This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/intern/cycles/kernel/kernels/opencl/kernel_opencl_image.h
Sergey Sharybin 226eb5e366 Cycles: Fix usage of double floating precision in CNanoVDB
Double floating point precision is an extension of OpenCL, which might
not be implemented by certain drivers, such as Intel Xe graphics.

Cycles does not use double floating point precision, and there is no
need on keeping doubles unless there is an explicit decision to use
them.

This is a simple fix from Cycles side to replace double floating point
type with a type of same size and alignment rules. Inspired by Brecht
and Patrick.

Tested on NVidia Titan V, Radeon RX Vega M, and TGL laptop.

Differential Revision: https://developer.blender.org/D10143
2021-01-22 14:31:06 +01:00

359 lines
11 KiB
C++

/*
* Copyright 2016 Blender Foundation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifdef WITH_NANOVDB
/* Data type to replace `double` used in the NanoVDB headers. Cycles don't need doubles, and is
* safer and more portable to never use double datatype on GPU.
* Use a special structure, so that the following is true:
* - No unnoticed implicit cast or mathermatical operations used on scalar 64bit type
* (which rules out trick like using `uint64_t` as a drop-in replacement for double).
* - Padding rules are matching exactly `double`
* (which rules out array of `uint8_t`). */
typedef struct ccl_vdb_double_t {
uint64_t i;
} ccl_vdb_double_t;
# define double ccl_vdb_double_t
# include "nanovdb/CNanoVDB.h"
# undef double
#endif
/* For OpenCL we do manual lookup and interpolation. */
ccl_device_inline ccl_global TextureInfo *kernel_tex_info(KernelGlobals *kg, uint id)
{
const uint tex_offset = id
#define KERNEL_TEX(type, name) +1
#include "kernel/kernel_textures.h"
;
return &((ccl_global TextureInfo *)kg->buffers[0])[tex_offset];
}
#define tex_fetch(type, info, index) \
((ccl_global type *)(kg->buffers[info->cl_buffer] + info->data))[(index)]
ccl_device_inline int svm_image_texture_wrap_periodic(int x, int width)
{
x %= width;
if (x < 0)
x += width;
return x;
}
ccl_device_inline int svm_image_texture_wrap_clamp(int x, int width)
{
return clamp(x, 0, width - 1);
}
ccl_device_inline float4 svm_image_texture_read(
KernelGlobals *kg, const ccl_global TextureInfo *info, void *acc, int x, int y, int z)
{
const int data_offset = x + info->width * y + info->width * info->height * z;
const int texture_type = info->data_type;
/* Float4 */
if (texture_type == IMAGE_DATA_TYPE_FLOAT4) {
return tex_fetch(float4, info, data_offset);
}
/* Byte4 */
else if (texture_type == IMAGE_DATA_TYPE_BYTE4) {
uchar4 r = tex_fetch(uchar4, info, data_offset);
float f = 1.0f / 255.0f;
return make_float4(r.x * f, r.y * f, r.z * f, r.w * f);
}
/* Ushort4 */
else if (texture_type == IMAGE_DATA_TYPE_USHORT4) {
ushort4 r = tex_fetch(ushort4, info, data_offset);
float f = 1.0f / 65535.f;
return make_float4(r.x * f, r.y * f, r.z * f, r.w * f);
}
/* Float */
else if (texture_type == IMAGE_DATA_TYPE_FLOAT) {
float f = tex_fetch(float, info, data_offset);
return make_float4(f, f, f, 1.0f);
}
/* UShort */
else if (texture_type == IMAGE_DATA_TYPE_USHORT) {
ushort r = tex_fetch(ushort, info, data_offset);
float f = r * (1.0f / 65535.0f);
return make_float4(f, f, f, 1.0f);
}
#ifdef WITH_NANOVDB
/* NanoVDB Float */
else if (texture_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT) {
cnanovdb_coord coord;
coord.mVec[0] = x;
coord.mVec[1] = y;
coord.mVec[2] = z;
float f = cnanovdb_readaccessor_getValueF((cnanovdb_readaccessor *)acc, &coord);
return make_float4(f, f, f, 1.0f);
}
/* NanoVDB Float3 */
else if (texture_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT3) {
