Some drivers may report very large allocation sizes, which could cause unnecessary memory usage. This is now limited to 2gb which should still be enough to get the needed performance benefits without waste.
459 lines
15 KiB
C++
459 lines
15 KiB
C++
/*
|
|
* Copyright 2011-2013 Blender Foundation
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifdef WITH_OPENCL
|
|
|
|
#include "device/opencl/opencl.h"
|
|
|
|
#include "render/buffers.h"
|
|
|
|
#include "kernel/kernel_types.h"
|
|
#include "kernel/split/kernel_split_data_types.h"
|
|
|
|
#include "device/device_split_kernel.h"
|
|
|
|
#include "util/util_algorithm.h"
|
|
#include "util/util_logging.h"
|
|
#include "util/util_md5.h"
|
|
#include "util/util_path.h"
|
|
#include "util/util_time.h"
|
|
|
|
CCL_NAMESPACE_BEGIN
|
|
|
|
class OpenCLSplitKernel;
|
|
|
|
namespace {
|
|
|
|
/* Copy dummy KernelGlobals related to OpenCL from kernel_globals.h to
|
|
* fetch its size.
|
|
*/
|
|
typedef struct KernelGlobalsDummy {
|
|
ccl_constant KernelData *data;
|
|
ccl_global char *buffers[8];
|
|
|
|
#define KERNEL_TEX(type, name) \
|
|
TextureInfo name;
|
|
# include "kernel/kernel_textures.h"
|
|
#undef KERNEL_TEX
|
|
SplitData split_data;
|
|
SplitParams split_param_data;
|
|
} KernelGlobalsDummy;
|
|
|
|
} // namespace
|
|
|
|
static string get_build_options(OpenCLDeviceBase *device, const DeviceRequestedFeatures& requested_features)
|
|
{
|
|
string build_options = "-D__SPLIT_KERNEL__ ";
|
|
build_options += requested_features.get_build_options();
|
|
|
|
/* Set compute device build option. */
|
|
cl_device_type device_type;
|
|
OpenCLInfo::get_device_type(device->cdDevice, &device_type, &device->ciErr);
|
|
assert(device->ciErr == CL_SUCCESS);
|
|
if(device_type == CL_DEVICE_TYPE_GPU) {
|
|
build_options += " -D__COMPUTE_DEVICE_GPU__";
|
|
}
|
|
|
|
return build_options;
|
|
}
|
|
|
|
/* OpenCLDeviceSplitKernel's declaration/definition. */
|
|
class OpenCLDeviceSplitKernel : public OpenCLDeviceBase
|
|
{
|
|
public:
|
|
DeviceSplitKernel *split_kernel;
|
|
OpenCLProgram program_data_init;
|
|
OpenCLProgram program_state_buffer_size;
|
|
|
|
OpenCLDeviceSplitKernel(DeviceInfo& info, Stats &stats, bool background_);
|
|
|
|
~OpenCLDeviceSplitKernel()
|
|
{
|
|
task_pool.stop();
|
|
|
|
/* Release kernels */
|
|
program_data_init.release();
|
|
|
|
delete split_kernel;
|
|
}
|
|
|
|
virtual bool show_samples() const {
|
|
return true;
|
|
}
|
|
|
|
virtual bool load_kernels(const DeviceRequestedFeatures& requested_features,
|
|
vector<OpenCLDeviceBase::OpenCLProgram*> &programs)
|
|
{
|
|
bool single_program = OpenCLInfo::use_single_program();
|
|
program_data_init = OpenCLDeviceBase::OpenCLProgram(this,
|
|
single_program ? "split" : "split_data_init",
|
|
single_program ? "kernel_split.cl" : "kernel_data_init.cl",
|
|
get_build_options(this, requested_features));
|
|
|
|
program_data_init.add_kernel(ustring("path_trace_data_init"));
|
|
programs.push_back(&program_data_init);
|
|
|
|
program_state_buffer_size = OpenCLDeviceBase::OpenCLProgram(this,
|
|
single_program ? "split" : "split_state_buffer_size",
|
|
single_program ? "kernel_split.cl" : "kernel_state_buffer_size.cl",
|
|
get_build_options(this, requested_features));
|
|
program_state_buffer_size.add_kernel(ustring("path_trace_state_buffer_size"));
