This changes the way how the mattes are stored in the compositor node. This used to be a single string what was decoded/encoded when needed. The new data structure stores all entries in `CryptomatteEntry` and is converted to the old `matte_id` property on the fly. This is done for some future changes in the workflow where a more structured approach leads to less confusing and easier to read code.
190 lines
6.0 KiB
C++
190 lines
6.0 KiB
C++
/*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License
|
|
* as published by the Free Software Foundation; either version 2
|
|
* of the License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software Foundation,
|
|
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*
|
|
* The Original Code is Copyright (C) 2020 Blender Foundation.
|
|
* All rights reserved.
|
|
*/
|
|
|
|
/** \file
|
|
* \ingroup bke
|
|
*/
|
|
|
|
#include "BKE_cryptomatte.h"
|
|
#include "BKE_main.h"
|
|
|
|
#include "DNA_material_types.h"
|
|
#include "DNA_node_types.h"
|
|
#include "DNA_object_types.h"
|
|
|
|
#include "BLI_compiler_attrs.h"
|
|
#include "BLI_dynstr.h"
|
|
#include "BLI_hash_mm3.h"
|
|
#include "BLI_listbase.h"
|
|
#include "BLI_string.h"
|
|
|
|
#include "MEM_guardedalloc.h"
|
|
|
|
#include <cstring>
|
|
#include <sstream>
|
|
#include <string>
|
|
|
|
static uint32_t cryptomatte_hash(const ID *id)
|
|
{
|
|
const char *name = &id->name[2];
|
|
const int name_len = BLI_strnlen(name, MAX_NAME);
|
|
uint32_t cryptohash_int = BKE_cryptomatte_hash(name, name_len);
|
|
return cryptohash_int;
|
|
}
|
|
|
|
uint32_t BKE_cryptomatte_hash(const char *name, int name_len)
|
|
{
|
|
uint32_t cryptohash_int = BLI_hash_mm3((const unsigned char *)name, name_len, 0);
|
|
return cryptohash_int;
|
|
}
|
|
|
|
uint32_t BKE_cryptomatte_object_hash(const Object *object)
|
|
{
|
|
return cryptomatte_hash(&object->id);
|
|
}
|
|
|
|
uint32_t BKE_cryptomatte_material_hash(const Material *material)
|
|
{
|
|
if (material == nullptr) {
|
|
return 0.0f;
|
|
}
|
|
return cryptomatte_hash(&material->id);
|
|
}
|
|
|
|
uint32_t BKE_cryptomatte_asset_hash(const Object *object)
|
|
{
|
|
const Object *asset_object = object;
|
|
while (asset_object->parent != nullptr) {
|
|
asset_object = asset_object->parent;
|
|
}
|
|
return cryptomatte_hash(&asset_object->id);
|
|
}
|
|
|
|
/* Convert a cryptomatte hash to a float.
|
|
*
|
|
* Cryptomatte hashes are stored in float textures and images. The conversion is taken from the
|
|
* cryptomatte specification. See Floating point conversion section in
|
|
* https://github.com/Psyop/Cryptomatte/blob/master/specification/cryptomatte_specification.pdf.
|
|
*
|
|
* The conversion uses as many 32 bit floating point values as possible to minimize hash
|
|
* collisions. Unfortunately not all 32 bits can be as NaN and Inf can be problematic.
