This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/generic/mathutils_matrix.c
Campbell Barton 1be4eda552 bugfix [#23454] vector*matrix not the same as vector*=matrix
- they now share the same code so it wont happen again.
- added id_data to properties so we can do...
  matrix = C.object.matrix_world
  obj = matrix.owner.id_data # get the original object back.
2010-08-23 22:10:13 +00:00

1945 lines
58 KiB
C

/*
* $Id$
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributor(s): Michel Selten & Joseph Gilbert
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "mathutils.h"
#include "BKE_utildefines.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec); /* utility func */
/* matrix vector callbacks */
int mathutils_matrix_vector_cb_index= -1;
static int mathutils_matrix_vector_check(BaseMathObject *bmo)
{
MatrixObject *self= (MatrixObject *)bmo->cb_user;
return BaseMath_ReadCallback(self);
}
static int mathutils_matrix_vector_get(BaseMathObject *bmo, int subtype)
{
MatrixObject *self= (MatrixObject *)bmo->cb_user;
int i;
if(!BaseMath_ReadCallback(self))
return 0;
for(i=0; i < self->colSize; i++)
bmo->data[i]= self->matrix[subtype][i];
return 1;
}
static int mathutils_matrix_vector_set(BaseMathObject *bmo, int subtype)
{
MatrixObject *self= (MatrixObject *)bmo->cb_user;
int i;
if(!BaseMath_ReadCallback(self))
return 0;
for(i=0; i < self->colSize; i++)
self->matrix[subtype][i]= bmo->data[i];
BaseMath_WriteCallback(self);
return 1;
}
static int mathutils_matrix_vector_get_index(BaseMathObject *bmo, int subtype, int index)
{
MatrixObject *self= (MatrixObject *)bmo->cb_user;
if(!BaseMath_ReadCallback(self))
return 0;
bmo->data[index]= self->matrix[subtype][index];
return 1;
}
static int mathutils_matrix_vector_set_index(BaseMathObject *bmo, int subtype, int index)
{
MatrixObject *self= (MatrixObject *)bmo->cb_user;
if(!BaseMath_ReadCallback(self))
return 0;
self->matrix[subtype][index]= bmo->data[index];
BaseMath_WriteCallback(self);
return 1;
}
Mathutils_Callback mathutils_matrix_vector_cb = {
mathutils_matrix_vector_check,
mathutils_matrix_vector_get,
mathutils_matrix_vector_set,
mathutils_matrix_vector_get_index,
mathutils_matrix_vector_set_index
};
/* matrix vector callbacks, this is so you can do matrix[i][j] = val */
//----------------------------------mathutils.Matrix() -----------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
//create a new matrix type
static PyObject *Matrix_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
PyObject *argObject, *m, *s;
MatrixObject *mat;
int argSize, seqSize = 0, i, j;
float matrix[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
float scalar;
argSize = PyTuple_GET_SIZE(args);
if(argSize > MATRIX_MAX_DIM) { //bad arg nums
PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
} else if (argSize == 0) { //return empty 4D matrix
return (PyObject *) newMatrixObject(NULL, 4, 4, Py_NEW, NULL);
}else if (argSize == 1){
//copy constructor for matrix objects
argObject = PyTuple_GET_ITEM(args, 0);
if(MatrixObject_Check(argObject)){
mat = (MatrixObject*)argObject;
if(!BaseMath_ReadCallback(mat))
return NULL;
memcpy(matrix, mat->contigPtr, sizeof(float) * mat->rowSize * mat->colSize);
argSize = mat->rowSize;
seqSize = mat->colSize;
}
}else{ //2-4 arguments (all seqs? all same size?)
for(i =0; i < argSize; i++){
argObject = PyTuple_GET_ITEM(args, i);
if (PySequence_Check(argObject)) { //seq?
