This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/scanfill.c

1147 lines
30 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
* (uit traces) maart 95
*/
/** \file
* \ingroup bli
*
* Triangulate multiple 2D/3D polygon with support for holes,
* use for tessellating curves, fonts and geometry.
* See main function #BLI_scanfill_calc
*
* Uses sweep-line method.
*
* \note There is a similar API in polyfill2d.c
* which uses ear clipping, but has no hole support.
*/
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <string.h>
#include <limits.h>
#include "MEM_guardedalloc.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_memarena.h"
#include "BLI_utildefines.h"
#include "BLI_scanfill.h" /* own include */
#include "BLI_strict_flags.h"
/* local types */
typedef struct PolyFill {
unsigned int edges, verts;
float min_xy[2], max_xy[2];
unsigned short nr;
bool f;
} PolyFill;
typedef struct ScanFillVertLink {
ScanFillVert *vert;
ScanFillEdge *edge_first, *edge_last;
} ScanFillVertLink;
/* local funcs */
#define SF_EPSILON 0.00003f
#define SF_EPSILON_SQ (SF_EPSILON * SF_EPSILON)
/* ScanFillVert.status */
#define SF_VERT_NEW 0 /* all new verts have this flag set */
#define SF_VERT_AVAILABLE 1 /* available - in an edge */
#define SF_VERT_ZERO_LEN 2
/* ScanFillEdge.status */
/* Optionally set ScanFillEdge f to this to mark original boundary edges.
* Only needed if there are internal diagonal edges passed to BLI_scanfill_calc. */
#define SF_EDGE_NEW 0 /* all new edges have this flag set */
// #define SF_EDGE_BOUNDARY 1 /* UNUSED */
#define SF_EDGE_INTERNAL 2 /* edge is created while scan-filling */
/* PolyFill.status */
#define SF_POLY_NEW 0 /* all polys initialized to this */
#define SF_POLY_VALID 1 /* has at least 3 verts */
/* **** FUNCTIONS FOR QSORT *************************** */
static int vergscdata(const void *a1, const void *a2)
{
const ScanFillVertLink *x1 = a1, *x2 = a2;
if (x1->vert->xy[1] < x2->vert->xy[1]) { return 1; }
else if (x1->vert->xy[1] > x2->vert->xy[1]) { return -1; }
else if (x1->vert->xy[0] > x2->vert->xy[0]) { return 1; }
else if (x1->vert->xy[0] < x2->vert->xy[0]) { return -1; }
return 0;
}
static int vergpoly(const void *a1, const void *a2)
{
const PolyFill *x1 = a1, *x2 = a2;
if (x1->min_xy[0] > x2->min_xy[0]) { return 1; }
else if (x1->min_xy[0] < x2->min_xy[0]) { return -1; }
else if (x1->min_xy[1] > x2->min_xy[1]) { return 1; }
else if (x1->min_xy[1] < x2->min_xy[1]) { return -1; }
return 0;
}
/* **** FILL ROUTINES *************************** */
ScanFillVert *BLI_scanfill_vert_add(ScanFillContext *sf_ctx, const float vec[3])
{
ScanFillVert *sf_v;
sf_v = BLI_memarena_alloc(sf_ctx->arena, sizeof(ScanFillVert));
BLI_addtail(&sf_ctx->fillvertbase, sf_v);
sf_v->tmp.p = NULL;
copy_v3_v3(sf_v->co, vec);
/* just zero out the rest */
zero_v2(sf_v->xy);
sf_v->keyindex = 0;
sf_v->poly_nr = sf_ctx->poly_nr;
sf_v->edge_tot = 0;
sf_v->f = SF_VERT_NEW;
sf_v->user_flag = 0;
return sf_v;
}
ScanFillEdge *BLI_scanfill_edge_add(ScanFillContext *sf_ctx, ScanFillVert *v1, ScanFillVert *v2)
{
ScanFillEdge *sf_ed;
sf_ed = BLI_memarena_alloc(sf_ctx->arena, sizeof(ScanFillEdge));
BLI_addtail(&sf_ctx->filledgebase, sf_ed);
