This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/kdtree_impl.h
Campbell Barton 3602071e47 BLI_kdtree: add deduplicate function
Function to remove exact duplicates from the tree before balancing.
2019-03-21 02:42:24 +11:00

968 lines
24 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup bli
*/
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_kdtree_impl.h"
#include "BLI_utildefines.h"
#include "BLI_strict_flags.h"
#define _CONCAT_AUX(MACRO_ARG1, MACRO_ARG2) MACRO_ARG1 ## MACRO_ARG2
#define _CONCAT(MACRO_ARG1, MACRO_ARG2) _CONCAT_AUX(MACRO_ARG1, MACRO_ARG2)
#define BLI_kdtree_nd_(id) _CONCAT(KDTREE_PREFIX_ID, _##id)
typedef struct KDTreeNode_head {
uint left, right;
float co[KD_DIMS];
int index;
} KDTreeNode_head;
typedef struct KDTreeNode {
uint left, right;
float co[KD_DIMS];
int index;
uint d; /* range is only (0..KD_DIMS - 1) */
} KDTreeNode;
struct KDTree {
KDTreeNode *nodes;
uint nodes_len;
uint root;
#ifdef DEBUG
bool is_balanced; /* ensure we call balance first */
uint nodes_len_capacity; /* max size of the tree */
#endif
};
#define KD_STACK_INIT 100 /* initial size for array (on the stack) */
#define KD_NEAR_ALLOC_INC 100 /* alloc increment for collecting nearest */
#define KD_FOUND_ALLOC_INC 50 /* alloc increment for collecting nearest */
#define KD_NODE_UNSET ((uint)-1)
/** When set we know all values are unbalanced, otherwise clear them when re-balancing: see T62210. */
#define KD_NODE_ROOT_IS_INIT ((uint)-2)
/* -------------------------------------------------------------------- */
/** \name Local Math API
* \{ */
static void copy_vn_vn(float v0[KD_DIMS], const float v1[KD_DIMS])
{
for (uint j = 0; j < KD_DIMS; j++) {
v0[j] = v1[j];
}
}
static float len_squared_vnvn(const float v0[KD_DIMS], const float v1[KD_DIMS])
{
float d = 0.0f;
for (uint j = 0; j < KD_DIMS; j++) {
d += SQUARE(v0[j] - v1[j]);
}
return d;
}
static float len_squared_vnvn_cb(const float co_kdtree[KD_DIMS], const float co_search[KD_DIMS], const void *UNUSED(user_data))
{
return len_squared_vnvn(co_kdtree, co_search);
}
/** \} */
/**
* Creates or free a kdtree
*/
KDTree *BLI_kdtree_nd_(new)(uint nodes_len_capacity)
{
KDTree *tree;
tree = MEM_mallocN(sizeof(KDTree), "KDTree");
tree->nodes = MEM_mallocN(sizeof(KDTreeNode) * nodes_len_capacity, "KDTreeNode");
tree->nodes_len = 0;
tree->root = KD_NODE_ROOT_IS_INIT;
#ifdef DEBUG
tree->is_balanced = false;
tree->nodes_len_capacity = nodes_len_capacity;
#endif
return tree;
}
void BLI_kdtree_nd_(free)(KDTree *tree)
{
if (tree) {
MEM_freeN(tree->nodes);
MEM_freeN(tree);
}
}
/**
* Construction: first insert points, then call balance. Normal is optional.
