = ", GPU_DATATYPE_STR[input->type], input->id);
codegen_print_datatype(ds, input->type, input->vec);
BLI_dynstr_append(ds, ";\n");
}
else if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
BLI_dynstr_appendf(ds, "in %s var%d;\n", GPU_DATATYPE_STR[input->type], input->attr_id);
}
}
}
/* Handle the UBO block separately. */
if ((material != NULL) && !BLI_listbase_is_empty(&ubo_inputs)) {
GPU_material_uniform_buffer_create(material, &ubo_inputs);
/* Inputs are sorted */
BLI_dynstr_appendf(ds, "\nlayout (std140) uniform %s {\n", GPU_UBO_BLOCK_NAME);
for (LinkData *link = ubo_inputs.first; link; link = link->next) {
input = link->data;
BLI_dynstr_appendf(ds, "\t%s unf%d;\n", GPU_DATATYPE_STR[input->type], input->id);
}
BLI_dynstr_append(ds, "};\n");
BLI_freelistN(&ubo_inputs);
}
BLI_dynstr_append(ds, "\n");
return builtins;
}
static void codegen_declare_tmps(DynStr *ds, ListBase *nodes)
{
GPUNode *node;
GPUOutput *output;
for (node = nodes->first; node; node = node->next) {
/* declare temporary variables for node output storage */
for (output = node->outputs.first; output; output = output->next) {
if (output->type == GPU_CLOSURE) {
BLI_dynstr_appendf(ds, "\tClosure tmp%d;\n", output->id);
}
else {
BLI_dynstr_appendf(ds, "\t%s tmp%d;\n", GPU_DATATYPE_STR[output->type], output->id);
}
}
}
BLI_dynstr_append(ds, "\n");
}
static void codegen_call_functions(DynStr *ds, ListBase *nodes, GPUOutput *finaloutput)
{
GPUNode *node;
GPUInput *input;
GPUOutput *output;
for (node = nodes->first; node; node = node->next) {
BLI_dynstr_appendf(ds, "\t%s(", node->name);
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_TEX) {
BLI_dynstr_appendf(ds, "samp%d", input->texid);
}
else if (input->source == GPU_SOURCE_OUTPUT) {
codegen_convert_datatype(
ds, input->link->output->type, input->type, "tmp", input->link->output->id);
}
else if (input->source == GPU_SOURCE_BUILTIN) {
/* TODO(fclem) get rid of that. */
if (input->builtin == GPU_INVERSE_VIEW_MATRIX) {
BLI_dynstr_append(ds, "viewinv");
}
else if (input->builtin == GPU_VIEW_MATRIX) {
BLI_dynstr_append(ds, "viewmat");
}
else if (input->builtin == GPU_CAMERA_TEXCO_FACTORS) {
BLI_dynstr_append(ds, "camtexfac");
}
else if (input->builtin == GPU_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds, "localtoviewmat");
}
else if (input->builtin == GPU_INVERSE_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds, "invlocaltoviewmat");
}
else if (input->builtin == GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "barycentricDist");
}
else if (input->builtin == GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "barytexco");
}
else if (input->builtin == GPU_OBJECT_MATRIX) {
BLI_dynstr_append(ds, "objmat");
}
else if (input->builtin == GPU_OBJECT_INFO) {
BLI_dynstr_append(ds, "ObjectInfo");
}
else if (input->builtin == GPU_OBJECT_COLOR) {
BLI_dynstr_append(ds, "ObjectColor");
}
else if (input->builtin == GPU_INVERSE_OBJECT_MATRIX) {
BLI_dynstr_append(ds, "objinv");
}
else if (input->builtin == GPU_VIEW_POSITION) {
BLI_dynstr_append(ds, "viewposition");
}
else if (input->builtin == GPU_VIEW_NORMAL) {
BLI_dynstr_append(ds, "facingnormal");
}
else if (input->builtin == GPU_WORLD_NORMAL) {
BLI_dynstr_append(ds, "facingwnormal");
}
else {
BLI_dynstr_append(ds, GPU_builtin_name(input->builtin));
}
}
else if (input->source == GPU_SOURCE_STRUCT) {
BLI_dynstr_appendf(ds, "strct%d", input->id);
}
else if (input->source == GPU_SOURCE_UNIFORM) {
BLI_dynstr_appendf(ds, "unf%d", input->id);
}
else if (input->source == GPU_SOURCE_CONSTANT) {
BLI_dynstr_appendf(ds, "cons%d", input->id);
}
else if (input->source == GPU_SOURCE_ATTR) {
BLI_dynstr_appendf(ds, "var%d", input->attr_id);
}
BLI_dynstr_append(ds, ", ");
}
for (output = node->outputs.first; output; output = output->next) {
BLI_dynstr_appendf(ds, "tmp%d", output->id);
if (output->next) {
BLI_dynstr_append(ds, ", ");
}
}
BLI_dynstr_append(ds, ");\n");
}
BLI_dynstr_appendf(ds, "\n\treturn tmp%d", finaloutput->id);
BLI_dynstr_append(ds, ";\n");
}
static char *code_generate_fragment(GPUMaterial *material,
ListBase *nodes,
GPUOutput *output,
int *rbuiltins)
{
DynStr *ds = BLI_dynstr_new();
char *code;
int builtins;
#if 0
BLI_dynstr_append(ds, FUNCTION_PROTOTYPES);
#endif
codegen_set_unique_ids(nodes);
*rbuiltins = builtins = codegen_process_uniforms_functions(material, ds, nodes);
if (builtins & (GPU_OBJECT_INFO | GPU_OBJECT_COLOR)) {
BLI_dynstr_append(ds, datatoc_gpu_shader_common_obinfos_lib_glsl);
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "in vec2 barycentricTexCo;\n");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "flat in vec3 barycentricDist;\n");
}
BLI_dynstr_append(ds, "Closure nodetree_exec(void)\n{\n");
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds,
"\tvec2 barytexco = vec2((fract(barycentricTexCo.y) != 0.0)\n"