sf_ed->v1 = v1;
sf_ed->v2 = v2;
/* just zero out the rest */
sf_ed->poly_nr = sf_ctx->poly_nr;
sf_ed->f = SF_EDGE_NEW;
sf_ed->user_flag = 0;
sf_ed->tmp.c = 0;
return sf_ed;
}
static void addfillface(ScanFillContext *sf_ctx, ScanFillVert *v1, ScanFillVert *v2, ScanFillVert *v3)
{
/* does not make edges */
ScanFillFace *sf_tri;
sf_tri = BLI_memarena_alloc(sf_ctx->arena, sizeof(ScanFillFace));
BLI_addtail(&sf_ctx->fillfacebase, sf_tri);
sf_tri->v1 = v1;
sf_tri->v2 = v2;
sf_tri->v3 = v3;
}
static bool boundisect(PolyFill *pf2, PolyFill *pf1)
{
/* has pf2 been touched (intersected) by pf1 ? with bounding box */
/* test first if polys exist */
if (pf1->edges == 0 || pf2->edges == 0) { return false; }
if (pf2->max_xy[0] < pf1->min_xy[0]) { return false; }
if (pf2->max_xy[1] < pf1->min_xy[1]) { return false; }
if (pf2->min_xy[0] > pf1->max_xy[0]) { return false; }
if (pf2->min_xy[1] > pf1->max_xy[1]) { return false; }
/* join */
if (pf2->max_xy[0] < pf1->max_xy[0]) { pf2->max_xy[0] = pf1->max_xy[0]; }
if (pf2->max_xy[1] < pf1->max_xy[1]) { pf2->max_xy[1] = pf1->max_xy[1]; }
if (pf2->min_xy[0] > pf1->min_xy[0]) { pf2->min_xy[0] = pf1->min_xy[0]; }
if (pf2->min_xy[1] > pf1->min_xy[1]) { pf2->min_xy[1] = pf1->min_xy[1]; }
return true;
}
/* add pf2 to pf1 */
static void mergepolysSimp(ScanFillContext *sf_ctx, PolyFill *pf1, PolyFill *pf2)
{
ScanFillVert *eve;
ScanFillEdge *eed;
/* replace old poly numbers */
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
if (eve->poly_nr == pf2->nr) {
eve->poly_nr = pf1->nr;
}
}
for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
if (eed->poly_nr == pf2->nr) {
eed->poly_nr = pf1->nr;
}
}
pf1->verts += pf2->verts;
pf1->edges += pf2->edges;
pf2->verts = pf2->edges = 0;
pf1->f = (pf1->f | pf2->f);
}
static bool testedgeside(const float v1[2], const float v2[2], const float v3[2])
/* is v3 to the right of v1-v2 ? With exception: v3 == v1 || v3 == v2 */
{
float inp;
inp = (v2[0] - v1[0]) * (v1[1] - v3[1]) +
(v1[1] - v2[1]) * (v1[0] - v3[0]);
if (inp < 0.0f) {
return false;
}
else if (inp == 0.0f) {
if (v1[0] == v3[0] && v1[1] == v3[1]) {
return false;
}
if (v2[0] == v3[0] && v2[1] == v3[1]) {
return false;
}
}
return true;
}
static bool addedgetoscanvert(ScanFillVertLink *sc, ScanFillEdge *eed)
{
/* find first edge to the right of eed, and insert eed before that */
ScanFillEdge *ed;
float fac, fac1, x, y;
if (sc->edge_first == NULL) {
sc->edge_first = sc->edge_last = eed;
eed->prev = eed->next = NULL;
return 1;
}
x = eed->v1->xy[0];
y = eed->v1->xy[1];
fac1 = eed->v2->xy[1] - y;
if (fac1 == 0.0f) {
fac1 = 1.0e10f * (eed->v2->xy[0] - x);
}
else {
fac1 = (x - eed->v2->xy[0]) / fac1;
}
for (ed = sc->edge_first; ed; ed = ed->next) {
if (ed->v2 == eed->v2) {
return false;
}
fac = ed->v2->xy[1] - y;
if (fac == 0.0f) {
fac = 1.0e10f * (ed->v2->xy[0] - x);
}
else {
fac = (x - ed->v2->xy[0]) / fac;
}
if (fac > fac1) {
break;
}
}
if (ed) {
BLI_insertlinkbefore((ListBase *)&(sc->edge_first), ed, eed);
}
else {
BLI_addtail((ListBase *)&(sc->edge_first), eed);
}
return true;
}
static ScanFillVertLink *addedgetoscanlist(ScanFillVertLink *scdata, ScanFillEdge *eed, unsigned int len)
{
