Apply clang format as proposed in T53211. For details on usage and instructions for migrating branches without conflicts, see: https://wiki.blender.org/wiki/Tools/ClangFormat
		
			
				
	
	
		
			553 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			553 lines
		
	
	
		
			17 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
 | |
|  */
 | |
| 
 | |
| /** \file
 | |
|  * \ingroup gpu
 | |
|  *
 | |
|  * GPU immediate mode drawing utilities
 | |
|  */
 | |
| 
 | |
| #include <stdio.h>
 | |
| #include <string.h>
 | |
| 
 | |
| #include "BLI_utildefines.h"
 | |
| #include "BLI_math.h"
 | |
| 
 | |
| #include "GPU_immediate.h"
 | |
| #include "GPU_immediate_util.h"
 | |
| #include "GPU_matrix.h"
 | |
| 
 | |
| static const float cube_coords[8][3] = {
 | |
|     {-1, -1, -1},
 | |
|     {-1, -1, +1},
 | |
|     {-1, +1, -1},
 | |
|     {-1, +1, +1},
 | |
|     {+1, -1, -1},
 | |
|     {+1, -1, +1},
 | |
|     {+1, +1, -1},
 | |
|     {+1, +1, +1},
 | |
| };
 | |
| static const int cube_quad_index[6][4] = {
 | |
|     {0, 1, 3, 2},
 | |
|     {0, 2, 6, 4},
 | |
|     {0, 4, 5, 1},
 | |
|     {1, 5, 7, 3},
 | |
|     {2, 3, 7, 6},
 | |
|     {4, 6, 7, 5},
 | |
| };
 | |
| static const int cube_line_index[12][2] = {
 | |
|     {0, 1},
 | |
|     {0, 2},
 | |
|     {0, 4},
 | |
|     {1, 3},
 | |
|     {1, 5},
 | |
|     {2, 3},
 | |
|     {2, 6},
 | |
|     {3, 7},
 | |
|     {4, 5},
 | |
|     {4, 6},
 | |
|     {5, 7},
 | |
|     {6, 7},
 | |
| };
 | |
| 
 | |
| void immRectf(uint pos, float x1, float y1, float x2, float y2)
 | |
| {
 | |
|   immBegin(GPU_PRIM_TRI_FAN, 4);
 | |
|   immVertex2f(pos, x1, y1);
 | |
|   immVertex2f(pos, x2, y1);
 | |
|   immVertex2f(pos, x2, y2);
 | |
|   immVertex2f(pos, x1, y2);
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| void immRecti(uint pos, int x1, int y1, int x2, int y2)
 | |
| {
 | |
|   immBegin(GPU_PRIM_TRI_FAN, 4);
 | |
|   immVertex2i(pos, x1, y1);
 | |
|   immVertex2i(pos, x2, y1);
 | |
|   immVertex2i(pos, x2, y2);
 | |
|   immVertex2i(pos, x1, y2);
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| void immRectf_fast(uint pos, float x1, float y1, float x2, float y2)
 | |
| {
 | |
|   immVertex2f(pos, x1, y1);
 | |
|   immVertex2f(pos, x2, y1);
 | |
|   immVertex2f(pos, x2, y2);
 | |
| 
 | |
|   immVertex2f(pos, x1, y1);
 | |
|   immVertex2f(pos, x2, y2);
 | |
|   immVertex2f(pos, x1, y2);
 | |
| }
 | |
| 
 | |
| void immRectf_fast_with_color(
 | |
|     uint pos, uint col, float x1, float y1, float x2, float y2, const float color[4])
 | |
| {
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2f(pos, x1, y1);
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2f(pos, x2, y1);
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2f(pos, x2, y2);
 | |
| 
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2f(pos, x1, y1);
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2f(pos, x2, y2);
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2f(pos, x1, y2);
 | |
| }
 | |
| 
 | |
| void immRecti_fast_with_color(
 | |
|     uint pos, uint col, int x1, int y1, int x2, int y2, const float color[4])
 | |
| {
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2i(pos, x1, y1);
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2i(pos, x2, y1);
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2i(pos, x2, y2);
 | |
| 
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2i(pos, x1, y1);
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2i(pos, x2, y2);
 | |
|   immAttr4fv(col, color);
 | |
|   immVertex2i(pos, x1, y2);
 | |
| }
 | |
| 
 | |
| #if 0 /* more complete version in case we want that */
 | |
| void immRecti_complete(int x1, int y1, int x2, int y2, const float color[4])
 | |
| {
 | |
|   GPUVertFormat *format = immVertexFormat();
 | |
|   uint pos = add_attr(format, "pos", GPU_COMP_I32, 2, GPU_FETCH_INT_TO_FLOAT);
 | |
|   immBindBuiltinProgram(GPU_SHADER_2D_UNIFORM_COLOR);
 | |
|   immUniformColor4fv(color);
 | |
|   immRecti(pos, x1, y1, x2, y2);
 | |
|   immUnbindProgram();
 | |
| }
 | |
| #endif
 | |
| 
 | |
| /**
 | |
|  * Pack color into 3 bytes
 | |
|  *
 | |
|  * This define converts a numerical value to the equivalent 24-bit
 | |
|  * color, while not being endian-sensitive. On little-endian, this
 | |
|  * is the same as doing a 'naive' indexing, on big-endian, it is not!