"\t ? barycentricTexCo.x\n"
"\t : 1.0 - barycentricTexCo.x,\n"
"\t 0.0);\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, "\tvec2 barytexco = barycentricTexCo;\n");
BLI_dynstr_append(ds, "#endif\n");
}
/* TODO(fclem) get rid of that. */
if (builtins & GPU_VIEW_MATRIX) {
BLI_dynstr_append(ds, "\t#define viewmat ViewMatrix\n");
}
if (builtins & GPU_CAMERA_TEXCO_FACTORS) {
BLI_dynstr_append(ds, "\t#define camtexfac CameraTexCoFactors\n");
}
if (builtins & GPU_OBJECT_MATRIX) {
BLI_dynstr_append(ds, "\t#define objmat ModelMatrix\n");
}
if (builtins & GPU_INVERSE_OBJECT_MATRIX) {
BLI_dynstr_append(ds, "\t#define objinv ModelMatrixInverse\n");
}
if (builtins & GPU_INVERSE_VIEW_MATRIX) {
BLI_dynstr_append(ds, "\t#define viewinv ViewMatrixInverse\n");
}
if (builtins & GPU_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds, "\t#define localtoviewmat (ViewMatrix * ModelMatrix)\n");
}
if (builtins & GPU_INVERSE_LOC_TO_VIEW_MATRIX) {
BLI_dynstr_append(ds,
"\t#define invlocaltoviewmat (ModelMatrixInverse * ViewMatrixInverse)\n");
}
if (builtins & GPU_VIEW_NORMAL) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, "\tvec3 n;\n");
BLI_dynstr_append(ds, "\tworld_normals_get(n);\n");
BLI_dynstr_append(ds, "\tvec3 facingnormal = transform_direction(ViewMatrix, n);\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, "\tvec3 facingnormal = gl_FrontFacing ? viewNormal: -viewNormal;\n");
BLI_dynstr_append(ds, "#endif\n");
}
if (builtins & GPU_WORLD_NORMAL) {
BLI_dynstr_append(ds, "\tvec3 facingwnormal;\n");
if (builtins & GPU_VIEW_NORMAL) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, "\tfacingwnormal = n;\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, "\tworld_normals_get(facingwnormal);\n");
BLI_dynstr_append(ds, "#endif\n");
}
else {
BLI_dynstr_append(ds, "\tworld_normals_get(facingwnormal);\n");
}
}
if (builtins & GPU_VIEW_POSITION) {
BLI_dynstr_append(ds, "\t#define viewposition viewPosition\n");
}
codegen_declare_tmps(ds, nodes);
codegen_call_functions(ds, nodes, output);
BLI_dynstr_append(ds, "}\n");
/* XXX This cannot go into gpu_shader_material.glsl because main()
* would be parsed and generate error */
/* Old glsl mode compat. */
/* TODO(fclem) This is only used by world shader now. get rid of it? */
BLI_dynstr_append(ds, "#ifndef NODETREE_EXEC\n");
BLI_dynstr_append(ds, "out vec4 fragColor;\n");
BLI_dynstr_append(ds, "void main()\n");
BLI_dynstr_append(ds, "{\n");
BLI_dynstr_append(ds, "\tClosure cl = nodetree_exec();\n");
BLI_dynstr_append(ds,
"\tfragColor = vec4(cl.radiance, "
"saturate(1.0 - avg(cl.transmittance)));\n");
BLI_dynstr_append(ds, "}\n");
BLI_dynstr_append(ds, "#endif\n\n");
/* create shader */
code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
#if 0
if (G.debug & G_DEBUG) {
printf("%s\n", code);
}
#endif
return code;
}
static const char *attr_prefix_get(CustomDataType type)
{
switch (type) {
case CD_ORCO:
return "orco";
case CD_MTFACE:
return "u";
case CD_TANGENT:
return "t";
case CD_MCOL:
return "c";
case CD_AUTO_FROM_NAME:
return "a";
default:
BLI_assert(false && "GPUVertAttr Prefix type not found : This should not happen!");
return "";
}
}
static char *code_generate_vertex(ListBase *nodes, const char *vert_code, bool use_geom)
{
DynStr *ds = BLI_dynstr_new();
GPUNode *node;
GPUInput *input;
char *code;
int builtins = 0;
/* Hairs uv and col attributes are passed by bufferTextures. */
BLI_dynstr_append(ds,
"#ifdef HAIR_SHADER\n"
"#define DEFINE_ATTR(type, attr) uniform samplerBuffer attr\n"
"#else\n"
"#define DEFINE_ATTR(type, attr) in type attr\n"
"#endif\n");
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_BUILTIN) {
builtins |= input->builtin;
}
if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
/* XXX FIXME : see notes in mesh_render_data_create() */
/* NOTE : Replicate changes to mesh_render_data_create() in draw_cache_impl_mesh.c */
if (input->attr_type == CD_ORCO) {
/* OPTI : orco is computed from local positions, but only if no modifier is present. */
BLI_dynstr_append(ds, datatoc_gpu_shader_common_obinfos_lib_glsl);
BLI_dynstr_append(ds, "DEFINE_ATTR(vec4, orco);\n");
}
else if (input->attr_name[0] == '\0') {
BLI_dynstr_appendf(ds,
"DEFINE_ATTR(%s, %s);\n",
GPU_DATATYPE_STR[input->type],
attr_prefix_get(input->attr_type));
BLI_dynstr_appendf(
ds, "#define att%d %s\n", input->attr_id, attr_prefix_get(input->attr_type));
}
else {
char attr_safe_name[GPU_MAX_SAFE_ATTRIB_NAME];
GPU_vertformat_safe_attrib_name(
input->attr_name, attr_safe_name, GPU_MAX_SAFE_ATTRIB_NAME);
BLI_dynstr_appendf(ds,
"DEFINE_ATTR(%s, %s%s);\n",
GPU_DATATYPE_STR[input->type],
attr_prefix_get(input->attr_type),
attr_safe_name);
BLI_dynstr_appendf(ds,
"#define att%d %s%s\n",
input->attr_id,
attr_prefix_get(input->attr_type),
attr_safe_name);
/* Auto attribute can be vertex color byte buffer.