/* inserts edge at correct location in ScanFillVertLink list */
/* returns sc when edge already exists */
ScanFillVertLink *sc, scsearch;
ScanFillVert *eve;
/* which vert is left-top? */
if (eed->v1->xy[1] == eed->v2->xy[1]) {
if (eed->v1->xy[0] > eed->v2->xy[0]) {
eve = eed->v1;
eed->v1 = eed->v2;
eed->v2 = eve;
}
}
else if (eed->v1->xy[1] < eed->v2->xy[1]) {
eve = eed->v1;
eed->v1 = eed->v2;
eed->v2 = eve;
}
/* find location in list */
scsearch.vert = eed->v1;
sc = (ScanFillVertLink *)bsearch(&scsearch, scdata, len,
sizeof(ScanFillVertLink), vergscdata);
if (UNLIKELY(sc == NULL)) {
printf("Error in search edge: %p\n", (void *)eed);
}
else if (addedgetoscanvert(sc, eed) == false) {
return sc;
}
return NULL;
}
static bool boundinsideEV(ScanFillEdge *eed, ScanFillVert *eve)
/* is eve inside boundbox eed */
{
float minx, maxx, miny, maxy;
if (eed->v1->xy[0] < eed->v2->xy[0]) {
minx = eed->v1->xy[0];
maxx = eed->v2->xy[0];
}
else {
minx = eed->v2->xy[0];
maxx = eed->v1->xy[0];
}
if (eve->xy[0] >= minx && eve->xy[0] <= maxx) {
if (eed->v1->xy[1] < eed->v2->xy[1]) {
miny = eed->v1->xy[1];
maxy = eed->v2->xy[1];
}
else {
miny = eed->v2->xy[1];
maxy = eed->v1->xy[1];
}
if (eve->xy[1] >= miny && eve->xy[1] <= maxy) {
return true;
}
}
return false;
}
static void testvertexnearedge(ScanFillContext *sf_ctx)
{
/* only vertices with (->edge_tot == 1) are being tested for
* being close to an edge, if true insert */
ScanFillVert *eve;
ScanFillEdge *eed, *ed1;
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
if (eve->edge_tot == 1) {
/* find the edge which has vertex eve,
* note: we _know_ this will crash if 'ed1' becomes NULL
* but this will never happen. */
for (ed1 = sf_ctx->filledgebase.first;
!(ed1->v1 == eve || ed1->v2 == eve);
ed1 = ed1->next)
{
/* do nothing */
}
if (ed1->v1 == eve) {
ed1->v1 = ed1->v2;
ed1->v2 = eve;
}
for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
if (eve != eed->v1 && eve != eed->v2 && eve->poly_nr == eed->poly_nr) {
if (compare_v2v2(eve->xy, eed->v1->xy, SF_EPSILON)) {
ed1->v2 = eed->v1;
eed->v1->edge_tot++;
eve->edge_tot = 0;
break;
}
else if (compare_v2v2(eve->xy, eed->v2->xy, SF_EPSILON)) {
ed1->v2 = eed->v2;
eed->v2->edge_tot++;
eve->edge_tot = 0;
break;
}
else {
if (boundinsideEV(eed, eve)) {
const float dist = dist_squared_to_line_v2(eed->v1->xy, eed->v2->xy, eve->xy);
if (dist < SF_EPSILON_SQ) {
/* new edge */
ed1 = BLI_scanfill_edge_add(sf_ctx, eed->v1, eve);
/* printf("fill: vertex near edge %x\n", eve); */
ed1->poly_nr = eed->poly_nr;
eed->v1 = eve;
eve->edge_tot = 3;
break;
}
}
}
}
}
}
}
}
static void splitlist(ScanFillContext *sf_ctx, ListBase *tempve, ListBase *temped, unsigned short nr)
{
/* everything is in templist, write only poly nr to fillist */
ScanFillVert *eve, *eve_next;
ScanFillEdge *eed, *eed_next;
BLI_movelisttolist(tempve, &sf_ctx->fillvertbase);
BLI_movelisttolist(temped, &sf_ctx->filledgebase);
for (eve = tempve->first; eve; eve = eve_next) {
eve_next = eve->next;
if (eve->poly_nr == nr) {
BLI_remlink(tempve, eve);
BLI_addtail(&sf_ctx->fillvertbase, eve);
}
}
for (eed = temped->first; eed; eed = eed_next) {
eed_next = eed->next;
if (eed->poly_nr == nr) {
BLI_remlink(temped, eed);
