This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/api2_2x/Geometry.c

706 lines
21 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version. The Blender
* Foundation also sells licenses for use in proprietary software under
* the Blender License. See http://www.blender.org/BL/ for information
* about this.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Joseph Gilbert, Campbell Barton
*
* ***** END GPL/BL DUAL LICENSE BLOCK *****
*/
#include "Geometry.h"
/* - Not needed for now though other geometry functions will probably need them
#include "BLI_arithb.h"
#include "BKE_utildefines.h"
*/
/* Used for PolyFill */
#include "BKE_displist.h"
#include "MEM_guardedalloc.h"
#include "BLI_blenlib.h"
/* needed for EXPP_ReturnPyObjError and EXPP_check_sequence_consistency */
#include "gen_utils.h"
#include "BKE_utildefines.h"
#define SWAP_FLOAT(a,b,tmp) tmp=a; a=b; b=tmp
#define eul 0.000001
/*-- forward declarations -- */
static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * args );
static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args );
static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * args );
/*-------------------------DOC STRINGS ---------------------------*/
static char M_Geometry_doc[] = "The Blender Geometry module\n\n";
static char M_Geometry_PolyFill_doc[] = "(veclist_list) - takes a list of polylines (each point a vector) and returns the point indicies for a polyline filled with triangles";
static char M_Geometry_LineIntersect2D_doc[] = "(lineA_p1, lineA_p2, lineB_p1, lineB_p2) - takes 2 lines (as 4 vectors) and returns a vector for their point of intersection or None";
static char M_Geometry_BoxPack2D_doc[] = "";
/*-----------------------METHOD DEFINITIONS ----------------------*/
struct PyMethodDef M_Geometry_methods[] = {
{"PolyFill", ( PyCFunction ) M_Geometry_PolyFill, METH_VARARGS, M_Geometry_PolyFill_doc},
{"LineIntersect2D", ( PyCFunction ) M_Geometry_LineIntersect2D, METH_VARARGS, M_Geometry_LineIntersect2D_doc},
{"BoxPack2D", ( PyCFunction ) M_Geometry_BoxPack2D, METH_VARARGS, M_Geometry_BoxPack2D_doc},
{NULL, NULL, 0, NULL}
};
/*----------------------------MODULE INIT-------------------------*/
PyObject *Geometry_Init(void)
{
PyObject *submodule;
submodule = Py_InitModule3("Blender.Geometry",
M_Geometry_methods, M_Geometry_doc);
return (submodule);
}
/*----------------------------------Geometry.PolyFill() -------------------*/
/* PolyFill function, uses Blenders scanfill to fill multiple poly lines */
static PyObject *M_Geometry_PolyFill( PyObject * self, PyObject * args )
{
PyObject *tri_list; /*return this list of tri's */
PyObject *polyLineSeq, *polyLine, *polyVec;
int i, len_polylines, len_polypoints;
/* display listbase */
ListBase dispbase={NULL, NULL};
DispList *dl;
float *fp; /*pointer to the array of malloced dl->verts to set the points from the vectors */
int index, *dl_face, totpoints=0;
dispbase.first= dispbase.last= NULL;
if(!PyArg_ParseTuple ( args, "O", &polyLineSeq) || !PySequence_Check(polyLineSeq)) {
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of poly lines" );
}
len_polylines = PySequence_Size( polyLineSeq );