*/
void BLI_kdtree_nd_(insert)(KDTree *tree, int index, const float co[KD_DIMS])
{
KDTreeNode *node = &tree->nodes[tree->nodes_len++];
#ifdef DEBUG
BLI_assert(tree->nodes_len <= tree->nodes_len_capacity);
#endif
/* note, array isn't calloc'd,
* need to initialize all struct members */
node->left = node->right = KD_NODE_UNSET;
copy_vn_vn(node->co, co);
node->index = index;
node->d = 0;
#ifdef DEBUG
tree->is_balanced = false;
#endif
}
static uint kdtree_balance(KDTreeNode *nodes, uint nodes_len, uint axis, const uint ofs)
{
KDTreeNode *node;
float co;
uint left, right, median, i, j;
if (nodes_len <= 0) {
return KD_NODE_UNSET;
}
else if (nodes_len == 1) {
return 0 + ofs;
}
/* quicksort style sorting around median */
left = 0;
right = nodes_len - 1;
median = nodes_len / 2;
while (right > left) {
co = nodes[right].co[axis];
i = left - 1;
j = right;
while (1) {
while (nodes[++i].co[axis] < co) { /* pass */ }
while (nodes[--j].co[axis] > co && j > left) { /* pass */ }
if (i >= j) {
break;
}
SWAP(KDTreeNode_head, *(KDTreeNode_head *)&nodes[i], *(KDTreeNode_head *)&nodes[j]);
}
SWAP(KDTreeNode_head, *(KDTreeNode_head *)&nodes[i], *(KDTreeNode_head *)&nodes[right]);
if (i >= median) {
right = i - 1;
}
if (i <= median) {
left = i + 1;
}
}
/* set node and sort subnodes */
node = &nodes[median];
node->d = axis;
axis = (axis + 1) % KD_DIMS;
node->left = kdtree_balance(nodes, median, axis, ofs);
node->right = kdtree_balance(nodes + median + 1, (nodes_len - (median + 1)), axis, (median + 1) + ofs);
return median + ofs;
}
void BLI_kdtree_nd_(balance)(KDTree *tree)
{
if (tree->root != KD_NODE_ROOT_IS_INIT) {
for (uint i = 0; i < tree->nodes_len; i++) {
tree->nodes[i].left = KD_NODE_UNSET;
tree->nodes[i].right = KD_NODE_UNSET;
}
}
tree->root = kdtree_balance(tree->nodes, tree->nodes_len, 0, 0);
#ifdef DEBUG
tree->is_balanced = true;
#endif
}
static uint *realloc_nodes(uint *stack, uint *stack_len_capacity, const bool is_alloc)
{
uint *stack_new = MEM_mallocN((*stack_len_capacity + KD_NEAR_ALLOC_INC) * sizeof(uint), "KDTree.treestack");
memcpy(stack_new, stack, *stack_len_capacity * sizeof(uint));
// memset(stack_new + *stack_len_capacity, 0, sizeof(uint) * KD_NEAR_ALLOC_INC);
if (is_alloc) {
MEM_freeN(stack);
}
*stack_len_capacity += KD_NEAR_ALLOC_INC;
return stack_new;
}
/**
* Find nearest returns index, and -1 if no node is found.
*/
int BLI_kdtree_nd_(find_nearest)(
const KDTree *tree, const float co[KD_DIMS],
KDTreeNearest *r_nearest)
{
const KDTreeNode *nodes = tree->nodes;
const KDTreeNode *root, *min_node;
uint *stack, stack_default[KD_STACK_INIT];
float min_dist, cur_dist;
uint stack_len_capacity, cur = 0;
#ifdef DEBUG
BLI_assert(tree->is_balanced == true);
#endif
if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
return -1;
}
stack = stack_default;
stack_len_capacity = KD_STACK_INIT;
root = &nodes[tree->root];
min_node = root;
min_dist = len_squared_vnvn(root->co, co);
if (co[root->d] < root->co[root->d]) {
if (root->right != KD_NODE_UNSET) {
stack[cur++] = root->right;
}
if (root->left != KD_NODE_UNSET) {
stack[cur++] = root->left;
}
}
else {
if (root->left != KD_NODE_UNSET) {
stack[cur++] = root->left;
}
if (root->right != KD_NODE_UNSET) {
stack[cur++] = root->right;
}
}
while (cur--) {
const KDTreeNode *node = &nodes[stack[cur]];
cur_dist = node->co[node->d] - co[node->d];
if (cur_dist < 0.0f) {
cur_dist = -cur_dist * cur_dist;
if (-cur_dist < min_dist) {
cur_dist = len_squared_vnvn(node->co, co);