* We need to know and convert them to linear space in VS. */
if (input->attr_type == CD_AUTO_FROM_NAME) {
BLI_dynstr_appendf(ds, "uniform bool ba%s;\n", attr_safe_name);
BLI_dynstr_appendf(ds, "#define att%d_is_srgb ba%s\n", input->attr_id, attr_safe_name);
}
}
BLI_dynstr_appendf(ds,
"out %s var%d%s;\n",
GPU_DATATYPE_STR[input->type],
input->attr_id,
use_geom ? "g" : "");
}
}
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_appendf(ds, "out vec2 barycentricTexCo%s;\n", use_geom ? "g" : "");
BLI_dynstr_append(ds, "#endif\n");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "out vec3 barycentricPosg;\n");
}
BLI_dynstr_append(ds, "\n#define USE_ATTR\n");
/* Prototype, defined later (this is because of matrices definition). */
BLI_dynstr_append(ds, "void pass_attr(in vec3 position);\n");
BLI_dynstr_append(ds, "\n");
if (use_geom) {
/* XXX HACK: Eevee specific. */
char *vert_new, *vert_new2;
vert_new = BLI_str_replaceN(vert_code, "worldPosition", "worldPositiong");
vert_new2 = vert_new;
vert_new = BLI_str_replaceN(vert_new2, "viewPosition", "viewPositiong");
MEM_freeN(vert_new2);
vert_new2 = vert_new;
vert_new = BLI_str_replaceN(vert_new2, "worldNormal", "worldNormalg");
MEM_freeN(vert_new2);
vert_new2 = vert_new;
vert_new = BLI_str_replaceN(vert_new2, "viewNormal", "viewNormalg");
MEM_freeN(vert_new2);
BLI_dynstr_append(ds, vert_new);
MEM_freeN(vert_new);
}
else {
BLI_dynstr_append(ds, vert_code);
}
BLI_dynstr_append(ds, "\n");
BLI_dynstr_append(ds, use_geom ? "RESOURCE_ID_VARYING_GEOM\n" : "RESOURCE_ID_VARYING\n");
BLI_dynstr_append(ds,
"#define USE_ATTR\n"
"vec3 srgb_to_linear_attr(vec3 c) {\n"
"\tc = max(c, vec3(0.0));\n"
"\tvec3 c1 = c * (1.0 / 12.92);\n"
"\tvec3 c2 = pow((c + 0.055) * (1.0 / 1.055), vec3(2.4));\n"
"\treturn mix(c1, c2, step(vec3(0.04045), c));\n"
"}\n\n");
BLI_dynstr_append(ds,
"vec4 srgba_to_linear_attr(vec4 c) {\n"
"\tc = max(c, vec4(0.0));\n"
"\tvec4 c1 = c * (1.0 / 12.92);\n"
"\tvec4 c2 = pow((c + 0.055) * (1.0 / 1.055), vec4(2.4));\n"
"\tvec4 final = mix(c1, c2, step(vec4(0.04045), c));"
"\treturn vec4(final.xyz, c.a);\n"
"}\n\n");
/* Prototype because defined later. */
BLI_dynstr_append(ds,
"vec2 hair_get_customdata_vec2(const samplerBuffer);\n"
"vec3 hair_get_customdata_vec3(const samplerBuffer);\n"
"vec4 hair_get_customdata_vec4(const samplerBuffer);\n"
"vec3 hair_get_strand_pos(void);\n"
"int hair_get_base_id(void);\n"
"\n");
BLI_dynstr_append(ds, "void pass_attr(in vec3 position) {\n");
BLI_dynstr_append(ds, use_geom ? "\tPASS_RESOURCE_ID_GEOM\n" : "\tPASS_RESOURCE_ID\n");
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
if (builtins & GPU_BARYCENTRIC_TEXCO) {
/* To match cycles without breaking into individual segment we encode if we need to invert
* the first component into the second component. We invert if the barycentricTexCo.y
* is NOT 0.0 or 1.0. */
BLI_dynstr_append(ds, "\tint _base_id = hair_get_base_id();\n");
BLI_dynstr_appendf(
ds, "\tbarycentricTexCo%s.x = float((_base_id %% 2) == 1);\n", use_geom ? "g" : "");
BLI_dynstr_appendf(
ds, "\tbarycentricTexCo%s.y = float(((_base_id %% 4) %% 3) > 0);\n", use_geom ? "g" : "");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "\tbarycentricPosg = position;\n");
}
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
if (input->attr_type == CD_TANGENT) {
/* Not supported by hairs */
BLI_dynstr_appendf(ds, "\tvar%d%s = vec4(0.0);\n", input->attr_id, use_geom ? "g" : "");
}
else if (input->attr_type == CD_ORCO) {
BLI_dynstr_appendf(ds,
"\tvar%d%s = OrcoTexCoFactors[0].xyz + (ModelMatrixInverse * "
"vec4(hair_get_strand_pos(), 1.0)).xyz * OrcoTexCoFactors[1].xyz;\n",
input->attr_id,
use_geom ? "g" : "");
/* TODO: fix ORCO with modifiers. */
}
else {
BLI_dynstr_appendf(ds,
"\tvar%d%s = hair_get_customdata_%s(att%d);\n",
input->attr_id,
use_geom ? "g" : "",
GPU_DATATYPE_STR[input->type],
input->attr_id);
}
}
}
}
BLI_dynstr_append(ds, "#else /* MESH_SHADER */\n");
/* GPU_BARYCENTRIC_TEXCO cannot be computed based on gl_VertexID
* for MESH_SHADER because of indexed drawing. In this case a
* geometry shader is needed. */
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "\tbarycentricPosg = (ModelMatrix * vec4(position, 1.0)).xyz;\n");
}
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
if (input->attr_type == CD_TANGENT) { /* silly exception */
BLI_dynstr_appendf(ds,
"\tvar%d%s.xyz = transpose(mat3(ModelMatrixInverse)) * att%d.xyz;\n",
input->attr_id,
use_geom ? "g" : "",
input->attr_id);
BLI_dynstr_appendf(
ds, "\tvar%d%s.w = att%d.w;\n", input->attr_id, use_geom ? "g" : "", input->attr_id);
/* Normalize only if vector is not null. */
BLI_dynstr_appendf(ds,
"\tfloat lvar%d = dot(var%d%s.xyz, var%d%s.xyz);\n",
input->attr_id,
input->attr_id,
use_geom ? "g" : "",
input->attr_id,
use_geom ? "g" : "");
BLI_dynstr_appendf(ds,
"\tvar%d%s.xyz *= (lvar%d > 0.0) ? inversesqrt(lvar%d) : 1.0;\n",
input->attr_id,
use_geom ? "g" : "",
input->attr_id,
input->attr_id);
}
else if (input->attr_type == CD_ORCO) {
BLI_dynstr_appendf(ds,
"\tvar%d%s = OrcoTexCoFactors[0].xyz + position *"
" OrcoTexCoFactors[1].xyz;\n",