 | |
|  *
 | |
|  * \note BGR format (i.e. 0xBBGGRR)...
 | |
|  *
 | |
|  * \param x: color.
 | |
|  */
 | |
| void imm_cpack(uint x)
 | |
| {
 | |
|   immUniformColor3ub(((x)&0xFF), (((x) >> 8) & 0xFF), (((x) >> 16) & 0xFF));
 | |
| }
 | |
| 
 | |
| static void imm_draw_circle(GPUPrimType prim_type,
 | |
|                             const uint shdr_pos,
 | |
|                             float x,
 | |
|                             float y,
 | |
|                             float rad_x,
 | |
|                             float rad_y,
 | |
|                             int nsegments)
 | |
| {
 | |
|   immBegin(prim_type, nsegments);
 | |
|   for (int i = 0; i < nsegments; ++i) {
 | |
|     const float angle = (float)(2 * M_PI) * ((float)i / (float)nsegments);
 | |
|     immVertex2f(shdr_pos, x + (rad_x * cosf(angle)), y + (rad_y * sinf(angle)));
 | |
|   }
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Draw a circle outline with the given \a radius.
 | |
|  * The circle is centered at \a x, \a y and drawn in the XY plane.
 | |
|  *
 | |
|  * \param shdr_pos: The vertex attribute number for position.
 | |
|  * \param x: Horizontal center.
 | |
|  * \param y: Vertical center.
 | |
|  * \param rad: The circle's radius.
 | |
|  * \param nsegments: The number of segments to use in drawing (more = smoother).
 | |
|  */
 | |
| void imm_draw_circle_wire_2d(uint shdr_pos, float x, float y, float rad, int nsegments)
 | |
| {
 | |
|   imm_draw_circle(GPU_PRIM_LINE_LOOP, shdr_pos, x, y, rad, rad, nsegments);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Draw a filled circle with the given \a radius.
 | |
|  * The circle is centered at \a x, \a y and drawn in the XY plane.
 | |
|  *
 | |
|  * \param shdr_pos: The vertex attribute number for position.
 | |
|  * \param x: Horizontal center.
 | |
|  * \param y: Vertical center.
 | |
|  * \param rad: The circle's radius.
 | |
|  * \param nsegments: The number of segments to use in drawing (more = smoother).