if (cur_dist < min_dist) {
min_dist = cur_dist;
min_node = node;
}
if (node->left != KD_NODE_UNSET) {
stack[cur++] = node->left;
}
}
if (node->right != KD_NODE_UNSET) {
stack[cur++] = node->right;
}
}
else {
cur_dist = cur_dist * cur_dist;
if (cur_dist < min_dist) {
cur_dist = len_squared_vnvn(node->co, co);
if (cur_dist < min_dist) {
min_dist = cur_dist;
min_node = node;
}
if (node->right != KD_NODE_UNSET) {
stack[cur++] = node->right;
}
}
if (node->left != KD_NODE_UNSET) {
stack[cur++] = node->left;
}
}
if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
}
}
if (r_nearest) {
r_nearest->index = min_node->index;
r_nearest->dist = sqrtf(min_dist);
copy_vn_vn(r_nearest->co, min_node->co);
}
if (stack != stack_default) {
MEM_freeN(stack);
}
return min_node->index;
}
/**
* A version of #BLI_kdtree_3d_find_nearest which runs a callback
* to filter out values.
*
* \param filter_cb: Filter find results,
* Return codes: (1: accept, 0: skip, -1: immediate exit).
*/
int BLI_kdtree_nd_(find_nearest_cb)(
const KDTree *tree, const float co[KD_DIMS],
int (*filter_cb)(void *user_data, int index, const float co[KD_DIMS], float dist_sq), void *user_data,
KDTreeNearest *r_nearest)
{
const KDTreeNode *nodes = tree->nodes;
const KDTreeNode *min_node = NULL;
uint *stack, stack_default[KD_STACK_INIT];
float min_dist = FLT_MAX, cur_dist;
uint stack_len_capacity, cur = 0;
#ifdef DEBUG
BLI_assert(tree->is_balanced == true);
#endif
if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
return -1;
}
stack = stack_default;
stack_len_capacity = ARRAY_SIZE(stack_default);
#define NODE_TEST_NEAREST(node) \
{ \
const float dist_sq = len_squared_vnvn((node)->co, co); \
if (dist_sq < min_dist) { \
const int result = filter_cb(user_data, (node)->index, (node)->co, dist_sq); \
if (result == 1) { \
min_dist = dist_sq; \
min_node = node; \
} \
else if (result == 0) { \
/* pass */ \
} \
else { \
BLI_assert(result == -1); \
goto finally; \
} \
} \
} ((void)0)
stack[cur++] = tree->root;
while (cur--) {
const KDTreeNode *node = &nodes[stack[cur]];
cur_dist = node->co[node->d] - co[node->d];
if (cur_dist < 0.0f) {
cur_dist = -cur_dist * cur_dist;
if (-cur_dist < min_dist) {
NODE_TEST_NEAREST(node);
if (node->left != KD_NODE_UNSET) {
stack[cur++] = node->left;
}
}
if (node->right != KD_NODE_UNSET) {
stack[cur++] = node->right;
}
}
else {
cur_dist = cur_dist * cur_dist;
if (cur_dist < min_dist) {
NODE_TEST_NEAREST(node);
if (node->right != KD_NODE_UNSET) {
stack[cur++] = node->right;
}
}
if (node->left != KD_NODE_UNSET) {
stack[cur++] = node->left;
}
}
if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
}
}
#undef NODE_TEST_NEAREST
finally:
if (stack != stack_default) {
MEM_freeN(stack);
}
if (min_node) {
if (r_nearest) {
r_nearest->index = min_node->index;
r_nearest->dist = sqrtf(min_dist);
copy_vn_vn(r_nearest->co, min_node->co);
}
return min_node->index;
}
else {
return -1;
}
}
static void nearest_ordered_insert(
KDTreeNearest *nearest, uint *nearest_len, const uint nearest_len_capacity,
const int index, const float dist, const float co[KD_DIMS])
{
uint i;
if (*nearest_len < nearest_len_capacity) {
(*nearest_len)++;
}
for (i = *nearest_len - 1; i > 0; i--) {
if (dist >= nearest[i - 1].dist) {
break;
}
else {
nearest[i] = nearest[i - 1];
}
}
nearest[i].index = index;
nearest[i].dist = dist;
copy_vn_vn(nearest[i].co, co);
}
/**
* Find \a nearest_len_capacity nearest returns number of points found, with results in nearest.