for( i = 0; i < len_polylines; ++i ) {
polyLine= PySequence_GetItem( polyLineSeq, i );
if (!PySequence_Check(polyLine)) {
freedisplist(&dispbase);
Py_XDECREF(polyLine); /* may be null so use Py_XDECREF*/
return EXPP_ReturnPyObjError( PyExc_TypeError,
"One or more of the polylines is not a sequence of Mathutils.Vector's" );
}
len_polypoints= PySequence_Size( polyLine );
if (len_polypoints>0) { /* dont bother adding edges as polylines */
if (EXPP_check_sequence_consistency( polyLine, &vector_Type ) != 1) {
freedisplist(&dispbase);
Py_DECREF(polyLine);
return EXPP_ReturnPyObjError( PyExc_TypeError,
"A point in one of the polylines is not a Mathutils.Vector type" );
}
dl= MEM_callocN(sizeof(DispList), "poly disp");
BLI_addtail(&dispbase, dl);
dl->type= DL_INDEX3;
dl->nr= len_polypoints;
dl->type= DL_POLY;
dl->parts= 1; /* no faces, 1 edge loop */
dl->col= 0; /* no material */
dl->verts= fp= MEM_callocN( sizeof(float)*3*len_polypoints, "dl verts");
dl->index= MEM_callocN(sizeof(int)*3*len_polypoints, "dl index");
for( index = 0; index<len_polypoints; ++index, fp+=3) {
polyVec= PySequence_GetItem( polyLine, index );
fp[0] = ((VectorObject *)polyVec)->vec[0];
fp[1] = ((VectorObject *)polyVec)->vec[1];
if( ((VectorObject *)polyVec)->size > 2 )
fp[2] = ((VectorObject *)polyVec)->vec[2];
else
fp[2]= 0.0f; /* if its a 2d vector then set the z to be zero */
totpoints++;
Py_DECREF(polyVec);
}
}
Py_DECREF(polyLine);
}
if (totpoints) {
/* now make the list to return */
filldisplist(&dispbase, &dispbase);
/* The faces are stored in a new DisplayList
thats added to the head of the listbase */
dl= dispbase.first;
tri_list= PyList_New(dl->parts);
if( !tri_list ) {
freedisplist(&dispbase);
return EXPP_ReturnPyObjError( PyExc_RuntimeError,
"Geometry.PolyFill failed to make a new list" );
}
index= 0;
dl_face= dl->index;
while(index < dl->parts) {
PyList_SetItem(tri_list, index, Py_BuildValue("iii", dl_face[0], dl_face[1], dl_face[2]) );
dl_face+= 3;
index++;
}
freedisplist(&dispbase);
} else {
/* no points, do this so scripts dont barf */
tri_list= PyList_New(0);
}
return tri_list;
}
static PyObject *M_Geometry_LineIntersect2D( PyObject * self, PyObject * args )
{
VectorObject *line_a1, *line_a2, *line_b1, *line_b2;
float a1x, a1y, a2x, a2y, b1x, b1y, b2x, b2y, xi, yi, a1,a2,b1,b2, newvec[2];
if( !PyArg_ParseTuple ( args, "O!O!O!O!",
&vector_Type, &line_a1,
&vector_Type, &line_a2,
&vector_Type, &line_b1,
&vector_Type, &line_b2)
)
return ( EXPP_ReturnPyObjError
( PyExc_TypeError, "expected 4 vector types\n" ) );
a1x= line_a1->vec[0];
a1y= line_a1->vec[1];
a2x= line_a2->vec[0];
a2y= line_a2->vec[1];
b1x= line_b1->vec[0];
b1y= line_b1->vec[1];
b2x= line_b2->vec[0];
b2y= line_b2->vec[1];
if((MIN2(a1x, a2x) > MAX2(b1x, b2x)) ||
(MAX2(a1x, a2x) < MIN2(b1x, b2x)) ||
(MIN2(a1y, a2y) > MAX2(b1y, b2y)) ||
(MAX2(a1y, a2y) < MIN2(b1y, b2y)) ) {
Py_RETURN_NONE;
}
/* Make sure the hoz/vert line comes first. */
if (fabs(b1x - b2x) < eul || fabs(b1y - b2y) < eul) {
SWAP_FLOAT(a1x, b1x, xi); /*abuse xi*/
SWAP_FLOAT(a1y, b1y, xi);
SWAP_FLOAT(a2x, b2x, xi);
SWAP_FLOAT(a2y, b2y, xi);
}