if(seqSize){ //0 at first
if(PySequence_Length(argObject) != seqSize){ //seq size not same
PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
}
}
seqSize = PySequence_Length(argObject);
}else{ //arg not a sequence
PyErr_SetString(PyExc_TypeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
}
}
//all is well... let's continue parsing
for (i = 0; i < argSize; i++){
m = PyTuple_GET_ITEM(args, i);
if (m == NULL) { // Failed to read sequence
PyErr_SetString(PyExc_RuntimeError, "mathutils.Matrix(): failed to parse arguments...\n");
return NULL;
}
for (j = 0; j < seqSize; j++) {
s = PySequence_GetItem(m, j);
if (s == NULL) { // Failed to read sequence
PyErr_SetString(PyExc_RuntimeError, "mathutils.Matrix(): failed to parse arguments...\n");
return NULL;
}
scalar= (float)PyFloat_AsDouble(s);
Py_DECREF(s);
if(scalar==-1 && PyErr_Occurred()) { // parsed item is not a number
PyErr_SetString(PyExc_AttributeError, "mathutils.Matrix(): expects 0-4 numeric sequences of the same size\n");
return NULL;
}
matrix[(seqSize*i)+j]= scalar;
}
}
}
return newMatrixObject(matrix, argSize, seqSize, Py_NEW, NULL);
}
/*-----------------------CLASS-METHODS----------------------------*/
//----------------------------------mathutils.RotationMatrix() ----------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char C_Matrix_Rotation_doc[] =
".. classmethod:: Rotation(angle, size, axis)\n"
"\n"
" Create a matrix representing a rotation.\n"
"\n"
" :arg angle: The angle of rotation desired, in radians.\n"
" :type angle: float\n"
" :arg size: The size of the rotation matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: a string in ['X', 'Y', 'Z'] or a 3D Vector Object (optional when size is 2).\n"
" :type axis: string or :class:`Vector`\n"
" :return: A new rotation matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Rotation(PyObject *cls, PyObject *args)
{
VectorObject *vec= NULL;
char *axis= NULL;
int matSize;
float angle = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O", &angle, &matSize, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(angle, size, axis): expected float int and a string or vector\n");
return NULL;
}
if(vec && !VectorObject_Check(vec)) {
axis= _PyUnicode_AsString((PyObject *)vec);
if(axis==NULL || axis[0]=='\0' || axis[1]!='\0' || axis[0] < 'X' || axis[0] > 'Z') {
PyErr_SetString(PyExc_TypeError, "mathutils.RotationMatrix(): 3rd argument axis value must be a 3D vector or a string in 'X', 'Y', 'Z'\n");
return NULL;
}
else {
/* use the string */
vec= NULL;
}
}
while (angle<-(Py_PI*2))
angle+=(Py_PI*2);
while (angle>(Py_PI*2))
angle-=(Py_PI*2);
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(matSize == 2 && (vec != NULL)) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
return NULL;
}
if((matSize == 3 || matSize == 4) && (axis == NULL) && (vec == NULL)) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
return NULL;
}
if(vec) {
if(vec->size != 3) {
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): the vector axis must be a 3D vector\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
/* check for valid vector/axis above */
if(vec) {
axis_angle_to_mat3( (float (*)[3])mat,vec->vec, angle);
}
else if(matSize == 2) {
//2D rotation matrix
mat[0] = (float) cos (angle);
mat[1] = (float) sin (angle);
mat[2] = -((float) sin(angle));
mat[3] = (float) cos(angle);
} else if(strcmp(axis, "X") == 0) {
//rotation around X
mat[0] = 1.0f;
mat[4] = (float) cos(angle);
mat[5] = (float) sin(angle);
mat[7] = -((float) sin(angle));
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Y") == 0) {
//rotation around Y
mat[0] = (float) cos(angle);
mat[2] = -((float) sin(angle));
mat[4] = 1.0f;
mat[6] = (float) sin(angle);
mat[8] = (float) cos(angle);
} else if(strcmp(axis, "Z") == 0) {
//rotation around Z
mat[0] = (float) cos(angle);
mat[1] = (float) sin(angle);
mat[3] = -((float) sin(angle));
mat[4] = (float) cos(angle);
mat[8] = 1.0f;
}
else {
/* should never get here */
PyErr_SetString(PyExc_AttributeError, "mathutils.RotationMatrix(): unknown error\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
static char C_Matrix_Translation_doc[] =
".. classmethod:: Translation(vector)\n"
"\n"
" Create a matrix representing a translation.\n"
"\n"
" :arg vector: The translation vector.\n"
" :type vector: :class:`Vector`\n"
" :return: An identity matrix with a translation.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Translation(PyObject *cls, VectorObject * vec)