BLI_addtail(&sf_ctx->filledgebase, eed);
}
}
}
static unsigned int scanfill(ScanFillContext *sf_ctx, PolyFill *pf, const int flag)
{
ScanFillVertLink *scdata;
ScanFillVertLink *sc = NULL, *sc1;
ScanFillVert *eve, *v1, *v2, *v3;
ScanFillEdge *eed, *eed_next, *ed1, *ed2, *ed3;
unsigned int a, b, verts, maxface, totface;
const unsigned short nr = pf->nr;
bool twoconnected = false;
/* PRINTS */
#if 0
verts = pf->verts;
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
printf("vert: %x co: %f %f\n", eve, eve->xy[0], eve->xy[1]);
}
for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
printf("edge: %x verts: %x %x\n", eed, eed->v1, eed->v2);
}
#endif
/* STEP 0: remove zero sized edges */
if (flag & BLI_SCANFILL_CALC_REMOVE_DOUBLES) {
for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
if (equals_v2v2(eed->v1->xy, eed->v2->xy)) {
if (eed->v1->f == SF_VERT_ZERO_LEN && eed->v2->f != SF_VERT_ZERO_LEN) {
eed->v2->f = SF_VERT_ZERO_LEN;
eed->v2->tmp.v = eed->v1->tmp.v;
}
else if (eed->v2->f == SF_VERT_ZERO_LEN && eed->v1->f != SF_VERT_ZERO_LEN) {
eed->v1->f = SF_VERT_ZERO_LEN;
eed->v1->tmp.v = eed->v2->tmp.v;
}
else if (eed->v2->f == SF_VERT_ZERO_LEN && eed->v1->f == SF_VERT_ZERO_LEN) {
eed->v1->tmp.v = eed->v2->tmp.v;
}
else {
eed->v2->f = SF_VERT_ZERO_LEN;
eed->v2->tmp.v = eed->v1;
}
}
}
}
/* STEP 1: make using FillVert and FillEdge lists a sorted
* ScanFillVertLink list
*/
sc = scdata = MEM_mallocN(sizeof(*scdata) * pf->verts, "Scanfill1");
verts = 0;
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
if (eve->poly_nr == nr) {
if (eve->f != SF_VERT_ZERO_LEN) {
verts++;
eve->f = SF_VERT_NEW; /* flag for connectedges later on */
sc->vert = eve;
sc->edge_first = sc->edge_last = NULL;
/* Note, debug print only will work for curve polyfill, union is in use for mesh */
/* if (even->tmp.v == NULL) eve->tmp.u = verts; */
sc++;
}
}
}
qsort(scdata, verts, sizeof(ScanFillVertLink), vergscdata);
if (flag & BLI_SCANFILL_CALC_REMOVE_DOUBLES) {
for (eed = sf_ctx->filledgebase.first; eed; eed = eed_next) {
eed_next = eed->next;
BLI_remlink(&sf_ctx->filledgebase, eed);
/* This code is for handling zero-length edges that get
* collapsed in step 0. It was removed for some time to
* fix trunk bug #4544, so if that comes back, this code
* may need some work, or there will have to be a better
* fix to #4544.
*
* warning, this can hang on un-ordered edges, see: [#33281]
* for now disable 'BLI_SCANFILL_CALC_REMOVE_DOUBLES' for ngons.
*/
if (eed->v1->f == SF_VERT_ZERO_LEN) {
v1 = eed->v1;
while ((eed->v1->f == SF_VERT_ZERO_LEN) && (eed->v1->tmp.v != v1) && (eed->v1 != eed->v1->tmp.v)) {
eed->v1 = eed->v1->tmp.v;
}
}
if (eed->v2->f == SF_VERT_ZERO_LEN) {
v2 = eed->v2;
while ((eed->v2->f == SF_VERT_ZERO_LEN) && (eed->v2->tmp.v != v2) && (eed->v2 != eed->v2->tmp.v)) {
eed->v2 = eed->v2->tmp.v;
}
}
if (eed->v1 != eed->v2) {
addedgetoscanlist(scdata, eed, verts);
}
}
}
else {
for (eed = sf_ctx->filledgebase.first; eed; eed = eed_next) {
eed_next = eed->next;
BLI_remlink(&sf_ctx->filledgebase, eed);
if (eed->v1 != eed->v2) {
addedgetoscanlist(scdata, eed, verts);
}
}
}
#if 0
sc = sf_ctx->_scdata;
for (a = 0; a < verts; a++) {
printf("\nscvert: %x\n", sc->vert);