input->attr_id,
use_geom ? "g" : "");
/* See mesh_create_loop_orco() for explanation. */
BLI_dynstr_appendf(ds,
"\tif (orco.w == 0.0) { var%d%s = orco.xyz * 0.5 + 0.5; }\n",
input->attr_id,
use_geom ? "g" : "");
}
else if (input->attr_type == CD_MCOL) {
BLI_dynstr_appendf(ds,
"\tvar%d%s = srgba_to_linear_attr(att%d);\n",
input->attr_id,
use_geom ? "g" : "",
input->attr_id);
}
else if (input->attr_type == CD_AUTO_FROM_NAME) {
BLI_dynstr_appendf(ds,
"\tvar%d%s = (att%d_is_srgb) ? srgb_to_linear_attr(att%d) : att%d;\n",
input->attr_id,
use_geom ? "g" : "",
input->attr_id,
input->attr_id,
input->attr_id);
}
else {
BLI_dynstr_appendf(
ds, "\tvar%d%s = att%d;\n", input->attr_id, use_geom ? "g" : "", input->attr_id);
}
}
}
}
BLI_dynstr_append(ds, "#endif /* HAIR_SHADER */\n");
BLI_dynstr_append(ds, "}\n");
code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
#if 0
if (G.debug & G_DEBUG) {
printf("%s\n", code);
}
#endif
return code;
}
static char *code_generate_geometry(ListBase *nodes, const char *geom_code, const char *defines)
{
DynStr *ds = BLI_dynstr_new();
GPUNode *node;
GPUInput *input;
char *code;
int builtins = 0;
/* XXX we should not make specific eevee cases here. */
bool is_hair_shader = (strstr(defines, "HAIR_SHADER") != NULL);
/* Create prototype because attributes cannot be declared before layout. */
BLI_dynstr_append(ds, "void pass_attr(in int vert);\n");
BLI_dynstr_append(ds, "void calc_barycentric_distances(vec3 pos0, vec3 pos1, vec3 pos2);\n");
BLI_dynstr_append(ds, "#define USE_ATTR\n");
/* Generate varying declarations. */
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_BUILTIN) {
builtins |= input->builtin;
}
if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
BLI_dynstr_appendf(ds, "in %s var%dg[];\n", GPU_DATATYPE_STR[input->type], input->attr_id);
BLI_dynstr_appendf(ds, "out %s var%d;\n", GPU_DATATYPE_STR[input->type], input->attr_id);
}
}
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, "in vec2 barycentricTexCog[];\n");
BLI_dynstr_append(ds, "#endif\n");
BLI_dynstr_append(ds, "out vec2 barycentricTexCo;\n");
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "in vec3 barycentricPosg[];\n");
BLI_dynstr_append(ds, "flat out vec3 barycentricDist;\n");
}
if (geom_code == NULL) {
/* Force geometry usage if GPU_BARYCENTRIC_DIST or GPU_BARYCENTRIC_TEXCO are used.
* Note: GPU_BARYCENTRIC_TEXCO only requires it if the shader is not drawing hairs. */
if ((builtins & (GPU_BARYCENTRIC_DIST | GPU_BARYCENTRIC_TEXCO)) == 0 || is_hair_shader) {
/* Early out */
BLI_dynstr_free(ds);
return NULL;
}
else {
/* Force geom shader usage */
/* TODO put in external file. */
BLI_dynstr_append(ds, "layout(triangles) in;\n");
BLI_dynstr_append(ds, "layout(triangle_strip, max_vertices=3) out;\n");
BLI_dynstr_append(ds, "in vec3 worldPositiong[];\n");
BLI_dynstr_append(ds, "in vec3 viewPositiong[];\n");
BLI_dynstr_append(ds, "in vec3 worldNormalg[];\n");
BLI_dynstr_append(ds, "in vec3 viewNormalg[];\n");
BLI_dynstr_append(ds, "out vec3 worldPosition;\n");
BLI_dynstr_append(ds, "out vec3 viewPosition;\n");
BLI_dynstr_append(ds, "out vec3 worldNormal;\n");
BLI_dynstr_append(ds, "out vec3 viewNormal;\n");
BLI_dynstr_append(ds, datatoc_common_view_lib_glsl);
BLI_dynstr_append(ds, "void main(){\n");
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds,
"\tcalc_barycentric_distances(barycentricPosg[0], barycentricPosg[1], "
"barycentricPosg[2]);\n");
}
BLI_dynstr_append(ds, "\tgl_Position = gl_in[0].gl_Position;\n");
BLI_dynstr_append(ds, "\tpass_attr(0);\n");
BLI_dynstr_append(ds, "\tEmitVertex();\n");
BLI_dynstr_append(ds, "\tgl_Position = gl_in[1].gl_Position;\n");
BLI_dynstr_append(ds, "\tpass_attr(1);\n");
BLI_dynstr_append(ds, "\tEmitVertex();\n");
BLI_dynstr_append(ds, "\tgl_Position = gl_in[2].gl_Position;\n");
BLI_dynstr_append(ds, "\tpass_attr(2);\n");
BLI_dynstr_append(ds, "\tEmitVertex();\n");
BLI_dynstr_append(ds, "}\n");
}
}
else {
BLI_dynstr_append(ds, geom_code);
}
if (builtins & GPU_BARYCENTRIC_DIST) {
BLI_dynstr_append(ds, "void calc_barycentric_distances(vec3 pos0, vec3 pos1, vec3 pos2) {\n");
BLI_dynstr_append(ds, "\tvec3 edge21 = pos2 - pos1;\n");
BLI_dynstr_append(ds, "\tvec3 edge10 = pos1 - pos0;\n");
BLI_dynstr_append(ds, "\tvec3 edge02 = pos0 - pos2;\n");
BLI_dynstr_append(ds, "\tvec3 d21 = normalize(edge21);\n");
BLI_dynstr_append(ds, "\tvec3 d10 = normalize(edge10);\n");
BLI_dynstr_append(ds, "\tvec3 d02 = normalize(edge02);\n");
BLI_dynstr_append(ds, "\tfloat d = dot(d21, edge02);\n");
BLI_dynstr_append(ds, "\tbarycentricDist.x = sqrt(dot(edge02, edge02) - d * d);\n");
BLI_dynstr_append(ds, "\td = dot(d02, edge10);\n");
BLI_dynstr_append(ds, "\tbarycentricDist.y = sqrt(dot(edge10, edge10) - d * d);\n");
BLI_dynstr_append(ds, "\td = dot(d10, edge21);\n");
BLI_dynstr_append(ds, "\tbarycentricDist.z = sqrt(dot(edge21, edge21) - d * d);\n");
BLI_dynstr_append(ds, "}\n");
}
BLI_dynstr_append(ds, "RESOURCE_ID_VARYING\n");
/* Generate varying assignments. */
BLI_dynstr_append(ds, "void pass_attr(in int vert) {\n");
BLI_dynstr_append(ds, "\tPASS_RESOURCE_ID(vert)\n");