if (fabs(a1x-a2x) < eul) { /* verticle line */
if (fabs(b1x-b2x) < eul){ /*verticle second line */
Py_RETURN_NONE; /* 2 verticle lines dont intersect. */
}
else if (fabs(b1y-b2y) < eul) {
/*X of vert, Y of hoz. no calculation needed */
newvec[0]= a1x;
newvec[1]= b1y;
return newVectorObject(newvec, 2, Py_NEW);
}
yi = (float)(((b1y / fabs(b1x - b2x)) * fabs(b2x - a1x)) + ((b2y / fabs(b1x - b2x)) * fabs(b1x - a1x)));
if (yi > MAX2(a1y, a2y)) {/* New point above seg1's vert line */
Py_RETURN_NONE;
} else if (yi < MIN2(a1y, a2y)) { /* New point below seg1's vert line */
Py_RETURN_NONE;
}
newvec[0]= a1x;
newvec[1]= yi;
return newVectorObject(newvec, 2, Py_NEW);
} else if (fabs(a2y-a1y) < eul) { /* hoz line1 */
if (fabs(b2y-b1y) < eul) { /*hoz line2*/
Py_RETURN_NONE; /*2 hoz lines dont intersect*/
}
/* Can skip vert line check for seg 2 since its covered above. */
xi = (float)(((b1x / fabs(b1y - b2y)) * fabs(b2y - a1y)) + ((b2x / fabs(b1y - b2y)) * fabs(b1y - a1y)));
if (xi > MAX2(a1x, a2x)) { /* New point right of hoz line1's */
Py_RETURN_NONE;
} else if (xi < MIN2(a1x, a2x)) { /*New point left of seg1's hoz line */
Py_RETURN_NONE;
}
newvec[0]= xi;
newvec[1]= a1y;
return newVectorObject(newvec, 2, Py_NEW);
}
b1 = (a2y-a1y)/(a2x-a1x);
b2 = (b2y-b1y)/(b2x-b1x);
a1 = a1y-b1*a1x;
a2 = b1y-b2*b1x;
if (b1 - b2 == 0.0) {
Py_RETURN_NONE;
}
xi = - (a1-a2)/(b1-b2);
yi = a1+b1*xi;
if ((a1x-xi)*(xi-a2x) >= 0 && (b1x-xi)*(xi-b2x) >= 0 && (a1y-yi)*(yi-a2y) >= 0 && (b1y-yi)*(yi-b2y)>=0) {
newvec[0]= xi;
newvec[1]= yi;
return newVectorObject(newvec, 2, Py_NEW);
}
Py_RETURN_NONE;
}
/* Campbells BoxPacker ported from Python */
/* free vert flags */
#define EUL 0.0000001
#define BLF 1
#define TRF 2
#define TLF 4
#define BRF 8
#define BL 0
#define TR 1
#define TL 2
#define BR 3
#define BOXLEFT(b) b->v[BL]->x
#define BOXRIGHT(b) b->v[TR]->x
#define BOXBOTTOM(b) b->v[BL]->y
#define BOXTOP(b) b->v[TR]->y
#define BOXAREA(b) (b->w * b->h)
#define UPDATE_V34X(b) b->v[TL]->x = b->v[BL]->x; b->v[BR]->x = b->v[TR]->x
#define UPDATE_V34Y(b) b->v[TL]->y = b->v[TR]->y; b->v[BR]->y = b->v[BL]->y
#define UPDATE_V34(b) UPDATE_V34X(b) UPDATE_V34Y(b)
#define SET_BOXLEFT(b, f) b->v[TR]->x = f + b->w; b->v[BL]->x = f; UPDATE_V34X(b)
#define SET_BOXRIGHT(b, f) b->v[BL]->x = f - b->w; b->v[TR]->x = f; UPDATE_V34X(b)
#define SET_BOXBOTTOM(b, f) b->v[TR]->y = f + b->h; b->v[BL]->y = f; UPDATE_V34Y(b)
#define SET_BOXTOP(b, f) b->v[BL]->y = f - b->h; b->v[TR]->y = f; UPDATE_V34Y(b)
#define BOXINTERSECT(b1, b2) (!(BOXLEFT(b1)+EUL>=BOXRIGHT(b2) || BOXBOTTOM(b1)+EUL>=BOXTOP(b2) || BOXRIGHT(b1)-EUL<=BOXLEFT(b2) || BOXTOP(b1)-EUL<=BOXBOTTOM(b2) ))
/* #define BOXDEBUG(b) printf("\tBox Debug i %i, w:%.3f h:%.3f x:%.3f y:%.3f\n", b->index, b->w, b->h, b->x, b->y) */
static int box_areasort(const void *p1, const void *p2)
{
const boxPack *b1=p1, *b2=p2;
float a1, a2;
a1 = BOXAREA(b1);
a2 = BOXAREA(b2);
/* sort largest to smallest */
if ( a1 < a2 ) return 1;
else if ( a1 > a2 ) return -1;
return 0;
}
static float box_width;
static float box_height;
static boxVert *vertarray;
static int vertex_sort(const void *p1, const void *p2)
{
boxVert *v1, *v2;