for (eed = sc->edge_first; eed; eed = eed->next) {
printf(" ed %x %x %x\n", eed, eed->v1, eed->v2);
}
sc++;
}
#endif
/* STEP 2: FILL LOOP */
if (pf->f == SF_POLY_NEW) {
twoconnected = true;
}
/* (temporal) security: never much more faces than vertices */
totface = 0;
if (flag & BLI_SCANFILL_CALC_HOLES) {
maxface = 2 * verts; /* 2*verts: based at a filled circle within a triangle */
}
else {
/* when we don't calc any holes, we assume face is a non overlapping loop */
maxface = verts - 2;
}
sc = scdata;
for (a = 0; a < verts; a++) {
/* printf("VERTEX %d index %d\n", a, sc->vert->tmp.u); */
/* set connectflags */
for (ed1 = sc->edge_first; ed1; ed1 = eed_next) {
eed_next = ed1->next;
if (ed1->v1->edge_tot == 1 || ed1->v2->edge_tot == 1) {
BLI_remlink((ListBase *)&(sc->edge_first), ed1);
BLI_addtail(&sf_ctx->filledgebase, ed1);
if (ed1->v1->edge_tot > 1) {
ed1->v1->edge_tot--;
}
if (ed1->v2->edge_tot > 1) {
ed1->v2->edge_tot--;
}
}
else {
ed1->v2->f = SF_VERT_AVAILABLE;
}
}
while (sc->edge_first) { /* for as long there are edges */
ed1 = sc->edge_first;
ed2 = ed1->next;
/* commented out... the ESC here delivers corrupted memory
* (and doesnt work during grab) */
/* if (callLocalInterruptCallBack()) break; */
if (totface >= maxface) {
/* printf("Fill error: endless loop. Escaped at vert %d, tot: %d.\n", a, verts); */
a = verts;
break;
}
if (ed2 == NULL) {
sc->edge_first = sc->edge_last = NULL;
/* printf("just 1 edge to vert\n"); */
BLI_addtail(&sf_ctx->filledgebase, ed1);
ed1->v2->f = SF_VERT_NEW;
ed1->v1->edge_tot--;
ed1->v2->edge_tot--;
}
else {
/* test rest of vertices */
ScanFillVertLink *best_sc = NULL;
float angle_best_cos = -1.0f;
float miny;
bool firsttime = false;
v1 = ed1->v2;
v2 = ed1->v1;
v3 = ed2->v2;
/* this happens with a serial of overlapping edges */
if (v1 == v2 || v2 == v3) {
break;
}
/* printf("test verts %d %d %d\n", v1->tmp.u, v2->tmp.u, v3->tmp.u); */
miny = min_ff(v1->xy[1], v3->xy[1]);
sc1 = sc + 1;
for (b = a + 1; b < verts; b++, sc1++) {
if (sc1->vert->f == SF_VERT_NEW) {
if (sc1->vert->xy[1] <= miny) {
break;
}
if (testedgeside(v1->xy, v2->xy, sc1->vert->xy)) {
if (testedgeside(v2->xy, v3->xy, sc1->vert->xy)) {
if (testedgeside(v3->xy, v1->xy, sc1->vert->xy)) {
/* point is in triangle */
/* Because multiple points can be inside triangle
* (concave holes) we continue searching and pick the
* one with sharpest corner. */
if (best_sc == NULL) {
/* even without holes we need to keep checking [#35861] */
best_sc = sc1;
}
else {
/* Prevent angle calc for the simple cases
* only 1 vertex is found. */
if (firsttime == false) {
angle_best_cos = cos_v2v2v2(v2->xy, v1->xy, best_sc->vert->xy);
firsttime = true;
}
const float angle_test_cos = cos_v2v2v2(v2->xy, v1->xy, sc1->vert->xy);
if (angle_test_cos > angle_best_cos) {
best_sc = sc1;
angle_best_cos = angle_test_cos;
}
}
}
}
}
}
}
if (best_sc) {
/* make new edge, and start over */
/* printf("add new edge %d %d and start again\n", v2->tmp.u, best_sc->vert->tmp.u); */
ed3 = BLI_scanfill_edge_add(sf_ctx, v2, best_sc->vert);
BLI_remlink(&sf_ctx->filledgebase, ed3);
BLI_insertlinkbefore((ListBase *)&(sc->edge_first), ed2, ed3);
ed3->v2->f = SF_VERT_AVAILABLE;