|
|
programs.push_back(&program_state_buffer_size);
|
|
|
|
return split_kernel->load_kernels(requested_features);
|
|
}
|
|
|
|
void thread_run(DeviceTask *task)
|
|
{
|
|
flush_texture_buffers();
|
|
|
|
if(task->type == DeviceTask::FILM_CONVERT) {
|
|
film_convert(*task, task->buffer, task->rgba_byte, task->rgba_half);
|
|
}
|
|
else if(task->type == DeviceTask::SHADER) {
|
|
shader(*task);
|
|
}
|
|
else if(task->type == DeviceTask::RENDER) {
|
|
RenderTile tile;
|
|
|
|
/* Allocate buffer for kernel globals */
|
|
device_only_memory<KernelGlobalsDummy> kgbuffer(this, "kernel_globals");
|
|
kgbuffer.alloc_to_device(1);
|
|
|
|
/* Keep rendering tiles until done. */
|
|
while(task->acquire_tile(this, tile)) {
|
|
if(tile.task == RenderTile::PATH_TRACE) {
|
|
assert(tile.task == RenderTile::PATH_TRACE);
|
|
split_kernel->path_trace(task,
|
|
tile,
|
|
kgbuffer,
|
|
*const_mem_map["__data"]);
|
|
|
|
/* Complete kernel execution before release tile. */
|
|
/* This helps in multi-device render;
|
|
* The device that reaches the critical-section function
|
|
* release_tile waits (stalling other devices from entering
|
|
* release_tile) for all kernels to complete. If device1 (a
|
|
* slow-render device) reaches release_tile first then it would
|
|
* stall device2 (a fast-render device) from proceeding to render
|
|
* next tile.
|
|
*/
|
|
clFinish(cqCommandQueue);
|
|
}
|
|
else if(tile.task == RenderTile::DENOISE) {
|
|
tile.sample = tile.start_sample + tile.num_samples;
|
|
denoise(tile, *task);
|
|
task->update_progress(&tile, tile.w*tile.h);
|
|
}
|
|
|
|
task->release_tile(tile);
|
|
}
|
|
|
|
kgbuffer.free();
|
|
}
|
|
}
|
|
|
|
bool is_split_kernel()
|
|
{
|
|
return true;
|
|
}
|
|
|
|
protected:
|
|
/* ** Those guys are for workign around some compiler-specific bugs ** */
|
|
|
|
string build_options_for_base_program(
|
|
const DeviceRequestedFeatures& requested_features)
|
|
{
|
|
return requested_features.get_build_options();
|
|
}
|
|
|
|
friend class OpenCLSplitKernel;
|
|
friend class OpenCLSplitKernelFunction;
|
|
};
|
|
|
|
struct CachedSplitMemory {
|
|
int id;
|
|
device_memory *split_data;
|
|
device_memory *ray_state;
|
|
device_memory *queue_index;
|
|
device_memory *use_queues_flag;
|
|
device_memory *work_pools;
|
|
device_ptr *buffer;
|
|
};
|
|
|
|
class OpenCLSplitKernelFunction : public SplitKernelFunction {
|
|
public:
|
|
OpenCLDeviceSplitKernel* device;
|
|
OpenCLDeviceBase::OpenCLProgram program;
|
|
CachedSplitMemory& cached_memory;
|
|
int cached_id;
|
|
|
|
OpenCLSplitKernelFunction(OpenCLDeviceSplitKernel* device, CachedSplitMemory& cached_memory) :
|
|
device(device), cached_memory(cached_memory), cached_id(cached_memory.id-1)
|
|
{
|
|
}
|
|
|
|
~OpenCLSplitKernelFunction()
|
|
{
|
|
program.release();
|
|
}
|
|
|
|
virtual bool enqueue(const KernelDimensions& dim, device_memory& kg, device_memory& data)
|
|
{
|
|
if(cached_id != cached_memory.id) {
|
|
cl_uint start_arg_index =
|
|
device->kernel_set_args(program(),
|
|
0,
|
|
kg,
|
|
data,
|
|
*cached_memory.split_data,
|
|
*cached_memory.ray_state);
|
|
|
|
device->set_kernel_arg_buffers(program(), &start_arg_index);
|
|
|
|
start_arg_index +=
|
|
device->kernel_set_args(program(),
|
|