*
* \param r_nearest: An array of nearest, sized at least \a nearest_len_capacity.
*/
int BLI_kdtree_nd_(find_nearest_n_with_len_squared_cb)(
const KDTree *tree, const float co[KD_DIMS],
KDTreeNearest r_nearest[],
const uint nearest_len_capacity,
float (*len_sq_fn)(const float co_search[KD_DIMS], const float co_test[KD_DIMS], const void *user_data),
const void *user_data)
{
const KDTreeNode *nodes = tree->nodes;
const KDTreeNode *root;
uint *stack, stack_default[KD_STACK_INIT];
float cur_dist;
uint stack_len_capacity, cur = 0;
uint i, nearest_len = 0;
#ifdef DEBUG
BLI_assert(tree->is_balanced == true);
#endif
if (UNLIKELY((tree->root == KD_NODE_UNSET) || nearest_len_capacity == 0)) {
return 0;
}
if (len_sq_fn == NULL) {
len_sq_fn = len_squared_vnvn_cb;
BLI_assert(user_data == NULL);
}
stack = stack_default;
stack_len_capacity = ARRAY_SIZE(stack_default);
root = &nodes[tree->root];
cur_dist = len_sq_fn(co, root->co, user_data);
nearest_ordered_insert(r_nearest, &nearest_len, nearest_len_capacity, root->index, cur_dist, root->co);
if (co[root->d] < root->co[root->d]) {
if (root->right != KD_NODE_UNSET) {
stack[cur++] = root->right;
}
if (root->left != KD_NODE_UNSET) {
stack[cur++] = root->left;
}
}
else {
if (root->left != KD_NODE_UNSET) {
stack[cur++] = root->left;
}
if (root->right != KD_NODE_UNSET) {
stack[cur++] = root->right;
}
}
while (cur--) {
const KDTreeNode *node = &nodes[stack[cur]];
cur_dist = node->co[node->d] - co[node->d];
if (cur_dist < 0.0f) {
cur_dist = -cur_dist * cur_dist;
if (nearest_len < nearest_len_capacity || -cur_dist < r_nearest[nearest_len - 1].dist) {
cur_dist = len_sq_fn(co, node->co, user_data);
if (nearest_len < nearest_len_capacity || cur_dist < r_nearest[nearest_len - 1].dist) {
nearest_ordered_insert(r_nearest, &nearest_len, nearest_len_capacity, node->index, cur_dist, node->co);
}
if (node->left != KD_NODE_UNSET) {
stack[cur++] = node->left;
}
}
if (node->right != KD_NODE_UNSET) {
stack[cur++] = node->right;
}
}
else {
cur_dist = cur_dist * cur_dist;
if (nearest_len < nearest_len_capacity || cur_dist < r_nearest[nearest_len - 1].dist) {
cur_dist = len_sq_fn(co, node->co, user_data);
if (nearest_len < nearest_len_capacity || cur_dist < r_nearest[nearest_len - 1].dist) {
nearest_ordered_insert(r_nearest, &nearest_len, nearest_len_capacity, node->index, cur_dist, node->co);
}
if (node->right != KD_NODE_UNSET) {
stack[cur++] = node->right;
}
}
if (node->left != KD_NODE_UNSET) {
stack[cur++] = node->left;
}
}
if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
}
}
for (i = 0; i < nearest_len; i++) {
r_nearest[i].dist = sqrtf(r_nearest[i].dist);
}
if (stack != stack_default) {
MEM_freeN(stack);
}
return (int)nearest_len;
}
int BLI_kdtree_nd_(find_nearest_n)(
const KDTree *tree, const float co[KD_DIMS],
KDTreeNearest r_nearest[],
const uint nearest_len_capacity)
{
return BLI_kdtree_nd_(find_nearest_n_with_len_squared_cb)(
tree, co, r_nearest, nearest_len_capacity,