 | |
|  */
 | |
| void imm_draw_circle_fill_2d(uint shdr_pos, float x, float y, float rad, int nsegments)
 | |
| {
 | |
|   imm_draw_circle(GPU_PRIM_TRI_FAN, shdr_pos, x, y, rad, rad, nsegments);
 | |
| }
 | |
| 
 | |
| void imm_draw_circle_wire_aspect_2d(
 | |
|     uint shdr_pos, float x, float y, float rad_x, float rad_y, int nsegments)
 | |
| {
 | |
|   imm_draw_circle(GPU_PRIM_LINE_LOOP, shdr_pos, x, y, rad_x, rad_y, nsegments);
 | |
| }
 | |
| void imm_draw_circle_fill_aspect_2d(
 | |
|     uint shdr_pos, float x, float y, float rad_x, float rad_y, int nsegments)
 | |
| {
 | |
|   imm_draw_circle(GPU_PRIM_TRI_FAN, shdr_pos, x, y, rad_x, rad_y, nsegments);
 | |
| }
 | |
| 
 | |
| static void imm_draw_circle_partial(GPUPrimType prim_type,
 | |
|                                     uint pos,
 | |
|                                     float x,
 | |
|                                     float y,
 | |
|                                     float rad,
 | |
|                                     int nsegments,
 | |
|                                     float start,
 | |
|                                     float sweep)
 | |
| {
 | |
|   /* shift & reverse angle, increase 'nsegments' to match gluPartialDisk */
 | |
|   const float angle_start = -(DEG2RADF(start)) + (float)(M_PI / 2);
 | |
|   const float angle_end = -(DEG2RADF(sweep) - angle_start);
 | |
|   nsegments += 1;
 | |
|   immBegin(prim_type, nsegments);
 | |
|   for (int i = 0; i < nsegments; ++i) {
 | |
|     const float angle = interpf(angle_start, angle_end, ((float)i / (float)(nsegments - 1)));
 | |
|     const float angle_sin = sinf(angle);
 | |
|     const float angle_cos = cosf(angle);
 | |
|     immVertex2f(pos, x + rad * angle_cos, y + rad * angle_sin);
 | |
|   }
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| void imm_draw_circle_partial_wire_2d(
 | |
|     uint pos, float x, float y, float rad, int nsegments, float start, float sweep)
 | |
| {
 | |
|   imm_draw_circle_partial(GPU_PRIM_LINE_STRIP, pos, x, y, rad, nsegments, start, sweep);
 | |
| }
 | |
| 
 | |
| static void imm_draw_disk_partial(GPUPrimType prim_type,
 | |
|                                   uint pos,
 | |
|                                   float x,
 | |
|                                   float y,
 | |
|                                   float rad_inner,
 | |
|                                   float rad_outer,
 | |
|                                   int nsegments,
 | |
|                                   float start,
 | |
|                                   float sweep)
 | |
| {
 | |
|   /* to avoid artifacts */
 | |
|   const float max_angle = 3 * 360;
 | |
|   CLAMP(sweep, -max_angle, max_angle);
 | |
| 
 | |
|   /* shift & reverse angle, increase 'nsegments' to match gluPartialDisk */
 | |
|   const float angle_start = -(DEG2RADF(start)) + (float)(M_PI / 2);
 | |
|   const float angle_end = -(DEG2RADF(sweep) - angle_start);
 | |
|   nsegments += 1;
 | |
|   immBegin(prim_type, nsegments * 2);
 | |
|   for (int i = 0; i < nsegments; ++i) {
 | |
|     const float angle = interpf(angle_start, angle_end, ((float)i / (float)(nsegments - 1)));
 | |
|     const float angle_sin = sinf(angle);
 | |
|     const float angle_cos = cosf(angle);
 | |
|     immVertex2f(pos, x + rad_inner * angle_cos, y + rad_inner * angle_sin);
 | |
|     immVertex2f(pos, x + rad_outer * angle_cos, y + rad_outer * angle_sin);
 | |
|   }
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Draw a filled arc with the given inner and outer radius.
 | |
|  * The circle is centered at \a x, \a y and drawn in the XY plane.
 | |
|  *
 | |
|  * \note Arguments are `gluPartialDisk` compatible.
 | |
|  *
 | |
|  * \param pos: The vertex attribute number for position.
 | |
|  * \param x: Horizontal center.
 | |
|  * \param y: Vertical center.
 | |
|  * \param rad_inner: The inner circle's radius.
 | |
|  * \param rad_outer: The outer circle's radius (can be zero).
 | |
|  * \param nsegments: The number of segments to use in drawing (more = smoother).
 | |
|  * \param start: Specifies the starting angle, in degrees, of the disk portion.
 | |
|  * \param sweep: Specifies the sweep angle, in degrees, of the disk portion.