start_arg_index,
|
|
*cached_memory.queue_index,
|
|
*cached_memory.use_queues_flag,
|
|
*cached_memory.work_pools,
|
|
*cached_memory.buffer);
|
|
|
|
cached_id = cached_memory.id;
|
|
}
|
|
|
|
device->ciErr = clEnqueueNDRangeKernel(device->cqCommandQueue,
|
|
program(),
|
|
2,
|
|
NULL,
|
|
dim.global_size,
|
|
dim.local_size,
|
|
0,
|
|
NULL,
|
|
NULL);
|
|
|
|
device->opencl_assert_err(device->ciErr, "clEnqueueNDRangeKernel");
|
|
|
|
if(device->ciErr != CL_SUCCESS) {
|
|
string message = string_printf("OpenCL error: %s in clEnqueueNDRangeKernel()",
|
|
clewErrorString(device->ciErr));
|
|
device->opencl_error(message);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
};
|
|
|
|
class OpenCLSplitKernel : public DeviceSplitKernel {
|
|
OpenCLDeviceSplitKernel *device;
|
|
CachedSplitMemory cached_memory;
|
|
public:
|
|
explicit OpenCLSplitKernel(OpenCLDeviceSplitKernel *device) : DeviceSplitKernel(device), device(device) {
|
|
}
|
|
|
|
virtual SplitKernelFunction* get_split_kernel_function(const string& kernel_name,
|
|
const DeviceRequestedFeatures& requested_features)
|
|
{
|
|
OpenCLSplitKernelFunction* kernel = new OpenCLSplitKernelFunction(device, cached_memory);
|
|
|
|
bool single_program = OpenCLInfo::use_single_program();
|
|
kernel->program =
|
|
OpenCLDeviceBase::OpenCLProgram(device,
|
|
single_program ? "split" : "split_" + kernel_name,
|
|
single_program ? "kernel_split.cl" : "kernel_" + kernel_name + ".cl",
|
|
get_build_options(device, requested_features));
|
|
|
|
kernel->program.add_kernel(ustring("path_trace_" + kernel_name));
|
|
kernel->program.load();
|
|
|
|
if(!kernel->program.is_loaded()) {
|
|
delete kernel;
|
|
return NULL;
|
|
}
|
|
|
|
return kernel;
|
|
}
|
|
|
|
virtual uint64_t state_buffer_size(device_memory& kg, device_memory& data, size_t num_threads)
|
|
{
|
|
device_vector<uint64_t> size_buffer(device, "size_buffer", MEM_READ_WRITE);
|
|
size_buffer.alloc(1);
|
|
size_buffer.zero_to_device();
|
|
|
|
uint threads = num_threads;
|
|
device->kernel_set_args(device->program_state_buffer_size(), 0, kg, data, threads, size_buffer);
|
|
|
|
size_t global_size = 64;
|
|
device->ciErr = clEnqueueNDRangeKernel(device->cqCommandQueue,
|
|
device->program_state_buffer_size(),
|
|
1,
|
|
NULL,
|
|
&global_size,
|
|
NULL,
|
|
0,
|
|
NULL,
|
|
NULL);
|
|
|
|
device->opencl_assert_err(device->ciErr, "clEnqueueNDRangeKernel");
|
|
|
|
size_buffer.copy_from_device(0, 1, 1);
|
|
size_t size = size_buffer[0];
|
|
size_buffer.free();
|
|
|
|
if(device->ciErr != CL_SUCCESS) {
|
|
string message = string_printf("OpenCL error: %s in clEnqueueNDRangeKernel()",
|
|
clewErrorString(device->ciErr));
|
|
device->opencl_error(message);
|
|
return 0;
|
|
}
|
|
|
|
return size;
|
|
}
|
|
|
|
virtual bool enqueue_split_kernel_data_init(const KernelDimensions& dim,
|
|
RenderTile& rtile,
|
|
int num_global_elements,
|
|
device_memory& kernel_globals,
|
|
device_memory& kernel_data,
|
|
device_memory& split_data,
|
|
device_memory& ray_state,
|
|
device_memory& queue_index,
|
|
device_memory& use_queues_flag,
|
|
device_memory& work_pool_wgs
|
|
)
|
|
{
|
|
cl_int dQueue_size = dim.global_size[0] * dim.global_size[1];
|
|
|
|
/* Set the range of samples to be processed for every ray in
|
|
* path-regeneration logic.