{
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!VectorObject_Check(vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): expected vector\n");
return NULL;
}
if(vec->size != 3 && vec->size != 4) {
PyErr_SetString(PyExc_TypeError, "mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
//create a identity matrix and add translation
unit_m4((float(*)[4]) mat);
mat[12] = vec->vec[0];
mat[13] = vec->vec[1];
mat[14] = vec->vec[2];
return newMatrixObject(mat, 4, 4, Py_NEW, (PyTypeObject *)cls);
}
//----------------------------------mathutils.ScaleMatrix() -------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char C_Matrix_Scale_doc[] =
".. classmethod:: Scale(factor, size, axis)\n"
"\n"
" Create a matrix representing a scaling.\n"
"\n"
" :arg factor: The factor of scaling to apply.\n"
" :type factor: float\n"
" :arg size: The size of the scale matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Direction to influence scale. (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new scale matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Scale(PyObject *cls, PyObject *args)
{
VectorObject *vec = NULL;
float norm = 0.0f, factor;
int matSize, x;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.ScaleMatrix(): expected float int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //scaling along axis
if(matSize == 2) {
mat[0] = factor;
mat[3] = factor;
} else {
mat[0] = factor;
mat[4] = factor;
mat[8] = factor;
}
} else { //scaling in arbitrary direction
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if(matSize == 2) {
mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
} else {
mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
//----------------------------------mathutils.OrthoProjectionMatrix() ---
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
static char C_Matrix_OrthoProjection_doc[] =
".. classmethod:: OrthoProjection(plane, size, axis)\n"
"\n"
" Create a matrix to represent an orthographic projection.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ', 'R'], where a single axis is for a 2D matrix and 'R' requires axis is given.\n"
" :type plane: string\n"
" :arg size: The size of the projection matrix to construct [2, 4].\n"
" :type size: int\n"
" :arg axis: Arbitrary perpendicular plane vector (optional).\n"
" :type axis: :class:`Vector`\n"
" :return: A new projection matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_OrthoProjection(PyObject *cls, PyObject *args)
{
VectorObject *vec = NULL;
char *plane;
int matSize, x;
float norm = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!BaseMath_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //ortho projection onto cardinal plane
if((strcmp(plane, "X") == 0) && matSize == 2) {
mat[0] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: X, Y, XY, XZ, YZ\n");
return NULL;
}
} else { //arbitrary plane
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if((strcmp(plane, "R") == 0) && matSize == 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[1]);
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
} else if((strcmp(plane, "R") == 0) && matSize > 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[2]);
mat[3] = -(vec->vec[0] * vec->vec[1]);
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
mat[5] = -(vec->vec[1] * vec->vec[2]);
mat[6] = -(vec->vec[0] * vec->vec[2]);
mat[7] = -(vec->vec[1] * vec->vec[2]);
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
return NULL;
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
static char C_Matrix_Shear_doc[] =
".. classmethod:: Shear(plane, factor, size)\n"
"\n"
" Create a matrix to represent an shear transformation.\n"
"\n"
" :arg plane: Can be any of the following: ['X', 'Y', 'XY', 'XZ', 'YZ'], where a single axis is for a 2D matrix.\n"
" :type plane: string\n"
" :arg factor: The factor of shear to apply.\n"
" :type factor: float\n"
" :arg size: The size of the shear matrix to construct [2, 4].\n"
" :type size: int\n"
" :return: A new shear matrix.\n"
" :rtype: :class:`Matrix`\n";
static PyObject *C_Matrix_Shear(PyObject *cls, PyObject *args)
{
int matSize;
char *plane;
float factor;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
PyErr_SetString(PyExc_TypeError,"mathutils.ShearMatrix(): expected string float and int\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if((strcmp(plane, "X") == 0)
&& matSize == 2) {
mat[0] = 1.0f;