NULL, NULL);
}
static int nearest_cmp_dist(const void *a, const void *b)
{
const KDTreeNearest *kda = a;
const KDTreeNearest *kdb = b;
if (kda->dist < kdb->dist) {
return -1;
}
else if (kda->dist > kdb->dist) {
return 1;
}
else {
return 0;
}
}
static void nearest_add_in_range(
KDTreeNearest **r_nearest,
uint nearest_index,
uint *nearest_len_capacity,
const int index, const float dist, const float co[KD_DIMS])
{
KDTreeNearest *to;
if (UNLIKELY(nearest_index >= *nearest_len_capacity)) {
*r_nearest = MEM_reallocN_id(
*r_nearest,
(*nearest_len_capacity += KD_FOUND_ALLOC_INC) * sizeof(KDTreeNode),
__func__);
}
to = (*r_nearest) + nearest_index;
to->index = index;
to->dist = sqrtf(dist);
copy_vn_vn(to->co, co);
}
/**
* Range search returns number of points nearest_len, with results in nearest
*
* \param r_nearest: Allocated array of nearest nearest_len (caller is responsible for freeing).
*/
int BLI_kdtree_nd_(range_search_with_len_squared_cb)(
const KDTree *tree, const float co[KD_DIMS],
KDTreeNearest **r_nearest, const float range,
float (*len_sq_fn)(const float co_search[KD_DIMS], const float co_test[KD_DIMS], const void *user_data),
const void *user_data)
{
const KDTreeNode *nodes = tree->nodes;
uint *stack, stack_default[KD_STACK_INIT];
KDTreeNearest *nearest = NULL;
const float range_sq = range * range;
float dist_sq;
uint stack_len_capacity, cur = 0;
uint nearest_len = 0, nearest_len_capacity = 0;
#ifdef DEBUG
BLI_assert(tree->is_balanced == true);
#endif
if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
return 0;
}
if (len_sq_fn == NULL) {
len_sq_fn = len_squared_vnvn_cb;
BLI_assert(user_data == NULL);
}
stack = stack_default;
stack_len_capacity = ARRAY_SIZE(stack_default);
stack[cur++] = tree->root;
while (cur--) {
const KDTreeNode *node = &nodes[stack[cur]];
if (co[node->d] + range < node->co[node->d]) {
if (node->left != KD_NODE_UNSET) {
stack[cur++] = node->left;
}
}
else if (co[node->d] - range > node->co[node->d]) {
if (node->right != KD_NODE_UNSET) {
stack[cur++] = node->right;
}
}
else {
dist_sq = len_sq_fn(co, node->co, user_data);
if (dist_sq <= range_sq) {
nearest_add_in_range(&nearest, nearest_len++, &nearest_len_capacity, node->index, dist_sq, node->co);
}
if (node->left != KD_NODE_UNSET) {
stack[cur++] = node->left;
}
if (node->right != KD_NODE_UNSET) {
stack[cur++] = node->right;
}
}
if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
}
}
if (stack != stack_default) {
MEM_freeN(stack);
}
if (nearest_len) {
qsort(nearest, nearest_len, sizeof(KDTreeNearest), nearest_cmp_dist);
}
*r_nearest = nearest;
return (int)nearest_len;
}
int BLI_kdtree_nd_(range_search)(
const KDTree *tree, const float co[KD_DIMS],
KDTreeNearest **r_nearest, const float range)
{
return BLI_kdtree_nd_(range_search_with_len_squared_cb)(
tree, co, r_nearest, range,
NULL, NULL);
}
/**
* A version of #BLI_kdtree_3d_range_search which runs a callback
* instead of allocating an array.