/* XXX HACK: Eevee specific. */
if (geom_code == NULL) {
BLI_dynstr_append(ds, "\tworldPosition = worldPositiong[vert];\n");
BLI_dynstr_append(ds, "\tviewPosition = viewPositiong[vert];\n");
BLI_dynstr_append(ds, "\tworldNormal = worldNormalg[vert];\n");
BLI_dynstr_append(ds, "\tviewNormal = viewNormalg[vert];\n");
}
if (builtins & GPU_BARYCENTRIC_TEXCO) {
BLI_dynstr_append(ds, "#ifdef HAIR_SHADER\n");
BLI_dynstr_append(ds, "\tbarycentricTexCo = barycentricTexCog[vert];\n");
BLI_dynstr_append(ds, "#else\n");
BLI_dynstr_append(ds, "\tbarycentricTexCo.x = float((vert % 3) == 0);\n");
BLI_dynstr_append(ds, "\tbarycentricTexCo.y = float((vert % 3) == 1);\n");
BLI_dynstr_append(ds, "#endif\n");
}
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_ATTR && input->attr_first) {
/* TODO let shader choose what to do depending on what the attribute is. */
BLI_dynstr_appendf(ds, "\tvar%d = var%dg[vert];\n", input->attr_id, input->attr_id);
}
}
}
BLI_dynstr_append(ds, "}\n");
code = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
return code;
}
void GPU_code_generate_glsl_lib(void)
{
/* Only parse GLSL shader files once. */
if (FUNCTION_HASH) {
return;
}
FUNCTION_HASH = BLI_ghash_str_new("GPU_lookup_function gh");
for (int i = 0; gpu_material_libraries[i]; i++) {
gpu_parse_material_library(FUNCTION_HASH, gpu_material_libraries[i]);
}
}
/* GPU pass binding/unbinding */
GPUShader *GPU_pass_shader_get(GPUPass *pass)
{
return pass->shader;
}
void GPU_nodes_extract_dynamic_inputs(GPUShader *shader, ListBase *inputs, ListBase *nodes)
{
GPUNode *node;
GPUInput *next, *input;
BLI_listbase_clear(inputs);
if (!shader) {
return;
}
for (node = nodes->first; node; node = node->next) {
int z = 0;
for (input = node->inputs.first; input; input = next, z++) {
next = input->next;
/* attributes don't need to be bound, they already have
* an id that the drawing functions will use. Builtins have
* constant names. */
if (ELEM(input->source, GPU_SOURCE_ATTR, GPU_SOURCE_BUILTIN)) {
continue;
}
if (input->source == GPU_SOURCE_TEX) {
BLI_snprintf(input->shadername, sizeof(input->shadername), "samp%d", input->texid);
}
else {
BLI_snprintf(input->shadername, sizeof(input->shadername), "unf%d", input->id);
}
if (input->source == GPU_SOURCE_TEX) {
if (input->bindtex) {
input->shaderloc = GPU_shader_get_uniform_ensure(shader, input->shadername);
/* extract nodes */
BLI_remlink(&node->inputs, input);
BLI_addtail(inputs, input);
}
}
}
}
}
/* Node Link Functions */
static GPUNodeLink *GPU_node_link_create(void)
{
GPUNodeLink *link = MEM_callocN(sizeof(GPUNodeLink), "GPUNodeLink");
link->users++;
return link;
}
static void gpu_node_link_free(GPUNodeLink *link)
{
link->users--;
if (link->users < 0) {
fprintf(stderr, "GPU_node_link_free: negative refcount\n");
}
if (link->users == 0) {
if (link->output) {
link->output->link = NULL;
}
MEM_freeN(link);
}
}
/* Node Functions */
static GPUNode *GPU_node_begin(const char *name)
{
GPUNode *node = MEM_callocN(sizeof(GPUNode), "GPUNode");
node->name = name;
return node;
}
static void gpu_node_input_link(GPUNode *node, GPUNodeLink *link, const eGPUType type)
{
GPUInput *input;
GPUNode *outnode;
const char *name;
if (link->link_type == GPU_NODE_LINK_OUTPUT) {
outnode = link->output->node;
name = outnode->name;
input = outnode->inputs.first;
if ((STR_ELEM(name, "set_value", "set_rgb", "set_rgba")) && (input->type == type)) {
input = MEM_dupallocN(outnode->inputs.first);
if (input->link) {
input->link->users++;
}
BLI_addtail(&node->inputs, input);
return;
}
}
input = MEM_callocN(sizeof(GPUInput), "GPUInput");
input->node = node;
input->type = type;
switch (link->link_type) {
case GPU_NODE_LINK_BUILTIN:
input->source = GPU_SOURCE_BUILTIN;
input->builtin = link->builtin;
break;
case GPU_NODE_LINK_OUTPUT:
input->source = GPU_SOURCE_OUTPUT;
input->link = link;
link->users++;
break;
case GPU_NODE_LINK_COLORBAND:
input->source = GPU_SOURCE_TEX;
input->coba = link->coba;
break;
case GPU_NODE_LINK_IMAGE_BLENDER:
case GPU_NODE_LINK_IMAGE_TILEMAP:
input->source = GPU_SOURCE_TEX;
input->ima = link->ima;
input->iuser = link->iuser;
break;
case GPU_NODE_LINK_ATTR:
input->source = GPU_SOURCE_ATTR;
input->attr_type = link->attr_type;
BLI_strncpy(input->attr_name, link->attr_name, sizeof(input->attr_name));
break;
case GPU_NODE_LINK_CONSTANT:
input->source = (type == GPU_CLOSURE) ? GPU_SOURCE_STRUCT : GPU_SOURCE_CONSTANT;
break;
case GPU_NODE_LINK_UNIFORM:
input->source = GPU_SOURCE_UNIFORM;
break;
default:
break;
}
if (ELEM(input->source, GPU_SOURCE_CONSTANT, GPU_SOURCE_UNIFORM)) {
memcpy(input->vec, link->data, type * sizeof(float));
}
if (link->link_type != GPU_NODE_LINK_OUTPUT) {
MEM_freeN(link);
}
BLI_addtail(&node->inputs, input);
}
static const char *gpu_uniform_set_function_from_type(eNodeSocketDatatype type)
{
switch (type) {
/* For now INT is supported as float. */
case SOCK_INT:
case SOCK_FLOAT:
return "set_value";
case SOCK_VECTOR:
return "set_rgb";
case SOCK_RGBA:
return "set_rgba";
default:
BLI_assert(!"No gpu function for non-supported eNodeSocketDatatype");
return NULL;
}
}
/**
* Link stack uniform buffer.
