This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/kernels/cuda/kernel_cuda_image.h
Patrick Mours fd9124ed6b Fix Cycles volume render differences with NanoVDB when using linear sampling
The NanoVDB sampling implementation behaves different from dense texture sampling, so this
adds a small offset to the voxel indices to correct for that.
Also removes the need to modify the sampling coordinates by moving all the necessary
transformations into the image transform. See also T81454.
2020-11-04 15:09:06 +01:00

234 lines
7.1 KiB
C++

/*
* Copyright 2017 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef WITH_NANOVDB
# include "nanovdb/NanoVDB.h"
# include "nanovdb/util/SampleFromVoxels.h"
#endif
/* w0, w1, w2, and w3 are the four cubic B-spline basis functions. */
ccl_device float cubic_w0(float a)
{
return (1.0f / 6.0f) * (a * (a * (-a + 3.0f) - 3.0f) + 1.0f);
}
ccl_device float cubic_w1(float a)
{
return (1.0f / 6.0f) * (a * a * (3.0f * a - 6.0f) + 4.0f);
}
ccl_device float cubic_w2(float a)
{
return (1.0f / 6.0f) * (a * (a * (-3.0f * a + 3.0f) + 3.0f) + 1.0f);
}
ccl_device float cubic_w3(float a)
{
return (1.0f / 6.0f) * (a * a * a);
}
/* g0 and g1 are the two amplitude functions. */
ccl_device float cubic_g0(float a)
{
return cubic_w0(a) + cubic_w1(a);
}
ccl_device float cubic_g1(float a)
{
return cubic_w2(a) + cubic_w3(a);
}
/* h0 and h1 are the two offset functions */
ccl_device float cubic_h0(float a)
{
/* Note +0.5 offset to compensate for CUDA linear filtering convention. */
return -1.0f + cubic_w1(a) / (cubic_w0(a) + cubic_w1(a)) + 0.5f;
}
ccl_device float cubic_h1(float a)
{
return 1.0f + cubic_w3(a) / (cubic_w2(a) + cubic_w3(a)) + 0.5f;
}
/* Fast bicubic texture lookup using 4 bilinear lookups, adapted from CUDA samples. */
template<typename T>
ccl_device T kernel_tex_image_interp_bicubic(const TextureInfo &info, float x, float y)
{
CUtexObject tex = (CUtexObject)info.data;
x = (x * info.width) - 0.5f;
y = (y * info.height) - 0.5f;
float px = floor(x);
float py = floor(y);
float fx = x - px;
float fy = y - py;
float g0x = cubic_g0(fx);
float g1x = cubic_g1(fx);
float x0 = (px + cubic_h0(fx)) / info.width;
float x1 = (px + cubic_h1(fx)) / info.width;
float y0 = (py + cubic_h0(fy)) / info.height;
float y1 = (py + cubic_h1(fy)) / info.height;
return cubic_g0(fy) * (g0x * tex2D<T>(tex, x0, y0) + g1x * tex2D<T>(tex, x1, y0)) +
cubic_g1(fy) * (g0x * tex2D<T>(tex, x0, y1) + g1x * tex2D<T>(tex, x1, y1));
}
/* Fast tricubic texture lookup using 8 trilinear lookups. */
template<typename T>
ccl_device T kernel_tex_image_interp_bicubic_3d(const TextureInfo &info, float x, float y, float z)
{
CUtexObject tex = (CUtexObject)info.data;
x = (x * info.width) - 0.5f;
y = (y * info.height) - 0.5f;
z = (z * info.depth) - 0.5f;
float px = floor(x);
float py = floor(y);
float pz = floor(z);
float fx = x - px;
float fy = y - py;
float fz = z - pz;
float g0x = cubic_g0(fx);
float g1x = cubic_g1(fx);
float g0y = cubic_g0(fy);
float g1y = cubic_g1(fy);
float g0z = cubic_g0(fz);
float g1z = cubic_g1(fz);
float x0 = (px + cubic_h0(fx)) / info.width;
float x1 = (px + cubic_h1(fx)) / info.width;
float y0 = (py + cubic_h0(fy)) / info.height;
float y1 = (py + cubic_h1(fy)) / info.height;
float z0 = (pz + cubic_h0(fz)) / info.depth;
float z1 = (pz + cubic_h1(fz)) / info.depth;