*
* \param search_cb: Called for every node found in \a range, false return value performs an early exit.
*
* \note the order of calls isn't sorted based on distance.
*/
void BLI_kdtree_nd_(range_search_cb)(
const KDTree *tree, const float co[KD_DIMS], float range,
bool (*search_cb)(void *user_data, int index, const float co[KD_DIMS], float dist_sq), void *user_data)
{
const KDTreeNode *nodes = tree->nodes;
uint *stack, stack_default[KD_STACK_INIT];
float range_sq = range * range, dist_sq;
uint stack_len_capacity, cur = 0;
#ifdef DEBUG
BLI_assert(tree->is_balanced == true);
#endif
if (UNLIKELY(tree->root == KD_NODE_UNSET)) {
return;
}
stack = stack_default;
stack_len_capacity = ARRAY_SIZE(stack_default);
stack[cur++] = tree->root;
while (cur--) {
const KDTreeNode *node = &nodes[stack[cur]];
if (co[node->d] + range < node->co[node->d]) {
if (node->left != KD_NODE_UNSET) {
stack[cur++] = node->left;
}
}
else if (co[node->d] - range > node->co[node->d]) {
if (node->right != KD_NODE_UNSET) {
stack[cur++] = node->right;
}
}
else {
dist_sq = len_squared_vnvn(node->co, co);
if (dist_sq <= range_sq) {
if (search_cb(user_data, node->index, node->co, dist_sq) == false) {
goto finally;
}
}
if (node->left != KD_NODE_UNSET) {
stack[cur++] = node->left;
}
if (node->right != KD_NODE_UNSET) {
stack[cur++] = node->right;
}
}
if (UNLIKELY(cur + KD_DIMS > stack_len_capacity)) {
stack = realloc_nodes(stack, &stack_len_capacity, stack_default != stack);
}
}
finally:
if (stack != stack_default) {
MEM_freeN(stack);
}
}
/**
* Use when we want to loop over nodes ordered by index.
* Requires indices to be aligned with nodes.
*/
static uint *kdtree_order(const KDTree *tree)
{
const KDTreeNode *nodes = tree->nodes;
uint *order = MEM_mallocN(sizeof(uint) * tree->nodes_len, __func__);
for (uint i = 0; i < tree->nodes_len; i++) {
order[nodes[i].index] = i;
}
return order;
}
/* -------------------------------------------------------------------- */
/** \name BLI_kdtree_3d_calc_duplicates_fast
* \{ */
struct DeDuplicateParams {
/* Static */
const KDTreeNode *nodes;
float range;
float range_sq;
int *duplicates;
int *duplicates_found;
/* Per Search */
float search_co[KD_DIMS];
int search;
};
static void deduplicate_recursive(const struct DeDuplicateParams *p, uint i)
{
const KDTreeNode *node = &p->nodes[i];
if (p->search_co[node->d] + p->range <= node->co[node->d]) {
if (node->left != KD_NODE_UNSET) {
deduplicate_recursive(p, node->left);
}
}
else if (p->search_co[node->d] - p->range >= node->co[node->d]) {
if (node->right != KD_NODE_UNSET) {
deduplicate_recursive(p, node->right);
}
}
else {
if ((p->search != node->index) && (p->duplicates[node->index] == -1)) {
if (len_squared_vnvn(node->co, p->search_co) <= p->range_sq) {
p->duplicates[node->index] = (int)p->search;
*p->duplicates_found += 1;
}
}
if (node->left != KD_NODE_UNSET) {
deduplicate_recursive(p, node->left);
}
if (node->right != KD_NODE_UNSET) {
deduplicate_recursive(p, node->right);
}
}
}
/**
* Find duplicate points in \a range.