* This is called for the input/output sockets that are note connected.
*/
static GPUNodeLink *gpu_uniformbuffer_link(GPUMaterial *mat,
bNode *node,
GPUNodeStack *stack,
const int index,
const eNodeSocketInOut in_out)
{
bNodeSocket *socket;
if (in_out == SOCK_IN) {
socket = BLI_findlink(&node->inputs, index);
}
else {
socket = BLI_findlink(&node->outputs, index);
}
BLI_assert(socket != NULL);
BLI_assert(socket->in_out == in_out);
if ((socket->flag & SOCK_HIDE_VALUE) == 0) {
GPUNodeLink *link;
switch (socket->type) {
case SOCK_FLOAT: {
bNodeSocketValueFloat *socket_data = socket->default_value;
link = GPU_uniform(&socket_data->value);
break;
}
case SOCK_VECTOR: {
bNodeSocketValueVector *socket_data = socket->default_value;
link = GPU_uniform(socket_data->value);
break;
}
case SOCK_RGBA: {
bNodeSocketValueRGBA *socket_data = socket->default_value;
link = GPU_uniform(socket_data->value);
break;
}
default:
return NULL;
break;
}
if (in_out == SOCK_IN) {
GPU_link(mat, gpu_uniform_set_function_from_type(socket->type), link, &stack->link);
}
return link;
}
return NULL;
}
static void gpu_node_input_socket(
GPUMaterial *material, bNode *bnode, GPUNode *node, GPUNodeStack *sock, const int index)
{
if (sock->link) {
gpu_node_input_link(node, sock->link, sock->type);
}
else if ((material != NULL) &&
(gpu_uniformbuffer_link(material, bnode, sock, index, SOCK_IN) != NULL)) {
gpu_node_input_link(node, sock->link, sock->type);
}
else {
gpu_node_input_link(node, GPU_constant(sock->vec), sock->type);
}
}
static void gpu_node_output(GPUNode *node, const eGPUType type, GPUNodeLink **link)
{
GPUOutput *output = MEM_callocN(sizeof(GPUOutput), "GPUOutput");
output->type = type;
output->node = node;
if (link) {
*link = output->link = GPU_node_link_create();
output->link->link_type = GPU_NODE_LINK_OUTPUT;
output->link->output = output;
/* note: the caller owns the reference to the link, GPUOutput
* merely points to it, and if the node is destroyed it will
* set that pointer to NULL */
}
BLI_addtail(&node->outputs, output);
}
void GPU_inputs_free(ListBase *inputs)
{
GPUInput *input;
for (input = inputs->first; input; input = input->next) {
if (input->link) {
gpu_node_link_free(input->link);
}
}
BLI_freelistN(inputs);
}
static void gpu_node_free(GPUNode *node)
{
GPUOutput *output;
GPU_inputs_free(&node->inputs);
for (output = node->outputs.first; output; output = output->next) {
if (output->link) {
output->link->output = NULL;
gpu_node_link_free(output->link);
}
}
BLI_freelistN(&node->outputs);
MEM_freeN(node);
}
static void gpu_nodes_free(ListBase *nodes)
{
GPUNode *node;
while ((node = BLI_pophead(nodes))) {
gpu_node_free(node);
}
}
/* vertex attributes */
void GPU_nodes_get_vertex_attrs(ListBase *nodes, GPUVertAttrLayers *attrs)
{
GPUNode *node;
GPUInput *input;
int a;
/* convert attributes requested by node inputs to an array of layers,
* checking for duplicates and assigning id's starting from zero. */
memset(attrs, 0, sizeof(*attrs));
for (node = nodes->first; node; node = node->next) {
for (input = node->inputs.first; input; input = input->next) {
if (input->source == GPU_SOURCE_ATTR) {
for (a = 0; a < attrs->totlayer; a++) {
if (attrs->layer[a].type == input->attr_type &&
STREQ(attrs->layer[a].name, input->attr_name)) {
break;
}
}
if (a < GPU_MAX_ATTR) {
if (a == attrs->totlayer) {
input->attr_id = attrs->totlayer++;
input->attr_first = true;
attrs->layer[a].type = input->attr_type;
attrs->layer[a].attr_id = input->attr_id;
BLI_strncpy(attrs->layer[a].name, input->attr_name, sizeof(attrs->layer[a].name));
}
else {
input->attr_id = attrs->layer[a].attr_id;
}
}
}
}
}
}
/* varargs linking */
GPUNodeLink *GPU_attribute(const CustomDataType type, const char *name)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_ATTR;
link->attr_name = name;
/* Fall back to the UV layer, which matches old behavior. */
if (type == CD_AUTO_FROM_NAME && name[0] == '\0') {
link->attr_type = CD_MTFACE;
}
else {
link->attr_type = type;
}
return link;
}
GPUNodeLink *GPU_constant(float *num)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_CONSTANT;
link->data = num;
return link;
}
GPUNodeLink *GPU_uniform(float *num)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_UNIFORM;
link->data = num;
return link;
}
GPUNodeLink *GPU_image(Image *ima, ImageUser *iuser)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_IMAGE_BLENDER;
link->ima = ima;
link->iuser = iuser;
return link;
}
GPUNodeLink *GPU_color_band(GPUMaterial *mat, int size, float *pixels, float *row)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_COLORBAND;
link->coba = gpu_material_ramp_texture_row_set(mat, size, pixels, row);
MEM_freeN(pixels);
return link;
}
GPUNodeLink *GPU_builtin(eGPUBuiltin builtin)
{
GPUNodeLink *link = GPU_node_link_create();
link->link_type = GPU_NODE_LINK_BUILTIN;
link->builtin = builtin;
return link;
}
static void gpu_material_use_library_with_dependencies(GSet *used_libraries,
GPUMaterialLibrary *library)
{
if (BLI_gset_add(used_libraries, library->code)) {
for (int i = 0; library->dependencies[i]; i++) {
gpu_material_use_library_with_dependencies(used_libraries, library->dependencies[i]);
}
}
}
static void gpu_material_use_library(GPUMaterial *material, GPUMaterialLibrary *library)
{
GSet *used_libraries = gpu_material_used_libraries(material);
gpu_material_use_library_with_dependencies(used_libraries, library);
}
bool GPU_link(GPUMaterial *mat, const char *name, ...)