 | |
|  */
 | |
| void imm_draw_disk_partial_fill_2d(uint pos,
 | |
|                                    float x,
 | |
|                                    float y,
 | |
|                                    float rad_inner,
 | |
|                                    float rad_outer,
 | |
|                                    int nsegments,
 | |
|                                    float start,
 | |
|                                    float sweep)
 | |
| {
 | |
|   imm_draw_disk_partial(
 | |
|       GPU_PRIM_TRI_STRIP, pos, x, y, rad_inner, rad_outer, nsegments, start, sweep);
 | |
| }
 | |
| 
 | |
| static void imm_draw_circle_3D(
 | |
|     GPUPrimType prim_type, uint pos, float x, float y, float rad, int nsegments)
 | |
| {
 | |
|   immBegin(prim_type, nsegments);
 | |
|   for (int i = 0; i < nsegments; ++i) {
 | |
|     float angle = (float)(2 * M_PI) * ((float)i / (float)nsegments);
 | |
|     immVertex3f(pos, x + rad * cosf(angle), y + rad * sinf(angle), 0.0f);
 | |
|   }
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| void imm_draw_circle_wire_3d(uint pos, float x, float y, float rad, int nsegments)
 | |
| {
 | |
|   imm_draw_circle_3D(GPU_PRIM_LINE_LOOP, pos, x, y, rad, nsegments);
 | |
| }
 | |
| 
 | |
| void imm_draw_circle_fill_3d(uint pos, float x, float y, float rad, int nsegments)
 | |
| {
 | |
|   imm_draw_circle_3D(GPU_PRIM_TRI_FAN, pos, x, y, rad, nsegments);
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Draw a lined box.
 | |
|  *
 | |
|  * \param pos: The vertex attribute number for position.
 | |
|  * \param x1: left.
 | |
|  * \param y1: bottom.
 | |
|  * \param x2: right.
 | |
|  * \param y2: top.
 | |
|  */
 | |
| void imm_draw_box_wire_2d(uint pos, float x1, float y1, float x2, float y2)
 | |
| {
 | |
|   immBegin(GPU_PRIM_LINE_LOOP, 4);
 | |
|   immVertex2f(pos, x1, y1);
 | |
|   immVertex2f(pos, x1, y2);
 | |
|   immVertex2f(pos, x2, y2);
 | |
|   immVertex2f(pos, x2, y1);
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| void imm_draw_box_wire_3d(uint pos, float x1, float y1, float x2, float y2)
 | |
| {
 | |
|   /* use this version when GPUVertFormat has a vec3 position */
 | |
|   immBegin(GPU_PRIM_LINE_LOOP, 4);
 | |
|   immVertex3f(pos, x1, y1, 0.0f);
 | |
|   immVertex3f(pos, x1, y2, 0.0f);
 | |
|   immVertex3f(pos, x2, y2, 0.0f);
 | |
|   immVertex3f(pos, x2, y1, 0.0f);
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Draw a standard checkerboard to indicate transparent backgrounds.
 | |
|  */
 | |
| void imm_draw_box_checker_2d(float x1, float y1, float x2, float y2)
 | |
| {
 | |
|   uint pos = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 2, GPU_FETCH_FLOAT);
 | |
|   immBindBuiltinProgram(GPU_SHADER_2D_CHECKER);
 | |
| 
 | |
|   immUniform4f("color1", 0.15f, 0.15f, 0.15f, 1.0f);
 | |
|   immUniform4f("color2", 0.2f, 0.2f, 0.2f, 1.0f);
 | |
|   immUniform1i("size", 8);
 | |
| 
 | |
|   immRectf(pos, x1, y1, x2, y2);
 | |
| 
 | |
|   immUnbindProgram();
 | |
| }
 | |
| 
 | |
| void imm_draw_cube_fill_3d(uint pos, const float co[3], const float aspect[3])
 | |
| {
 | |
|   float coords[ARRAY_SIZE(cube_coords)][3];
 | |
| 
 | |
|   for (int i = 0; i < ARRAY_SIZE(cube_coords); i++) {
 | |
|     madd_v3_v3v3v3(coords[i], co, cube_coords[i], aspect);
 | |
|   }
 | |
| 
 | |
|   immBegin(GPU_PRIM_TRIS, ARRAY_SIZE(cube_quad_index) * 3 * 2);
 | |
|   for (int i = 0; i < ARRAY_SIZE(cube_quad_index); i++) {
 | |
|     immVertex3fv(pos, coords[cube_quad_index[i][0]]);
 | |
|     immVertex3fv(pos, coords[cube_quad_index[i][1]]);
 | |
|     immVertex3fv(pos, coords[cube_quad_index[i][2]]);
 | |
| 
 | |
|     immVertex3fv(pos, coords[cube_quad_index[i][0]]);
 | |
|     immVertex3fv(pos, coords[cube_quad_index[i][2]]);
 | |
|     immVertex3fv(pos, coords[cube_quad_index[i][3]]);
 | |
|   }
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| void imm_draw_cube_wire_3d(uint pos, const float co[3], const float aspect[3])
 | |
| {
 | |
|   float coords[ARRAY_SIZE(cube_coords)][3];
 | |
| 
 | |
|   for (int i = 0; i < ARRAY_SIZE(cube_coords); i++) {
 | |
|     madd_v3_v3v3v3(coords[i], co, cube_coords[i], aspect);
 | |
|   }
 | |
| 
 | |
|   immBegin(GPU_PRIM_LINES, ARRAY_SIZE(cube_line_index) * 2);
 | |
|   for (int i = 0; i < ARRAY_SIZE(cube_line_index); i++) {
 | |
|     immVertex3fv(pos, coords[cube_line_index[i][0]]);
 | |
|     immVertex3fv(pos, coords[cube_line_index[i][1]]);
 | |
|   }
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| /**
 | |
|  * Draw a cylinder. Replacement for gluCylinder.