ed3->f = SF_EDGE_INTERNAL;
ed3->v1->edge_tot++;
ed3->v2->edge_tot++;
}
else {
/* new triangle */
/* printf("add face %d %d %d\n", v1->tmp.u, v2->tmp.u, v3->tmp.u); */
addfillface(sf_ctx, v1, v2, v3);
totface++;
BLI_remlink((ListBase *)&(sc->edge_first), ed1);
BLI_addtail(&sf_ctx->filledgebase, ed1);
ed1->v2->f = SF_VERT_NEW;
ed1->v1->edge_tot--;
ed1->v2->edge_tot--;
/* ed2 can be removed when it's a boundary edge */
if (((ed2->f == SF_EDGE_NEW) && twoconnected) /* || (ed2->f == SF_EDGE_BOUNDARY) */) {
BLI_remlink((ListBase *)&(sc->edge_first), ed2);
BLI_addtail(&sf_ctx->filledgebase, ed2);
ed2->v2->f = SF_VERT_NEW;
ed2->v1->edge_tot--;
ed2->v2->edge_tot--;
}
/* new edge */
ed3 = BLI_scanfill_edge_add(sf_ctx, v1, v3);
BLI_remlink(&sf_ctx->filledgebase, ed3);
ed3->f = SF_EDGE_INTERNAL;
ed3->v1->edge_tot++;
ed3->v2->edge_tot++;
/* printf("add new edge %x %x\n", v1, v3); */
sc1 = addedgetoscanlist(scdata, ed3, verts);
if (sc1) { /* ed3 already exists: remove if a boundary */
/* printf("Edge exists\n"); */
ed3->v1->edge_tot--;
ed3->v2->edge_tot--;
for (ed3 = sc1->edge_first; ed3; ed3 = ed3->next) {
if ((ed3->v1 == v1 && ed3->v2 == v3) || (ed3->v1 == v3 && ed3->v2 == v1)) {
if (twoconnected /* || (ed3->f == SF_EDGE_BOUNDARY) */) {
BLI_remlink((ListBase *)&(sc1->edge_first), ed3);
BLI_addtail(&sf_ctx->filledgebase, ed3);
ed3->v1->edge_tot--;
ed3->v2->edge_tot--;
}
break;
}
}
}
}
}
/* test for loose edges */
for (ed1 = sc->edge_first; ed1; ed1 = eed_next) {
eed_next = ed1->next;
if (ed1->v1->edge_tot < 2 || ed1->v2->edge_tot < 2) {
BLI_remlink((ListBase *)&(sc->edge_first), ed1);
BLI_addtail(&sf_ctx->filledgebase, ed1);
if (ed1->v1->edge_tot > 1) {
ed1->v1->edge_tot--;
}
if (ed1->v2->edge_tot > 1) {
ed1->v2->edge_tot--;
}
}
}
/* done with loose edges */
}
sc++;
}
MEM_freeN(scdata);
BLI_assert(totface <= maxface);
return totface;
}
void BLI_scanfill_begin(ScanFillContext *sf_ctx)
{
memset(sf_ctx, 0, sizeof(*sf_ctx));
sf_ctx->poly_nr = SF_POLY_UNSET;
sf_ctx->arena = BLI_memarena_new(BLI_SCANFILL_ARENA_SIZE, __func__);
}
void BLI_scanfill_begin_arena(ScanFillContext *sf_ctx, MemArena *arena)
{
memset(sf_ctx, 0, sizeof(*sf_ctx));
sf_ctx->poly_nr = SF_POLY_UNSET;
sf_ctx->arena = arena;
}
void BLI_scanfill_end(ScanFillContext *sf_ctx)
{
BLI_memarena_free(sf_ctx->arena);
sf_ctx->arena = NULL;
BLI_listbase_clear(&sf_ctx->fillvertbase);
BLI_listbase_clear(&sf_ctx->filledgebase);
BLI_listbase_clear(&sf_ctx->fillfacebase);
}
void BLI_scanfill_end_arena(ScanFillContext *sf_ctx, MemArena *arena)
{
BLI_memarena_clear(arena);
BLI_assert(sf_ctx->arena == arena);
BLI_listbase_clear(&sf_ctx->fillvertbase);
BLI_listbase_clear(&sf_ctx->filledgebase);
BLI_listbase_clear(&sf_ctx->fillfacebase);
}
unsigned int BLI_scanfill_calc_ex(ScanFillContext *sf_ctx, const int flag, const float nor_proj[3])
{
/*
* - fill works with its own lists, so create that first (no faces!)
* - for vertices, put in ->tmp.v the old pointer
* - struct elements xs en ys are not used here: don't hide stuff in it
* - edge flag ->f becomes 2 when it's a new edge
* - mode: & 1 is check for crossings, then create edges (TO DO )
* - returns number of triangle faces added.