float a1, a2;
v1 = vertarray + ((int *) p1)[0];
v2 = vertarray + ((int *) p2)[0];
a1 = MAX2(v1->x+box_width, v1->y+box_height);
a2 = MAX2(v2->x+box_width, v2->y+box_height);
/* sort largest to smallest */
if ( a1 > a2 ) return 1;
else if ( a1 < a2 ) return -1;
return 0;
}
static void boxPackAll(boxPack *boxarray, int len, float *tot_width, float *tot_height)
{
boxVert *vert;
int box_index, verts_pack_len, i, j, k, isect; /* what box are we up to packing */
int quad_flags[4]= {BLF,TRF,TLF,BRF}; /* use for looping */
boxPack *box, *box_test;
int *vertex_pack_indicies;
if (!len) {
*tot_width = 0.0;
*tot_height = 0.0;
return;
}
/* Sort boxes, biggest first */
qsort(boxarray, len, sizeof(boxPack), box_areasort);
/* add verts to the boxes, these are only used internally */
vert = vertarray = MEM_mallocN( len*4*sizeof(boxVert), "boxPack verts");
vertex_pack_indicies = MEM_mallocN( len*3*sizeof(int), "boxPack indicies");
i=0;
for (box= boxarray, box_index= 0; box_index < len; box_index++, box++) {
vert->blb = vert->brb = vert->tlb =\
vert->isect_cache[0] = vert->isect_cache[1] =\
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = 15 &~ TRF;
vert->trb = box;
vert->index = i; i++;
box->v[BL] = vert; vert++;
vert->trb= vert->brb = vert->tlb =\
vert->isect_cache[0] = vert->isect_cache[1] =\
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = 15 &~ BLF;
vert->blb = box;
vert->index = i; i++;
box->v[TR] = vert; vert++;
vert->trb = vert->blb = vert->tlb =\
vert->isect_cache[0] = vert->isect_cache[1] =\
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = 15 &~ BRF;
vert->brb = box;
vert->index = i; i++;
box->v[TL] = vert; vert++;
vert->trb = vert->blb = vert->brb =\
vert->isect_cache[0] = vert->isect_cache[1] =\
vert->isect_cache[2] = vert->isect_cache[3] = NULL;
vert->free = 15 &~ TLF;
vert->tlb = box;
vert->index = i; i++;
box->v[BR] = vert; vert++;
}
vert = NULL;
/* Pack the First box!
* then enter the main boxpacking loop */
box = boxarray; /* get the first box */
/* First time, no boxes packed */
box->v[BL]->free = 0; /* Cant use any if these */
box->v[BR]->free &= ~(BLF|BRF);
box->v[TL]->free &= ~(BLF|TLF);
*tot_width = box->w;
*tot_height = box->h;
/* This sets all the vertex locations */
SET_BOXLEFT(box, 0.0);
SET_BOXBOTTOM(box, 0.0);
for (i=0; i<3; i++)
vertex_pack_indicies[i] = box->v[i+1]->index;
verts_pack_len = 3;
box++; /* next box, needed for the loop below */
/* ...done packing the first box */
/* Main boxpacking loop */
for (box_index=1; box_index < len; box_index++, box++) {
/* Sort the verts, these constants are used in sorting */
box_width = box->w;
box_height = box->h;
qsort(vertex_pack_indicies, verts_pack_len, sizeof(int), vertex_sort);
/* Pack the box in with the others */
/* sort the verts */
isect = 1;
for (i=0; i<verts_pack_len && isect; i++) {
vert = vertarray + vertex_pack_indicies[i];
/* printf("\ttesting vert %i %i %i %f %f\n", i, vert->free, verts_pack_len, vert->x, vert->y); */
/* This vert has a free quaderent
* Test if we can place the box here
* vert->free & quad_flags[j] - Checks
* */
for (j=0; (j<4) && isect; j++) {
if (vert->free & quad_flags[j]) {