mat[2] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "Y") == 0) && matSize == 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[3] = 1.0f;
} else if((strcmp(plane, "XY") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
mat[6] = factor;
mat[7] = factor;
} else if((strcmp(plane, "XZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[3] = factor;
mat[4] = 1.0f;
mat[5] = factor;
mat[8] = 1.0f;
} else if((strcmp(plane, "YZ") == 0) && matSize > 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[2] = factor;
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW, (PyTypeObject *)cls);
}
/* assumes rowsize == colsize is checked and the read callback has run */
static float matrix_determinant(MatrixObject * self)
{
if(self->rowSize == 2) {
return determinant_m2(self->matrix[0][0], self->matrix[0][1],
self->matrix[1][0], self->matrix[1][1]);
} else if(self->rowSize == 3) {
return determinant_m3(self->matrix[0][0], self->matrix[0][1],
self->matrix[0][2], self->matrix[1][0],
self->matrix[1][1], self->matrix[1][2],
self->matrix[2][0], self->matrix[2][1],
self->matrix[2][2]);
} else {
return determinant_m4((float (*)[4])self->contigPtr);
}
}
/*-----------------------------METHODS----------------------------*/
static char Matrix_toQuat_doc[] =
".. method:: to_quat()\n"
"\n"
" Return a quaternion representation of the rotation matrix.\n"
"\n"
" :return: Quaternion representation of the rotation matrix.\n"
" :rtype: :class:`Quaternion`\n";
static PyObject *Matrix_toQuat(MatrixObject * self)
{
float quat[4];
if(!BaseMath_ReadCallback(self))
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if(self->colSize < 3 || self->rowSize < 3 || (self->colSize != self->rowSize)) {
PyErr_SetString(PyExc_AttributeError, "Matrix.to_quat(): inappropriate matrix size - expects 3x3 or 4x4 matrix");
return NULL;
}
if(self->colSize == 3){
mat3_to_quat( quat,(float (*)[3])self->contigPtr);
}else{
mat4_to_quat( quat,(float (*)[4])self->contigPtr);
}
return newQuaternionObject(quat, Py_NEW, NULL);
}
/*---------------------------Matrix.toEuler() --------------------*/
static char Matrix_toEuler_doc[] =
".. method:: to_euler(order, euler_compat)\n"
"\n"
" Return an Euler representation of the rotation matrix (3x3 or 4x4 matrix only).\n"
"\n"
" :arg order: Optional rotation order argument in ['XYZ', 'XZY', 'YXZ', 'YZX', 'ZXY', 'ZYX'].\n"
" :type order: string\n"
" :arg euler_compat: Optional euler argument the new euler will be made compatible with (no axis flipping between them). Useful for converting a series of matrices to animation curves.\n"
" :type euler_compat: :class:`Euler`\n"
" :return: Euler representation of the matrix.\n"
" :rtype: :class:`Euler`\n";
PyObject *Matrix_toEuler(MatrixObject * self, PyObject *args)
{
char *order_str= NULL;
short order= EULER_ORDER_XYZ;
float eul[3], eul_compatf[3];
EulerObject *eul_compat = NULL;
float tmat[3][3];
float (*mat)[3];
if(!BaseMath_ReadCallback(self))
return NULL;
if(!PyArg_ParseTuple(args, "|sO!:to_euler", &order_str, &euler_Type, &eul_compat))
return NULL;
if(eul_compat) {
if(!BaseMath_ReadCallback(eul_compat))
return NULL;
copy_v3_v3(eul_compatf, eul_compat->eul);
}
/*must be 3-4 cols, 3-4 rows, square matrix*/
if(self->colSize ==3 && self->rowSize ==3) {
mat= (float (*)[3])self->contigPtr;
}else if (self->colSize ==4 && self->rowSize ==4) {
copy_m3_m4(tmat, (float (*)[4])self->contigPtr);
mat= tmat;
}else {
PyErr_SetString(PyExc_AttributeError, "Matrix.to_euler(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
return NULL;
}
if(order_str) {
order= euler_order_from_string(order_str, "Matrix.to_euler()");
if(order == -1)
return NULL;
}
if(eul_compat) {
if(order == 1) mat3_to_compatible_eul( eul, eul_compatf, mat);
else mat3_to_compatible_eulO(eul, eul_compatf, order, mat);
}
else {
if(order == 1) mat3_to_eul(eul, mat);
else mat3_to_eulO(eul, order, mat);
}
return newEulerObject(eul, order, Py_NEW, NULL);
}
/*---------------------------Matrix.resize4x4() ------------------*/
static char Matrix_Resize4x4_doc[] =
".. method:: resize4x4()\n"
"\n"
" Resize the matrix to 4x4.\n"
"\n"
" :return: an instance of itself.\n"
" :rtype: :class:`Matrix`\n";
PyObject *Matrix_Resize4x4(MatrixObject * self)
{
int x, first_row_elem, curr_pos, new_pos, blank_columns, blank_rows, index;
if(self->wrapped==Py_WRAP){
PyErr_SetString(PyExc_TypeError, "cannot resize wrapped data - make a copy and resize that");
return NULL;
}
if(self->cb_user){
PyErr_SetString(PyExc_TypeError, "cannot resize owned data - make a copy and resize that");