{
GPUNode *node;
GPUFunction *function;
GPUNodeLink *link, **linkptr;
va_list params;
int i;
function = gpu_lookup_function(name);
if (!function) {
fprintf(stderr, "GPU failed to find function %s\n", name);
return false;
}
gpu_material_use_library(mat, function->library);
node = GPU_node_begin(name);
va_start(params, name);
for (i = 0; i < function->totparam; i++) {
if (function->paramqual[i] != FUNCTION_QUAL_IN) {
linkptr = va_arg(params, GPUNodeLink **);
gpu_node_output(node, function->paramtype[i], linkptr);
}
else {
link = va_arg(params, GPUNodeLink *);
gpu_node_input_link(node, link, function->paramtype[i]);
}
}
va_end(params);
gpu_material_add_node(mat, node);
return true;
}
bool GPU_stack_link(GPUMaterial *material,
bNode *bnode,
const char *name,
GPUNodeStack *in,
GPUNodeStack *out,
...)
{
GPUNode *node;
GPUFunction *function;
GPUNodeLink *link, **linkptr;
va_list params;
int i, totin, totout;
function = gpu_lookup_function(name);
if (!function) {
fprintf(stderr, "GPU failed to find function %s\n", name);
return false;
}
gpu_material_use_library(material, function->library);
node = GPU_node_begin(name);
totin = 0;
totout = 0;
if (in) {
for (i = 0; !in[i].end; i++) {
if (in[i].type != GPU_NONE) {
gpu_node_input_socket(material, bnode, node, &in[i], i);
totin++;
}
}
}
if (out) {
for (i = 0; !out[i].end; i++) {
if (out[i].type != GPU_NONE) {
gpu_node_output(node, out[i].type, &out[i].link);
totout++;
}
}
}
va_start(params, out);
for (i = 0; i < function->totparam; i++) {
if (function->paramqual[i] != FUNCTION_QUAL_IN) {
if (totout == 0) {
linkptr = va_arg(params, GPUNodeLink **);
gpu_node_output(node, function->paramtype[i], linkptr);
}
else {
totout--;
}
}
else {
if (totin == 0) {
link = va_arg(params, GPUNodeLink *);
if (link->socket) {
gpu_node_input_socket(NULL, NULL, node, link->socket, -1);
}
else {
gpu_node_input_link(node, link, function->paramtype[i]);
}
}
else {
totin--;
}
}
}
va_end(params);
gpu_material_add_node(material, node);
return true;
}
GPUNodeLink *GPU_uniformbuffer_link_out(GPUMaterial *mat,
bNode *node,
GPUNodeStack *stack,
const int index)
{
return gpu_uniformbuffer_link(mat, node, stack, index, SOCK_OUT);
}
/* Pass create/free */
static void gpu_nodes_tag(GPUNodeLink *link)
{
GPUNode *node;
GPUInput *input;
if (!link->output) {
return;
}
node = link->output->node;
if (node->tag) {
return;
}
node->tag = true;
for (input = node->inputs.first; input; input = input->next) {
if (input->link) {
gpu_nodes_tag(input->link);
}
}
}
void GPU_nodes_prune(ListBase *nodes, GPUNodeLink *outlink)
{
GPUNode *node, *next;
for (node = nodes->first; node; node = node->next) {
node->tag = false;
}
gpu_nodes_tag(outlink);
for (node = nodes->first; node; node = next) {
next = node->next;
if (!node->tag) {
BLI_remlink(nodes, node);
gpu_node_free(node);
}
}
}
static bool gpu_pass_is_valid(GPUPass *pass)
{
/* Shader is not null if compilation is successful. */
return (pass->compiled == false || pass->shader != NULL);
}
static char *code_generate_material_library(GPUMaterial *material, const char *frag_lib)
{
DynStr *ds = BLI_dynstr_new();
if (frag_lib) {
BLI_dynstr_append(ds, frag_lib);
}
GSet *used_libraries = gpu_material_used_libraries(material);
/* Always include those because they may be needed by the execution function. */
gpu_material_use_library_with_dependencies(used_libraries,
&gpu_shader_material_world_normals_library);
/* Add library code in order, for dependencies. */
for (int i = 0; gpu_material_libraries[i]; i++) {
GPUMaterialLibrary *library = gpu_material_libraries[i];
if (BLI_gset_haskey(used_libraries, library->code)) {
BLI_dynstr_append(ds, library->code);
}
}
char *result = BLI_dynstr_get_cstring(ds);
BLI_dynstr_free(ds);
return result;
}
GPUPass *GPU_generate_pass(GPUMaterial *material,
GPUNodeLink *frag_outlink,
struct GPUVertAttrLayers *attrs,
ListBase *nodes,
int *builtins,
const char *vert_code,
const char *geom_code,
const char *frag_lib,
const char *defines)
{
char *vertexcode, *geometrycode, *fragmentcode;
GPUPass *pass = NULL, *pass_hash = NULL;
/* prune unused nodes */
GPU_nodes_prune(nodes, frag_outlink);
GPU_nodes_get_vertex_attrs(nodes, attrs);
/* generate code */
char *fragmentgen = code_generate_fragment(material, nodes, frag_outlink->output, builtins);
/* Cache lookup: Reuse shaders already compiled */
uint32_t hash = gpu_pass_hash(fragmentgen, defines, attrs);
pass_hash = gpu_pass_cache_lookup(hash);
if (pass_hash && (pass_hash->next == NULL || pass_hash->next->hash != hash)) {
/* No collision, just return the pass. */
MEM_freeN(fragmentgen);
if (!gpu_pass_is_valid(pass_hash)) {
/* Shader has already been created but failed to compile. */
return NULL;
}
pass_hash->refcount += 1;
return pass_hash;
}
/* Either the shader is not compiled or there is a hash collision...