*/
ListBase tempve, temped;
ScanFillVert *eve;
ScanFillEdge *eed, *eed_next;
PolyFill *pflist, *pf;
float *min_xy_p, *max_xy_p;
unsigned int totfaces = 0; /* total faces added */
unsigned short a, c, poly = 0;
bool ok;
float mat_2d[3][3];
BLI_assert(!nor_proj || len_squared_v3(nor_proj) > FLT_EPSILON);
#ifdef DEBUG
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
/* these values used to be set,
* however they should always be zero'd so check instead */
BLI_assert(eve->f == 0);
BLI_assert(sf_ctx->poly_nr || eve->poly_nr == 0);
BLI_assert(eve->edge_tot == 0);
}
#endif
/* first test vertices if they are in edges */
/* including resetting of flags */
for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
BLI_assert(sf_ctx->poly_nr != SF_POLY_UNSET || eed->poly_nr == SF_POLY_UNSET);
eed->v1->f = SF_VERT_AVAILABLE;
eed->v2->f = SF_VERT_AVAILABLE;
}
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
if (eve->f == SF_VERT_AVAILABLE) {
break;
}
}
if (UNLIKELY(eve == NULL)) {
return 0;
}
else {
float n[3];
if (nor_proj) {
copy_v3_v3(n, nor_proj);
}
else {
/* define projection: with 'best' normal */
/* Newell's Method */
/* Similar code used elsewhere, but this checks for double ups
* which historically this function supports so better not change */
/* warning: this only gives stable direction with single polygons,
* ideally we'd calculate connectivity and each polys normal, see T41047 */
const float *v_prev;
zero_v3(n);
eve = sf_ctx->fillvertbase.last;
v_prev = eve->co;
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
if (LIKELY(!compare_v3v3(v_prev, eve->co, SF_EPSILON))) {
add_newell_cross_v3_v3v3(n, v_prev, eve->co);
v_prev = eve->co;
}
}
}
if (UNLIKELY(normalize_v3(n) == 0.0f)) {
return 0;
}
axis_dominant_v3_to_m3(mat_2d, n);
}
/* STEP 1: COUNT POLYS */
if (sf_ctx->poly_nr != SF_POLY_UNSET) {
poly = (unsigned short)(sf_ctx->poly_nr + 1);
sf_ctx->poly_nr = SF_POLY_UNSET;
}
if (flag & BLI_SCANFILL_CALC_POLYS && (poly == 0)) {
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
mul_v2_m3v3(eve->xy, mat_2d, eve->co);
/* get first vertex with no poly number */
if (eve->poly_nr == SF_POLY_UNSET) {
unsigned int toggle = 0;
/* now a sort of select connected */
ok = true;
eve->poly_nr = poly;
while (ok) {
ok = false;
toggle++;
for (eed = (toggle & 1) ? sf_ctx->filledgebase.first : sf_ctx->filledgebase.last;
eed;
eed = (toggle & 1) ? eed->next : eed->prev)
{
if (eed->v1->poly_nr == SF_POLY_UNSET && eed->v2->poly_nr == poly) {
eed->v1->poly_nr = poly;
eed->poly_nr = poly;
ok = true;
}
else if (eed->v2->poly_nr == SF_POLY_UNSET && eed->v1->poly_nr == poly) {
eed->v2->poly_nr = poly;
eed->poly_nr = poly;
ok = true;
}
else if (eed->poly_nr == SF_POLY_UNSET) {
if (eed->v1->poly_nr == poly && eed->v2->poly_nr == poly) {
eed->poly_nr = poly;
ok = true;
}
}
}
}
poly++;
}
}
/* printf("amount of poly's: %d\n", poly); */
}
else if (poly) {
/* we pre-calculated poly_nr */
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
mul_v2_m3v3(eve->xy, mat_2d, eve->co);
}
}
else {
poly = 1;
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
mul_v2_m3v3(eve->xy, mat_2d, eve->co);
eve->poly_nr = 0;
}
for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
eed->poly_nr = 0;
}
}
/* STEP 2: remove loose edges and strings of edges */
if (flag & BLI_SCANFILL_CALC_LOOSE) {
unsigned int toggle = 0;
for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
if (eed->v1->edge_tot++ > 250) {
break;
}
if (eed->v2->edge_tot++ > 250) {
break;
}
}
if (eed) {
/* otherwise it's impossible to be sure you can clear vertices */
#ifdef DEBUG
printf("No vertices with 250 edges allowed!\n");
#endif
return 0;
}
/* does it only for vertices with (->edge_tot == 1) */
testvertexnearedge(sf_ctx);
ok = true;
while (ok) {
ok = false;
toggle++;
for (eed = (toggle & 1) ? sf_ctx->filledgebase.first : sf_ctx->filledgebase.last;
eed;
eed = eed_next)
{