|
|
*/
|
|
cl_int start_sample = rtile.start_sample;
|
|
cl_int end_sample = rtile.start_sample + rtile.num_samples;
|
|
|
|
cl_uint start_arg_index =
|
|
device->kernel_set_args(device->program_data_init(),
|
|
0,
|
|
kernel_globals,
|
|
kernel_data,
|
|
split_data,
|
|
num_global_elements,
|
|
ray_state);
|
|
|
|
device->set_kernel_arg_buffers(device->program_data_init(), &start_arg_index);
|
|
|
|
start_arg_index +=
|
|
device->kernel_set_args(device->program_data_init(),
|
|
start_arg_index,
|
|
start_sample,
|
|
end_sample,
|
|
rtile.x,
|
|
rtile.y,
|
|
rtile.w,
|
|
rtile.h,
|
|
rtile.offset,
|
|
rtile.stride,
|
|
queue_index,
|
|
dQueue_size,
|
|
use_queues_flag,
|
|
work_pool_wgs,
|
|
rtile.num_samples,
|
|
rtile.buffer);
|
|
|
|
/* Enqueue ckPathTraceKernel_data_init kernel. */
|
|
device->ciErr = clEnqueueNDRangeKernel(device->cqCommandQueue,
|
|
device->program_data_init(),
|
|
2,
|
|
NULL,
|
|
dim.global_size,
|
|
dim.local_size,
|
|
0,
|
|
NULL,
|
|
NULL);
|
|
|
|
device->opencl_assert_err(device->ciErr, "clEnqueueNDRangeKernel");
|
|
|
|
if(device->ciErr != CL_SUCCESS) {
|
|
string message = string_printf("OpenCL error: %s in clEnqueueNDRangeKernel()",
|
|
clewErrorString(device->ciErr));
|
|
device->opencl_error(message);
|
|
return false;
|
|
}
|
|
|
|
cached_memory.split_data = &split_data;
|
|
cached_memory.ray_state = &ray_state;
|
|
cached_memory.queue_index = &queue_index;
|
|
cached_memory.use_queues_flag = &use_queues_flag;
|
|
cached_memory.work_pools = &work_pool_wgs;
|
|
cached_memory.buffer = &rtile.buffer;
|
|
cached_memory.id++;
|
|
|
|
return true;
|
|
}
|
|
|
|
virtual int2 split_kernel_local_size()
|
|
{
|
|
return make_int2(64, 1);
|
|
}
|
|
|
|
virtual int2 split_kernel_global_size(device_memory& kg, device_memory& data, DeviceTask * /*task*/)
|
|
{
|
|
cl_device_type type = OpenCLInfo::get_device_type(device->cdDevice);
|
|
/* Use small global size on CPU devices as it seems to be much faster. */
|
|
if(type == CL_DEVICE_TYPE_CPU) {
|
|
VLOG(1) << "Global size: (64, 64).";
|
|
return make_int2(64, 64);
|
|
}
|
|
|
|
cl_ulong max_buffer_size;
|
|
clGetDeviceInfo(device->cdDevice, CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(cl_ulong), &max_buffer_size, NULL);
|
|
|
|
if(DebugFlags().opencl.mem_limit) {
|
|
max_buffer_size = min(max_buffer_size,
|
|
cl_ulong(DebugFlags().opencl.mem_limit - device->stats.mem_used));
|
|
}
|
|
|
|
VLOG(1) << "Maximum device allocation size: "
|
|
<< string_human_readable_number(max_buffer_size) << " bytes. ("
|
|
<< string_human_readable_size(max_buffer_size) << ").";
|
|
|
|
/* Limit to 2gb, as we shouldn't need more than that and some devices may support much more. */
|
|
max_buffer_size = min(max_buffer_size / 2, (cl_ulong)2l*1024*1024*1024);
|
|
|
|
size_t num_elements = max_elements_for_max_buffer_size(kg, data, max_buffer_size);
|
|
int2 global_size = make_int2(max(round_down((int)sqrt(num_elements), 64), 64), (int)sqrt(num_elements));
|
|
VLOG(1) << "Global size: " << global_size << ".";
|
|
return global_size;
|
|
}
|
|
};
|
|
|
|
OpenCLDeviceSplitKernel::OpenCLDeviceSplitKernel(DeviceInfo& info, Stats &stats, bool background_)
|
|
: OpenCLDeviceBase(info, stats, background_)
|
|
{
|
|
split_kernel = new OpenCLSplitKernel(this);
|
|
|
|
background = background_;
|
|
}
|
|
|
|
Device *opencl_create_split_device(DeviceInfo& info, Stats& stats, bool background)
|
|
{
|
|
return new OpenCLDeviceSplitKernel(info, stats, background);
|
|
}
|
|
|
|
CCL_NAMESPACE_END
|
|
|
|
#endif /* WITH_OPENCL */
|