|
|
*
|
|
* Note that this conversion assumes to be running on a L-endian system. */
|
|
float BKE_cryptomatte_hash_to_float(uint32_t cryptomatte_hash)
|
|
{
|
|
uint32_t mantissa = cryptomatte_hash & ((1 << 23) - 1);
|
|
uint32_t exponent = (cryptomatte_hash >> 23) & ((1 << 8) - 1);
|
|
exponent = MAX2(exponent, (uint32_t)1);
|
|
exponent = MIN2(exponent, (uint32_t)254);
|
|
exponent = exponent << 23;
|
|
uint32_t sign = (cryptomatte_hash >> 31);
|
|
sign = sign << 31;
|
|
uint32_t float_bits = sign | exponent | mantissa;
|
|
float f;
|
|
memcpy(&f, &float_bits, sizeof(uint32_t));
|
|
return f;
|
|
}
|
|
|
|
static ID *cryptomatte_find_id(const ListBase *ids, const float encoded_hash)
|
|
{
|
|
LISTBASE_FOREACH (ID *, id, ids) {
|
|
uint32_t hash = BKE_cryptomatte_hash((id->name + 2), BLI_strnlen(id->name + 2, MAX_NAME));
|
|
if (BKE_cryptomatte_hash_to_float(hash) == encoded_hash) {
|
|
return id;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/* Find an ID in the given main that matches the given encoded float. */
|
|
static struct ID *BKE_cryptomatte_find_id(const Main *bmain, const float encoded_hash)
|
|
{
|
|
ID *result;
|
|
result = cryptomatte_find_id(&bmain->objects, encoded_hash);
|
|
if (result == nullptr) {
|
|
result = cryptomatte_find_id(&bmain->materials, encoded_hash);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
char *BKE_cryptomatte_entries_to_matte_id(NodeCryptomatte *node_storage)
|
|
{
|
|
DynStr *matte_id = BLI_dynstr_new();
|
|
bool first = true;
|
|
LISTBASE_FOREACH (CryptomatteEntry *, entry, &node_storage->entries) {
|
|
if (!first) {
|
|
BLI_dynstr_append(matte_id, ",");
|
|
}
|
|
if (BLI_strnlen(entry->name, sizeof(entry->name)) != 0) {
|
|
BLI_dynstr_nappend(matte_id, entry->name, sizeof(entry->name));
|
|
}
|
|
else {
|
|
BLI_dynstr_appendf(matte_id, "<%.9g>", entry->encoded_hash);
|
|
}
|
|
first = false;
|
|
}
|
|
char *result = BLI_dynstr_get_cstring(matte_id);
|
|
BLI_dynstr_free(matte_id);
|
|
return result;
|
|
}
|
|
|
|
void BKE_cryptomatte_matte_id_to_entries(const Main *bmain,
|
|
NodeCryptomatte *node_storage,
|
|
const char *matte_id)
|
|
{
|
|
BLI_freelistN(&node_storage->entries);
|
|
|
|
std::istringstream ss(matte_id);
|
|
while (ss.good()) {
|
|
CryptomatteEntry *entry = nullptr;
|
|
std::string token;
|
|
getline(ss, token, ',');
|
|
/* Ignore empty tokens. */
|
|
if (token.length() > 0) {
|
|
size_t first = token.find_first_not_of(' ');
|
|
size_t last = token.find_last_not_of(' ');
|
|
if (first == std::string::npos || last == std::string::npos) {
|
|
break;
|
|
}
|
|
token = token.substr(first, (last - first + 1));
|
|
if (*token.begin() == '<' && *(--token.end()) == '>') {
|
|
float encoded_hash = atof(token.substr(1, token.length() - 2).c_str());
|
|
entry = (CryptomatteEntry *)MEM_callocN(sizeof(CryptomatteEntry), __func__);
|
|
entry->encoded_hash = encoded_hash;
|
|
if (bmain) {
|
|
ID *id = BKE_cryptomatte_find_id(bmain, encoded_hash);
|
|
if (id != nullptr) {
|
|
BLI_strncpy(entry->name, id->name + 2, sizeof(entry->name));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
const char *name = token.c_str();
|
|
int name_len = token.length();
|
|
entry = (CryptomatteEntry *)MEM_callocN(sizeof(CryptomatteEntry), __func__);
|
|
BLI_strncpy(entry->name, name, sizeof(entry->name));
|
|
uint32_t hash = BKE_cryptomatte_hash(name, name_len);
|
|
entry->encoded_hash = BKE_cryptomatte_hash_to_float(hash);
|
|
}
|
|
}
|
|
if (entry != nullptr) {
|
|
BLI_addtail(&node_storage->entries, entry);
|
|
}
|
|
}
|
|
} |