 | |
|  * _warning_ : Slow, better use it only if you no other choices.
 | |
|  *
 | |
|  * \param pos: The vertex attribute number for position.
 | |
|  * \param nor: The vertex attribute number for normal.
 | |
|  * \param base: Specifies the radius of the cylinder at z = 0.
 | |
|  * \param top: Specifies the radius of the cylinder at z = height.
 | |
|  * \param height: Specifies the height of the cylinder.
 | |
|  * \param slices: Specifies the number of subdivisions around the z axis.
 | |
|  * \param stacks: Specifies the number of subdivisions along the z axis.
 | |
|  */
 | |
| void imm_draw_cylinder_fill_normal_3d(
 | |
|     uint pos, uint nor, float base, float top, float height, int slices, int stacks)
 | |
| {
 | |
|   immBegin(GPU_PRIM_TRIS, 6 * slices * stacks);
 | |
|   for (int i = 0; i < slices; ++i) {
 | |
|     const float angle1 = (float)(2 * M_PI) * ((float)i / (float)slices);
 | |
|     const float angle2 = (float)(2 * M_PI) * ((float)(i + 1) / (float)slices);
 | |
|     const float cos1 = cosf(angle1);
 | |
|     const float sin1 = sinf(angle1);
 | |
|     const float cos2 = cosf(angle2);
 | |
|     const float sin2 = sinf(angle2);
 | |
| 
 | |
|     for (int j = 0; j < stacks; ++j) {
 | |
|       float fac1 = (float)j / (float)stacks;
 | |
|       float fac2 = (float)(j + 1) / (float)stacks;
 | |
|       float r1 = base * (1.f - fac1) + top * fac1;
 | |
|       float r2 = base * (1.f - fac2) + top * fac2;
 | |
|       float h1 = height * ((float)j / (float)stacks);
 | |
|       float h2 = height * ((float)(j + 1) / (float)stacks);
 | |
| 
 | |
|       float v1[3] = {r1 * cos2, r1 * sin2, h1};
 | |
|       float v2[3] = {r2 * cos2, r2 * sin2, h2};
 | |
|       float v3[3] = {r2 * cos1, r2 * sin1, h2};
 | |
|       float v4[3] = {r1 * cos1, r1 * sin1, h1};
 | |
|       float n1[3], n2[3];
 | |
| 
 | |
|       /* calc normals */
 | |
|       sub_v3_v3v3(n1, v2, v1);
 | |
|       normalize_v3(n1);
 | |
|       n1[0] = cos1;
 | |
|       n1[1] = sin1;
 | |
|       n1[2] = 1 - n1[2];
 | |
| 
 | |
|       sub_v3_v3v3(n2, v3, v4);
 | |
|       normalize_v3(n2);
 | |
|       n2[0] = cos2;
 | |
|       n2[1] = sin2;
 | |
|       n2[2] = 1 - n2[2];
 | |
| 
 | |
|       /* first tri */
 | |
|       immAttr3fv(nor, n2);
 | |
|       immVertex3fv(pos, v1);
 | |
|       immVertex3fv(pos, v2);
 | |
|       immAttr3fv(nor, n1);
 | |
|       immVertex3fv(pos, v3);
 | |
| 
 | |
|       /* second tri */
 | |
|       immVertex3fv(pos, v3);
 | |
|       immVertex3fv(pos, v4);
 | |
|       immAttr3fv(nor, n2);
 | |
|       immVertex3fv(pos, v1);
 | |
|     }
 | |
|   }
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| void imm_draw_cylinder_wire_3d(
 | |
|     uint pos, float base, float top, float height, int slices, int stacks)
 | |
| {
 | |
|   immBegin(GPU_PRIM_LINES, 6 * slices * stacks);
 | |