eed_next = (toggle & 1) ? eed->next : eed->prev;
if (eed->v1->edge_tot == 1) {
eed->v2->edge_tot--;
BLI_remlink(&sf_ctx->fillvertbase, eed->v1);
BLI_remlink(&sf_ctx->filledgebase, eed);
ok = true;
}
else if (eed->v2->edge_tot == 1) {
eed->v1->edge_tot--;
BLI_remlink(&sf_ctx->fillvertbase, eed->v2);
BLI_remlink(&sf_ctx->filledgebase, eed);
ok = true;
}
}
}
if (BLI_listbase_is_empty(&sf_ctx->filledgebase)) {
/* printf("All edges removed\n"); */
return 0;
}
}
else {
/* skip checks for loose edges */
for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
eed->v1->edge_tot++;
eed->v2->edge_tot++;
}
#ifdef DEBUG
/* ensure we're right! */
for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
BLI_assert(eed->v1->edge_tot != 1);
BLI_assert(eed->v2->edge_tot != 1);
}
#endif
}
/* CURRENT STATUS:
* - eve->f :1 = available in edges
* - eve->poly_nr :polynumber
* - eve->edge_tot :amount of edges connected to vertex
* - eve->tmp.v :store! original vertex number
*
* - eed->f :1 = boundary edge (optionally set by caller)
* - eed->poly_nr :poly number
*/
/* STEP 3: MAKE POLYFILL STRUCT */
pflist = MEM_mallocN(sizeof(*pflist) * (size_t)poly, "edgefill");
pf = pflist;
for (a = 0; a < poly; a++) {
pf->edges = pf->verts = 0;
pf->min_xy[0] = pf->min_xy[1] = 1.0e20f;
pf->max_xy[0] = pf->max_xy[1] = -1.0e20f;
pf->f = SF_POLY_NEW;
pf->nr = a;
pf++;
}
for (eed = sf_ctx->filledgebase.first; eed; eed = eed->next) {
pflist[eed->poly_nr].edges++;
}
for (eve = sf_ctx->fillvertbase.first; eve; eve = eve->next) {
pflist[eve->poly_nr].verts++;
min_xy_p = pflist[eve->poly_nr].min_xy;
max_xy_p = pflist[eve->poly_nr].max_xy;
min_xy_p[0] = (min_xy_p[0]) < (eve->xy[0]) ? (min_xy_p[0]) : (eve->xy[0]);
min_xy_p[1] = (min_xy_p[1]) < (eve->xy[1]) ? (min_xy_p[1]) : (eve->xy[1]);
max_xy_p[0] = (max_xy_p[0]) > (eve->xy[0]) ? (max_xy_p[0]) : (eve->xy[0]);
max_xy_p[1] = (max_xy_p[1]) > (eve->xy[1]) ? (max_xy_p[1]) : (eve->xy[1]);
if (eve->edge_tot > 2) {
pflist[eve->poly_nr].f = SF_POLY_VALID;
}
}
/* STEP 4: FIND HOLES OR BOUNDS, JOIN THEM
* ( bounds just to divide it in pieces for optimization,
* the edgefill itself has good auto-hole detection)
* WATCH IT: ONLY WORKS WITH SORTED POLYS!!! */
if ((flag & BLI_SCANFILL_CALC_HOLES) && (poly > 1)) {
unsigned short *polycache, *pc;
/* so, sort first */
qsort(pflist, (size_t)poly, sizeof(PolyFill), vergpoly);
#if 0
pf = pflist;
for (a = 0; a < poly; a++) {
printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
PRINT2(f, f, pf->min[0], pf->min[1]);
pf++;
}
#endif
polycache = pc = MEM_callocN(sizeof(*polycache) * (size_t)poly, "polycache");
pf = pflist;
for (a = 0; a < poly; a++, pf++) {
for (c = (unsigned short)(a + 1); c < poly; c++) {
/* if 'a' inside 'c': join (bbox too)
* Careful: 'a' can also be inside another poly.
*/
if (boundisect(pf, pflist + c)) {
*pc = c;
pc++;
}
/* only for optimize! */
/* else if (pf->max_xy[0] < (pflist+c)->min[cox]) break; */
}
while (pc != polycache) {
pc--;
mergepolysSimp(sf_ctx, pf, pflist + *pc);
}
}
MEM_freeN(polycache);
}
#if 0
printf("after merge\n");
pf = pflist;
for (a = 0; a < poly; a++) {
printf("poly:%d edges:%d verts:%d flag: %d\n", a, pf->edges, pf->verts, pf->f);
pf++;
}
#endif
/* STEP 5: MAKE TRIANGLES */
tempve.first = sf_ctx->fillvertbase.first;
tempve.last = sf_ctx->fillvertbase.last;
temped.first = sf_ctx->filledgebase.first;
temped.last = sf_ctx->filledgebase.last;
BLI_listbase_clear(&sf_ctx->fillvertbase);
BLI_listbase_clear(&sf_ctx->filledgebase);
pf = pflist;
for (a = 0; a < poly; a++) {
if (pf->edges > 1) {
splitlist(sf_ctx, &tempve, &temped, pf->nr);
totfaces += scanfill(sf_ctx, pf, flag);
}
pf++;
}
BLI_movelisttolist(&sf_ctx->fillvertbase, &tempve);
BLI_movelisttolist(&sf_ctx->filledgebase, &temped);
/* FREE */
MEM_freeN(pflist);
return totfaces;
}
unsigned int BLI_scanfill_calc(ScanFillContext *sf_ctx, const int flag)
{
return BLI_scanfill_calc_ex(sf_ctx, flag, NULL);
}