return g0z * (g0y * (g0x * tex3D<T>(tex, x0, y0, z0) + g1x * tex3D<T>(tex, x1, y0, z0)) +
g1y * (g0x * tex3D<T>(tex, x0, y1, z0) + g1x * tex3D<T>(tex, x1, y1, z0))) +
g1z * (g0y * (g0x * tex3D<T>(tex, x0, y0, z1) + g1x * tex3D<T>(tex, x1, y0, z1)) +
g1y * (g0x * tex3D<T>(tex, x0, y1, z1) + g1x * tex3D<T>(tex, x1, y1, z1)));
}
#ifdef WITH_NANOVDB
template<typename T>
ccl_device_inline T kernel_tex_image_interp_nanovdb(
const TextureInfo &info, float x, float y, float z, uint interpolation)
{
const nanovdb::Vec3f xyz(x, y, z);
nanovdb::NanoGrid<T> *const grid = (nanovdb::NanoGrid<T> *)info.data;
const nanovdb::NanoRoot<T> &root = grid->tree().root();
typedef nanovdb::ReadAccessor<nanovdb::NanoRoot<T>> ReadAccessorT;
switch (interpolation) {
case INTERPOLATION_CLOSEST:
return nanovdb::SampleFromVoxels<ReadAccessorT, 0, false>(root)(xyz);
case INTERPOLATION_LINEAR:
return nanovdb::SampleFromVoxels<ReadAccessorT, 1, false>(root)(xyz);
default:
return nanovdb::SampleFromVoxels<ReadAccessorT, 3, false>(root)(xyz);
}
}
#endif
ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, float y)
{
const TextureInfo &info = kernel_tex_fetch(__texture_info, id);
/* float4, byte4, ushort4 and half4 */
const int texture_type = info.data_type;
if (texture_type == IMAGE_DATA_TYPE_FLOAT4 || texture_type == IMAGE_DATA_TYPE_BYTE4 ||
texture_type == IMAGE_DATA_TYPE_HALF4 || texture_type == IMAGE_DATA_TYPE_USHORT4) {
if (info.interpolation == INTERPOLATION_CUBIC) {
return kernel_tex_image_interp_bicubic<float4>(info, x, y);
}
else {
CUtexObject tex = (CUtexObject)info.data;
return tex2D<float4>(tex, x, y);
}
}
/* float, byte and half */
else {
float f;
if (info.interpolation == INTERPOLATION_CUBIC) {
f = kernel_tex_image_interp_bicubic<float>(info, x, y);
}
else {
CUtexObject tex = (CUtexObject)info.data;
f = tex2D<float>(tex, x, y);
}
return make_float4(f, f, f, 1.0f);
}
}
ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals *kg,
int id,
float3 P,
InterpolationType interp)
{
const TextureInfo &info = kernel_tex_fetch(__texture_info, id);
if (info.use_transform_3d) {
P = transform_point(&info.transform_3d, P);
}
const float x = P.x;
const float y = P.y;
const float z = P.z;
uint interpolation = (interp == INTERPOLATION_NONE) ? info.interpolation : interp;
const int texture_type = info.data_type;
#ifdef WITH_NANOVDB
if (texture_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT) {
float f = kernel_tex_image_interp_nanovdb<float>(info, x, y, z, interpolation);
return make_float4(f, f, f, 1.0f);
}
if (texture_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT3) {
nanovdb::Vec3f f = kernel_tex_image_interp_nanovdb<nanovdb::Vec3f>(
info, x, y, z, interpolation);
return make_float4(f[0], f[1], f[2], 1.0f);
}
#endif
if (texture_type == IMAGE_DATA_TYPE_FLOAT4 || texture_type == IMAGE_DATA_TYPE_BYTE4 ||
texture_type == IMAGE_DATA_TYPE_HALF4 || texture_type == IMAGE_DATA_TYPE_USHORT4) {
if (interpolation == INTERPOLATION_CUBIC) {
return kernel_tex_image_interp_bicubic_3d<float4>(info, x, y, z);
}
else {
CUtexObject tex = (CUtexObject)info.data;
return tex3D<float4>(tex, x, y, z);
}
}
else {
float f;
if (interpolation == INTERPOLATION_CUBIC) {
f = kernel_tex_image_interp_bicubic_3d<float>(info, x, y, z);
}
else {
CUtexObject tex = (CUtexObject)info.data;
f = tex3D<float>(tex, x, y, z);
}
return make_float4(f, f, f, 1.0f);
}
}