|   for (int i = 0; i < slices; ++i) {
 | |
|     const float angle1 = (float)(2 * M_PI) * ((float)i / (float)slices);
 | |
|     const float angle2 = (float)(2 * M_PI) * ((float)(i + 1) / (float)slices);
 | |
|     const float cos1 = cosf(angle1);
 | |
|     const float sin1 = sinf(angle1);
 | |
|     const float cos2 = cosf(angle2);
 | |
|     const float sin2 = sinf(angle2);
 | |
| 
 | |
|     for (int j = 0; j < stacks; ++j) {
 | |
|       float fac1 = (float)j / (float)stacks;
 | |
|       float fac2 = (float)(j + 1) / (float)stacks;
 | |
|       float r1 = base * (1.f - fac1) + top * fac1;
 | |
|       float r2 = base * (1.f - fac2) + top * fac2;
 | |
|       float h1 = height * ((float)j / (float)stacks);
 | |
|       float h2 = height * ((float)(j + 1) / (float)stacks);
 | |
| 
 | |
|       float v1[3] = {r1 * cos2, r1 * sin2, h1};
 | |
|       float v2[3] = {r2 * cos2, r2 * sin2, h2};
 | |
|       float v3[3] = {r2 * cos1, r2 * sin1, h2};
 | |
|       float v4[3] = {r1 * cos1, r1 * sin1, h1};
 | |
| 
 | |
|       immVertex3fv(pos, v1);
 | |
|       immVertex3fv(pos, v2);
 | |
| 
 | |
|       immVertex3fv(pos, v2);
 | |
|       immVertex3fv(pos, v3);
 | |
| 
 | |
|       immVertex3fv(pos, v1);
 | |
|       immVertex3fv(pos, v4);
 | |
|     }
 | |
|   }
 | |
|   immEnd();
 | |
| }
 | |
| 
 | |
| void imm_draw_cylinder_fill_3d(
 | |
|     uint pos, float base, float top, float height, int slices, int stacks)
 | |
| {
 | |
|   immBegin(GPU_PRIM_TRIS, 6 * slices * stacks);
 | |
|   for (int i = 0; i < slices; ++i) {
 | |
|     const float angle1 = (float)(2 * M_PI) * ((float)i / (float)slices);
 | |
|     const float angle2 = (float)(2 * M_PI) * ((float)(i + 1) / (float)slices);
 | |
|     const float cos1 = cosf(angle1);
 | |
|     const float sin1 = sinf(angle1);
 | |
|     const float cos2 = cosf(angle2);
 | |
|     const float sin2 = sinf(angle2);
 | |
| 
 | |
|     for (int j = 0; j < stacks; ++j) {
 | |
|       float fac1 = (float)j / (float)stacks;
 | |
|       float fac2 = (float)(j + 1) / (float)stacks;
 | |
|       float r1 = base * (1.f - fac1) + top * fac1;
 | |
|       float r2 = base * (1.f - fac2) + top * fac2;
 | |
|       float h1 = height * ((float)j / (float)stacks);
 | |
|       float h2 = height * ((float)(j + 1) / (float)stacks);
 | |
| 
 | |
|       float v1[3] = {r1 * cos2, r1 * sin2, h1};
 | |
|       float v2[3] = {r2 * cos2, r2 * sin2, h2};
 | |
|       float v3[3] = {r2 * cos1, r2 * sin1, h2};
 | |
|       float v4[3] = {r1 * cos1, r1 * sin1, h1};
 | |
| 
 | |
|       /* first tri */
 | |
|       immVertex3fv(pos, v1);
 | |
|       immVertex3fv(pos, v2);
 | |
|       immVertex3fv(pos, v3);
 | |
| 
 | |
|       /* second tri */
 | |
|       immVertex3fv(pos, v3);
 | |
|       immVertex3fv(pos, v4);
 | |
|       immVertex3fv(pos, v1);
 | |
|     }
 | |
|   }
 | |
|   immEnd();
 | |
| }
 |