cnanovdb_coord coord;
coord.mVec[0] = x;
coord.mVec[1] = y;
coord.mVec[2] = z;
cnanovdb_Vec3F f = cnanovdb_readaccessor_getValueF3((cnanovdb_readaccessor *)acc, &coord);
return make_float4(f.mVec[0], f.mVec[1], f.mVec[2], 1.0f);
}
#endif
#ifdef __KERNEL_CL_KHR_FP16__
/* Half and Half4 are optional in OpenCL */
else if (texture_type == IMAGE_DATA_TYPE_HALF) {
float f = tex_fetch(half, info, data_offset);
return make_float4(f, f, f, 1.0f);
}
else if (texture_type == IMAGE_DATA_TYPE_HALF4) {
half4 r = tex_fetch(half4, info, data_offset);
return make_float4(r.x, r.y, r.z, r.w);
}
#endif
/* Byte */
else {
uchar r = tex_fetch(uchar, info, data_offset);
float f = r * (1.0f / 255.0f);
return make_float4(f, f, f, 1.0f);
}
}
ccl_device_inline float4
svm_image_texture_read_2d(KernelGlobals *kg, int id, void *acc, int x, int y)
{
const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
#ifdef WITH_NANOVDB
if (info->data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT &&
info->data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT3) {
#endif
/* Wrap */
if (info->extension == EXTENSION_REPEAT) {
x = svm_image_texture_wrap_periodic(x, info->width);
y = svm_image_texture_wrap_periodic(y, info->height);
}
else {
x = svm_image_texture_wrap_clamp(x, info->width);
y = svm_image_texture_wrap_clamp(y, info->height);
}
#ifdef WITH_NANOVDB
}
#endif
return svm_image_texture_read(kg, info, acc, x, y, 0);
}
ccl_device_inline float4
svm_image_texture_read_3d(KernelGlobals *kg, int id, void *acc, int x, int y, int z)
{
const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
#ifdef WITH_NANOVDB
if (info->data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT &&
info->data_type != IMAGE_DATA_TYPE_NANOVDB_FLOAT3) {
#endif
/* Wrap */
if (info->extension == EXTENSION_REPEAT) {
x = svm_image_texture_wrap_periodic(x, info->width);
y = svm_image_texture_wrap_periodic(y, info->height);
z = svm_image_texture_wrap_periodic(z, info->depth);
}
else {
x = svm_image_texture_wrap_clamp(x, info->width);
y = svm_image_texture_wrap_clamp(y, info->height);
z = svm_image_texture_wrap_clamp(z, info->depth);
}
#ifdef WITH_NANOVDB
}
#endif
return svm_image_texture_read(kg, info, acc, x, y, z);
}
ccl_device_inline float svm_image_texture_frac(float x, int *ix)
{
int i = float_to_int(x) - ((x < 0.0f) ? 1 : 0);
*ix = i;
return x - (float)i;
}
#define SET_CUBIC_SPLINE_WEIGHTS(u, t) \
{ \
u[0] = (((-1.0f / 6.0f) * t + 0.5f) * t - 0.5f) * t + (1.0f / 6.0f); \
u[1] = ((0.5f * t - 1.0f) * t) * t + (2.0f / 3.0f); \
u[2] = ((-0.5f * t + 0.5f) * t + 0.5f) * t + (1.0f / 6.0f); \
u[3] = (1.0f / 6.0f) * t * t * t; \
} \
(void)0
ccl_device float4 kernel_tex_image_interp(KernelGlobals *kg, int id, float x, float y)
{
const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
if (info->extension == EXTENSION_CLIP) {
if (x < 0.0f || y < 0.0f || x > 1.0f || y > 1.0f) {
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
}
}
if (info->interpolation == INTERPOLATION_CLOSEST) {
/* Closest interpolation. */
int ix, iy;
svm_image_texture_frac(x * info->width, &ix);
svm_image_texture_frac(y * info->height, &iy);
return svm_image_texture_read_2d(kg, id, NULL, ix, iy);
}
else if (info->interpolation == INTERPOLATION_LINEAR) {
/* Bilinear interpolation. */
int ix, iy;
float tx = svm_image_texture_frac(x * info->width - 0.5f, &ix);
float ty = svm_image_texture_frac(y * info->height - 0.5f, &iy);
float4 r;
r = (1.0f - ty) * (1.0f - tx) * svm_image_texture_read_2d(kg, id, NULL, ix, iy);
r += (1.0f - ty) * tx * svm_image_texture_read_2d(kg, id, NULL, ix + 1, iy);
r += ty * (1.0f - tx) * svm_image_texture_read_2d(kg, id, NULL, ix, iy + 1);