switch (j) {
case BL:
SET_BOXRIGHT(box, vert->x);
SET_BOXTOP(box, vert->y);
break;
case TR:
SET_BOXLEFT(box, vert->x);
SET_BOXBOTTOM(box, vert->y);
break;
case TL:
SET_BOXRIGHT(box, vert->x);
SET_BOXBOTTOM(box, vert->y);
break;
case BR:
SET_BOXLEFT(box, vert->x);
SET_BOXTOP(box, vert->y);
break;
}
/* Now we need to check that the box intersects
* with any other boxes
* Assume no intersection... */
isect = 0;
if (/* Constrain boxes to positive X/Y values */
BOXLEFT(box)<0.0 || BOXBOTTOM(box)<0.0 ||
/* check for last intersected */
(vert->isect_cache[j] && BOXINTERSECT(box, vert->isect_cache[j]))
) {
/* Here we check that the last intersected
* box will intersect with this one using
* isect_cache that can store a pointer to a
* box for each quaderent
* big speedup */
isect = 1;
} else {
/* do a full saech for colliding box
* this is realy slow, some spacialy divided
* datastructure would be better */
for (box_test = boxarray; box_test != box; box_test++) {
if BOXINTERSECT(box, box_test) {
/* Store the last intersecting here
* as cache for faster checking next time around */
vert->isect_cache[j] = box_test;
isect = 1;
break;
}
}
}
if (!isect) {
/* maintain the total width and height */
(*tot_width) = MAX2(BOXRIGHT(box), (*tot_width));
(*tot_height) = MAX2(BOXTOP(box), (*tot_height));
/* Place the box */
vert->free &= ~quad_flags[j];
switch (j) {
case TR:
box->v[BL]= vert;
vert->trb = box;
break;
case TL:
box->v[BR]= vert;
vert->tlb = box;
break;
case BR:
box->v[TL]= vert;
vert->brb = box;
break;
case BL:
box->v[TR]= vert;
vert->blb = box;
break;
}
/* Mask free flags for verts that are on the bottom or side
* so we dont get boxes outside the given rectangle ares
*
* We can do an else/if here because only the first
* box can be at the very bottom left corner */
if (BOXLEFT(box) <= 0) {
box->v[TL]->free &= ~(TLF|BLF);
box->v[BL]->free &= ~(TLF|BLF);
} else if (BOXBOTTOM(box) <= 0) {
box->v[BL]->free &= ~(BRF|BLF);
box->v[BR]->free &= ~(BRF|BLF);
}
/* The following block of code does a logical
* check with 2 adjacent boxes, its possible to
* flag verts on one or both of the boxes
* as being used by checking the width or
* height of both boxes */
if (vert->tlb && vert->trb && (box == vert->tlb || box == vert->trb)) {
if (vert->tlb->h > vert->trb->h) {
vert->trb->v[TL]->free &= ~(TLF|BLF);
} else if (vert->tlb->h < vert->trb->h) {
vert->tlb->v[TR]->free &= ~(TRF|BRF);
} else { /*same*/
vert->tlb->v[TR]->free &= ~BLF;
vert->trb->v[TL]->free &= ~BRF;
}
} else if (vert->blb && vert->brb && (box == vert->blb || box == vert->brb)) {
if (vert->blb->h > vert->brb->h) {
vert->brb->v[BL]->free &= ~(TLF|BLF);
} else if (vert->blb->h < vert->brb->h) {
vert->blb->v[BR]->free &= ~(TRF|BRF);
} else { /*same*/
vert->blb->v[BR]->free &= ~TRF;
vert->brb->v[BL]->free &= ~TLF;
}
}
/* Horizontal */
if (vert->tlb && vert->blb && (box == vert->tlb || box == vert->blb)) {
if (vert->tlb->w > vert->blb->w) {
vert->blb->v[TL]->free &= ~(TLF|TRF);
} else if (vert->tlb->w < vert->blb->w) {
vert->tlb->v[BL]->free &= ~(BLF|BRF);
} else { /*same*/
vert->blb->v[TL]->free &= ~TRF;
vert->tlb->v[BL]->free &= ~BRF;