* Favors speed over quality since it doesn't find the best target vertex for merging.
* Nodes are looped over, duplicates are added when found.
* Nevertheless results are predictable.
*
* \param range: Coordinates in this range are candidates to be merged.
* \param use_index_order: Loop over the coordinates ordered by #KDTreeNode.index
* At the expense of some performance, this ensures the layout of the tree doesn't influence
* the iteration order.
* \param duplicates: An array of int's the length of #KDTree.nodes_len
* Values initialized to -1 are candidates to me merged.
* Setting the index to it's own position in the array prevents it from being touched,
* although it can still be used as a target.
* \returns The number of merges found (includes any merges already in the \a duplicates array).
*
* \note Merging is always a single step (target indices wont be marked for merging).
*/
int BLI_kdtree_nd_(calc_duplicates_fast)(
const KDTree *tree, const float range, bool use_index_order,
int *duplicates)
{
int found = 0;
struct DeDuplicateParams p = {
.nodes = tree->nodes,
.range = range,
.range_sq = SQUARE(range),
.duplicates = duplicates,
.duplicates_found = &found,
};
if (use_index_order) {
uint *order = kdtree_order(tree);
for (uint i = 0; i < tree->nodes_len; i++) {
const uint node_index = order[i];
const int index = (int)i;
if (ELEM(duplicates[index], -1, index)) {
p.search = index;
copy_vn_vn(p.search_co, tree->nodes[node_index].co);
int found_prev = found;
deduplicate_recursive(&p, tree->root);
if (found != found_prev) {
/* Prevent chains of doubles. */
duplicates[index] = index;
}
}
}
MEM_freeN(order);
}
else {
for (uint i = 0; i < tree->nodes_len; i++) {
const uint node_index = i;
const int index = p.nodes[node_index].index;
if (ELEM(duplicates[index], -1, index)) {
p.search = index;
copy_vn_vn(p.search_co, tree->nodes[node_index].co);
int found_prev = found;
deduplicate_recursive(&p, tree->root);
if (found != found_prev) {
/* Prevent chains of doubles. */
duplicates[index] = index;
}
}
}
}
return found;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name BLI_kdtree_3d_deduplicate
* \{ */
static int kdtree_node_cmp_deduplicate(const void *n0_p, const void *n1_p)
{
const KDTreeNode *n0 = n0_p;
const KDTreeNode *n1 = n1_p;
for (uint j = 0; j < KD_DIMS; j++) {
if (n0->co[j] < n1->co[j]) {
return -1;
}
else if (n0->co[j] > n1->co[j]) {
return 1;
}
}
/* Sort by pointer so the first added will be used.
* assignment below ignores const correctness,
* however the values aren't used for sorting and are to be discarded. */
if (n0 < n1) {
((KDTreeNode *)n1)->d = KD_DIMS; /* tag invalid */
return -1;
}
else {
((KDTreeNode *)n0)->d = KD_DIMS; /* tag invalid */
return 1;
}
}
/**
* Remove exact duplicates (run before before balancing).
*
* Keep the first element added when duplicates are found.
*/
int BLI_kdtree_nd_(deduplicate)(KDTree *tree)
{
#ifdef DEBUG
tree->is_balanced = false;
#endif
qsort(tree->nodes, (size_t)tree->nodes_len, sizeof(*tree->nodes), kdtree_node_cmp_deduplicate);
uint j = 0;
for (uint i = 0; i < tree->nodes_len; i++) {
if (tree->nodes[i].d != KD_DIMS) {
if (i != j) {
tree->nodes[j] = tree->nodes[i];
}
j++;
}
}
tree->nodes_len = j;
return (int)tree->nodes_len;
}
/** \} */