* continue generating the shader strings. */
char *tmp = code_generate_material_library(material, frag_lib);
geometrycode = code_generate_geometry(nodes, geom_code, defines);
vertexcode = code_generate_vertex(nodes, vert_code, (geometrycode != NULL));
fragmentcode = BLI_strdupcat(tmp, fragmentgen);
MEM_freeN(fragmentgen);
MEM_freeN(tmp);
if (pass_hash) {
/* Cache lookup: Reuse shaders already compiled */
pass = gpu_pass_cache_resolve_collision(
pass_hash, vertexcode, geometrycode, fragmentcode, defines, hash);
}
if (pass) {
/* Cache hit. Reuse the same GPUPass and GPUShader. */
if (!gpu_pass_is_valid(pass)) {
/* Shader has already been created but failed to compile. */
return NULL;
}
MEM_SAFE_FREE(vertexcode);
MEM_SAFE_FREE(fragmentcode);
MEM_SAFE_FREE(geometrycode);
pass->refcount += 1;
}
else {
/* We still create a pass even if shader compilation
* fails to avoid trying to compile again and again. */
pass = MEM_callocN(sizeof(GPUPass), "GPUPass");
pass->shader = NULL;
pass->refcount = 1;
pass->hash = hash;
pass->vertexcode = vertexcode;
pass->fragmentcode = fragmentcode;
pass->geometrycode = geometrycode;
pass->defines = (defines) ? BLI_strdup(defines) : NULL;
pass->compiled = false;
BLI_spin_lock(&pass_cache_spin);
if (pass_hash != NULL) {
/* Add after the first pass having the same hash. */
pass->next = pass_hash->next;
pass_hash->next = pass;
}
else {
/* No other pass have same hash, just prepend to the list. */
BLI_LINKS_PREPEND(pass_cache, pass);
}
BLI_spin_unlock(&pass_cache_spin);
}
return pass;
}
static int count_active_texture_sampler(GPUShader *shader, char *source)
{
char *code = source;
/* Remember this is per stage. */
GSet *sampler_ids = BLI_gset_int_new(__func__);
int num_samplers = 0;
while ((code = strstr(code, "uniform "))) {
/* Move past "uniform". */
code += 7;
/* Skip following spaces. */
while (*code == ' ') {
code++;
}
/* Skip "i" from potential isamplers. */
if (*code == 'i') {
code++;
}
/* Skip following spaces. */
if (gpu_str_prefix(code, "sampler")) {
/* Move past "uniform". */
code += 7;
/* Skip sampler type suffix. */
while (*code != ' ' && *code != '\0') {
code++;
}
/* Skip following spaces. */
while (*code == ' ') {
code++;
}
if (*code != '\0') {
char sampler_name[64];
code = gpu_str_skip_token(code, sampler_name, sizeof(sampler_name));
int id = GPU_shader_get_uniform_ensure(shader, sampler_name);
if (id == -1) {
continue;
}
/* Catch duplicates. */
if (BLI_gset_add(sampler_ids, POINTER_FROM_INT(id))) {
num_samplers++;
}
}
}
}
BLI_gset_free(sampler_ids, NULL);
return num_samplers;
}
static bool gpu_pass_shader_validate(GPUPass *pass, GPUShader *shader)
{
if (shader == NULL) {
return false;
}
/* NOTE: The only drawback of this method is that it will count a sampler
* used in the fragment shader and only declared (but not used) in the vertex
* shader as used by both. But this corner case is not happening for now. */
int vert_samplers_len = count_active_texture_sampler(shader, pass->vertexcode);
int frag_samplers_len = count_active_texture_sampler(shader, pass->fragmentcode);
int total_samplers_len = vert_samplers_len + frag_samplers_len;
/* Validate against opengl limit. */
if ((frag_samplers_len > GPU_max_textures_frag()) ||
(vert_samplers_len > GPU_max_textures_vert())) {
return false;
}
if (pass->geometrycode) {
int geom_samplers_len = count_active_texture_sampler(shader, pass->geometrycode);
total_samplers_len += geom_samplers_len;
if (geom_samplers_len > GPU_max_textures_geom()) {
return false;
}
}
return (total_samplers_len <= GPU_max_textures());
}
bool GPU_pass_compile(GPUPass *pass, const char *shname)
{
bool success = true;
if (!pass->compiled) {
GPUShader *shader = GPU_shader_create(
pass->vertexcode, pass->fragmentcode, pass->geometrycode, NULL, pass->defines, shname);
/* NOTE: Some drivers / gpu allows more active samplers than the opengl limit.
* We need to make sure to count active samplers to avoid undefined behavior. */
if (!gpu_pass_shader_validate(pass, shader)) {
success = false;
if (shader != NULL) {
fprintf(stderr, "GPUShader: error: too many samplers in shader.\n");
GPU_shader_free(shader);
shader = NULL;
}
}
else if (!BLI_thread_is_main() && GPU_context_local_shaders_workaround()) {
pass->binary.content = GPU_shader_get_binary(
shader, &pass->binary.format, &pass->binary.len);
GPU_shader_free(shader);
shader = NULL;
}
pass->shader = shader;
pass->compiled = true;
}
else if (pass->binary.content && BLI_thread_is_main()) {
pass->shader = GPU_shader_load_from_binary(
pass->binary.content, pass->binary.format, pass->binary.len, shname);
MEM_SAFE_FREE(pass->binary.content);
}
return success;
}
void GPU_pass_release(GPUPass *pass)
{
BLI_assert(pass->refcount > 0);
pass->refcount--;
}
static void gpu_pass_free(GPUPass *pass)
{
BLI_assert(pass->refcount == 0);
if (pass->shader) {
GPU_shader_free(pass->shader);
}
MEM_SAFE_FREE(pass->fragmentcode);
MEM_SAFE_FREE(pass->geometrycode);
MEM_SAFE_FREE(pass->vertexcode);
MEM_SAFE_FREE(pass->defines);
if (pass->binary.content) {
MEM_freeN(pass->binary.content);
}
MEM_freeN(pass);
}
void GPU_pass_free_nodes(ListBase *nodes)
{
gpu_nodes_free(nodes);
}
void GPU_pass_cache_garbage_collect(void)
{
static int lasttime = 0;
const int shadercollectrate = 60; /* hardcoded for now. */
int ctime = (int)PIL_check_seconds_timer();
if (ctime < shadercollectrate + lasttime) {
return;
}
lasttime = ctime;
BLI_spin_lock(&pass_cache_spin);
GPUPass *next, **prev_pass = &pass_cache;
for (GPUPass *pass = pass_cache; pass; pass = next) {
next = pass->next;
if (pass->refcount == 0) {
/* Remove from list */
*prev_pass = next;
gpu_pass_free(pass);
}
else {
prev_pass = &pass->next;
}
}
BLI_spin_unlock(&pass_cache_spin);
}
void GPU_pass_cache_init(void)
{
BLI_spin_init(&pass_cache_spin);
}
void GPU_pass_cache_free(void)
{
BLI_spin_lock(&pass_cache_spin);
while (pass_cache) {
GPUPass *next = pass_cache->next;
gpu_pass_free(pass_cache);
pass_cache = next;
}
BLI_spin_unlock(&pass_cache_spin);
BLI_spin_end(&pass_cache_spin);
}