r += ty * tx * svm_image_texture_read_2d(kg, id, NULL, ix + 1, iy + 1);
return r;
}
else {
/* Bicubic interpolation. */
int ix, iy;
float tx = svm_image_texture_frac(x * info->width - 0.5f, &ix);
float ty = svm_image_texture_frac(y * info->height - 0.5f, &iy);
float u[4], v[4];
SET_CUBIC_SPLINE_WEIGHTS(u, tx);
SET_CUBIC_SPLINE_WEIGHTS(v, ty);
float4 r = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
float weight = u[x] * v[y];
r += weight * svm_image_texture_read_2d(kg, id, NULL, ix + x - 1, iy + y - 1);
}
}
return r;
}
}
ccl_device float4 kernel_tex_image_interp_3d(KernelGlobals *kg, int id, float3 P, int interp)
{
const ccl_global TextureInfo *info = kernel_tex_info(kg, id);
if (info->use_transform_3d) {
Transform tfm = info->transform_3d;
P = transform_point(&tfm, P);
}
float x = P.x;
float y = P.y;
float z = P.z;
uint interpolation = (interp == INTERPOLATION_NONE) ? info->interpolation : interp;
#ifdef WITH_NANOVDB
cnanovdb_readaccessor acc;
if (info->data_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT ||
info->data_type == IMAGE_DATA_TYPE_NANOVDB_FLOAT3) {
ccl_global cnanovdb_griddata *grid =
(ccl_global cnanovdb_griddata *)(kg->buffers[info->cl_buffer] + info->data);
cnanovdb_readaccessor_init(&acc, cnanovdb_treedata_rootF(cnanovdb_griddata_tree(grid)));
}
else {
if (info->extension == EXTENSION_CLIP) {
if (x < 0.0f || y < 0.0f || z < 0.0f || x > 1.0f || y > 1.0f || z > 1.0f) {
return make_float4(0.0f, 0.0f, 0.0f, 0.0f);
}
}
x *= info->width;
y *= info->height;
z *= info->depth;
}
# define NANOVDB_ACCESS_POINTER &acc
#else
# define NANOVDB_ACCESS_POINTER NULL
#endif
if (interpolation == INTERPOLATION_CLOSEST) {
/* Closest interpolation. */
int ix, iy, iz;
svm_image_texture_frac(x, &ix);
svm_image_texture_frac(y, &iy);
svm_image_texture_frac(z, &iz);
return svm_image_texture_read_3d(kg, id, NANOVDB_ACCESS_POINTER, ix, iy, iz);
}
else if (interpolation == INTERPOLATION_LINEAR) {
/* Trilinear interpolation. */
int ix, iy, iz;
float tx = svm_image_texture_frac(x - 0.5f, &ix);
float ty = svm_image_texture_frac(y - 0.5f, &iy);
float tz = svm_image_texture_frac(z - 0.5f, &iz);
float4 r;
r = (1.0f - tz) * (1.0f - ty) * (1.0f - tx) *
svm_image_texture_read_3d(kg, id, NANOVDB_ACCESS_POINTER, ix, iy, iz);
r += (1.0f - tz) * (1.0f - ty) * tx *
svm_image_texture_read_3d(kg, id, NANOVDB_ACCESS_POINTER, ix + 1, iy, iz);
r += (1.0f - tz) * ty * (1.0f - tx) *
svm_image_texture_read_3d(kg, id, NANOVDB_ACCESS_POINTER, ix, iy + 1, iz);
r += (1.0f - tz) * ty * tx *
svm_image_texture_read_3d(kg, id, NANOVDB_ACCESS_POINTER, ix + 1, iy + 1, iz);
r += tz * (1.0f - ty) * (1.0f - tx) *
svm_image_texture_read_3d(kg, id, NANOVDB_ACCESS_POINTER, ix, iy, iz + 1);
r += tz * (1.0f - ty) * tx *
svm_image_texture_read_3d(kg, id, NANOVDB_ACCESS_POINTER, ix + 1, iy, iz + 1);
r += tz * ty * (1.0f - tx) *
svm_image_texture_read_3d(kg, id, NANOVDB_ACCESS_POINTER, ix, iy + 1, iz + 1);
r += tz * ty * tx *
svm_image_texture_read_3d(kg, id, NANOVDB_ACCESS_POINTER, ix + 1, iy + 1, iz + 1);
return r;
}
else {
/* Tricubic interpolation. */
int ix, iy, iz;
float tx = svm_image_texture_frac(x - 0.5f, &ix);
float ty = svm_image_texture_frac(y - 0.5f, &iy);
float tz = svm_image_texture_frac(z - 0.5f, &iz);
float u[4], v[4], w[4];
SET_CUBIC_SPLINE_WEIGHTS(u, tx);
SET_CUBIC_SPLINE_WEIGHTS(v, ty);
SET_CUBIC_SPLINE_WEIGHTS(w, tz);
float4 r = make_float4(0.0f, 0.0f, 0.0f, 0.0f);
for (int z = 0; z < 4; z++) {
for (int y = 0; y < 4; y++) {
for (int x = 0; x < 4; x++) {
float weight = u[x] * v[y] * w[z];
r += weight * svm_image_texture_read_3d(
kg, id, NANOVDB_ACCESS_POINTER, ix + x - 1, iy + y - 1, iz + z - 1);
}
}
}
return r;
}
#undef NANOVDB_ACCESS_POINTER
}
#undef SET_CUBIC_SPLINE_WEIGHTS