}
} else if (vert->trb && vert->brb && (box == vert->trb || box == vert->brb)) {
if (vert->trb->w > vert->brb->w) {
vert->brb->v[TR]->free &= ~(TRF|TRF);
} else if (vert->trb->w < vert->brb->w) {
vert->trb->v[BR]->free &= ~(BLF|BRF);
} else { /*same*/
vert->brb->v[TR]->free &= ~TLF;
vert->trb->v[BR]->free &= ~BLF;
}
}
/* End logical check */
for (k=0; k<4; k++) {
if (box->v[k] != vert) {
vertex_pack_indicies[verts_pack_len] = box->v[k]->index;
verts_pack_len++;
}
}
/* The Box verts are only used interially
* Update the box x and y since thats what external
* functions will see */
box->x = BOXLEFT(box);
box->y = BOXBOTTOM(box);
}
}
}
}
}
/* free all the verts, not realy needed because they shouldebt be
* touched anymore but accessing the pointers woud crash blender */
for (box_index=0; box_index < len; box_index++) {
box = boxarray+box_index;
box->v[0] = box->v[1] = box->v[2] = box->v[3] = NULL;
}
MEM_freeN(vertex_pack_indicies);
MEM_freeN(vertarray);
}
int boxPack_FromPyObject(PyObject * value, boxPack **boxarray )
{
int len, i;
PyObject *list_item, *item_1, *item_2;
boxPack *box;
/* Error checking must alredy be done */
if( !PyList_Check( value ) )
return EXPP_ReturnIntError( PyExc_TypeError,
"can only back a list of [x,y,x,w]" );
len = PyList_Size( value );
(*boxarray) = MEM_mallocN( len*sizeof(boxPack), "boxPack box");
for( i = 0; i < len; i++ ) {
list_item = PyList_GET_ITEM( value, i );
if( !PyList_Check( list_item ) || PyList_Size( list_item ) < 4 ) {
MEM_freeN(*boxarray);
return EXPP_ReturnIntError( PyExc_TypeError,
"can only back a list of [x,y,x,w]" );
}
box = (*boxarray)+i;
item_1 = PyList_GET_ITEM(list_item, 2);
item_2 = PyList_GET_ITEM(list_item, 3);
if (!PyNumber_Check(item_1) || !PyNumber_Check(item_2)) {
MEM_freeN(*boxarray);
return EXPP_ReturnIntError( PyExc_TypeError,
"can only back a list of 2d boxes [x,y,x,w]" );
}
box->x = box->y = 0.0f;
box->w = (float)PyFloat_AsDouble( item_1 );
box->h = (float)PyFloat_AsDouble( item_2 );
box->index = i;
/* verts will be added later */
}
return 0;
}
void boxPack_ToPyObject(PyObject * value, boxPack **boxarray)
{
int len, i;
PyObject *list_item;
boxPack *box;
len = PyList_Size( value );
for( i = 0; i < len; i++ ) {
box = (*boxarray)+i;
list_item = PyList_GET_ITEM( value, box->index );
PyList_SET_ITEM( list_item, 0, PyFloat_FromDouble( box->x ));
PyList_SET_ITEM( list_item, 1, PyFloat_FromDouble( box->y ));
}
MEM_freeN(*boxarray);
}
static PyObject *M_Geometry_BoxPack2D( PyObject * self, PyObject * args )
{
PyObject *boxlist; /*return this list of tri's */
boxPack *boxarray;
float tot_width, tot_height;
int len;
int error;
if(!PyArg_ParseTuple ( args, "O", &boxlist) || !PyList_Check(boxlist)) {
return EXPP_ReturnPyObjError( PyExc_TypeError,
"expected a sequence of boxes [[x,y,w,h], ... ]" );
}
len = PyList_Size( boxlist );
if (!len)
return Py_BuildValue( "ff", 0.0, 0.0);
error = boxPack_FromPyObject(boxlist, &boxarray);
if (error!=0) return NULL;
/* Non Python function */
boxPackAll(boxarray, len, &tot_width, &tot_height);
boxPack_ToPyObject(boxlist, &boxarray);
return Py_BuildValue( "ff", tot_width, tot_height);
}