return NULL;
}
self->contigPtr = PyMem_Realloc(self->contigPtr, (sizeof(float) * 16));
if(self->contigPtr == NULL) {
PyErr_SetString(PyExc_MemoryError, "matrix.resize4x4(): problem allocating pointer space");
return NULL;
}
/*set row pointers*/
for(x = 0; x < 4; x++) {
self->matrix[x] = self->contigPtr + (x * 4);
}
/*move data to new spot in array + clean*/
for(blank_rows = (4 - self->rowSize); blank_rows > 0; blank_rows--){
for(x = 0; x < 4; x++){
index = (4 * (self->rowSize + (blank_rows - 1))) + x;
if (index == 10 || index == 15){
self->contigPtr[index] = 1.0f;
}else{
self->contigPtr[index] = 0.0f;
}
}
}
for(x = 1; x <= self->rowSize; x++){
first_row_elem = (self->colSize * (self->rowSize - x));
curr_pos = (first_row_elem + (self->colSize -1));
new_pos = (4 * (self->rowSize - x )) + (curr_pos - first_row_elem);
for(blank_columns = (4 - self->colSize); blank_columns > 0; blank_columns--){
self->contigPtr[new_pos + blank_columns] = 0.0f;
}
for(curr_pos = curr_pos; curr_pos >= first_row_elem; curr_pos--){
self->contigPtr[new_pos] = self->contigPtr[curr_pos];
new_pos--;
}
}
self->rowSize = 4;
self->colSize = 4;
Py_INCREF(self);
return (PyObject *)self;
}
static char Matrix_to_4x4_doc[] =
".. method:: to_4x4()\n"
"\n"
" Return a 4x4 copy of this matrix.\n"
"\n"
" :return: a new matrix.\n"
" :rtype: :class:`Matrix`\n";
PyObject *Matrix_to_4x4(MatrixObject * self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->colSize==4 && self->rowSize==4) {
return (PyObject *)newMatrixObject(self->contigPtr, 4, 4, Py_NEW, Py_TYPE(self));
}
else if(self->colSize==3 && self->rowSize==3) {
float mat[4][4];
copy_m4_m3(mat, (float (*)[3])self->contigPtr);
return (PyObject *)newMatrixObject((float *)mat, 4, 4, Py_NEW, Py_TYPE(self));
}
/* TODO, 2x2 matrix */
PyErr_SetString(PyExc_TypeError, "Matrix.to_4x4(): inappropriate matrix size");
return NULL;
}
static char Matrix_to_3x3_doc[] =
".. method:: to_3x3()\n"
"\n"
" Return a 3x3 copy of this matrix.\n"
"\n"
" :return: a new matrix.\n"
" :rtype: :class:`Matrix`\n";
PyObject *Matrix_to_3x3(MatrixObject * self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->colSize==3 && self->rowSize==3) {
return (PyObject *)newMatrixObject(self->contigPtr, 3, 3, Py_NEW, Py_TYPE(self));
}
else if(self->colSize==4 && self->rowSize==4) {
float mat[3][3];
copy_m3_m4(mat, (float (*)[4])self->contigPtr);
return (PyObject *)newMatrixObject((float *)mat, 3, 3, Py_NEW, Py_TYPE(self));
}
/* TODO, 2x2 matrix */
PyErr_SetString(PyExc_TypeError, "Matrix.to_3x3(): inappropriate matrix size");
return NULL;
}
/*---------------------------Matrix.translationPart() ------------*/
static char Matrix_TranslationPart_doc[] =
".. method:: translation_part()\n"
"\n"
" Return a the translation part of a 4 row matrix.\n"
"\n"
" :return: Return a the translation of a matrix.\n"
" :rtype: :class:`Matrix`\n"
"\n"
" .. note:: Note that the (4,4) element of a matrix can be used for uniform scaling too.\n";
PyObject *Matrix_TranslationPart(MatrixObject * self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->colSize < 3 || self->rowSize < 4){
PyErr_SetString(PyExc_AttributeError, "Matrix.translation_part(): inappropriate matrix size");
return NULL;
}
return newVectorObject(self->matrix[3], 3, Py_NEW, NULL);
}
/*---------------------------Matrix.rotationPart() ---------------*/
static char Matrix_RotationPart_doc[] =
".. method:: rotation_part()\n"
"\n"
" Return the 3d submatrix corresponding to the linear term of the embedded affine transformation in 3d. This matrix represents rotation and scale.\n"
"\n"
" :return: Return the 3d matrix for rotation and scale.\n"
" :rtype: :class:`Matrix`\n"
"\n"
" .. note:: Note that the (4,4) element of a matrix can be used for uniform scaling too.\n";
PyObject *Matrix_RotationPart(MatrixObject * self)
{
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->colSize < 3 || self->rowSize < 3){
PyErr_SetString(PyExc_AttributeError, "Matrix.rotation_part(): inappropriate matrix size\n");
return NULL;
}
mat[0] = self->matrix[0][0];
mat[1] = self->matrix[0][1];
mat[2] = self->matrix[0][2];
mat[3] = self->matrix[1][0];
mat[4] = self->matrix[1][1];
mat[5] = self->matrix[1][2];
mat[6] = self->matrix[2][0];
mat[7] = self->matrix[2][1];
mat[8] = self->matrix[2][2];
return newMatrixObject(mat, 3, 3, Py_NEW, Py_TYPE(self));
}
/*---------------------------Matrix.scalePart() --------------------*/
static char Matrix_scalePart_doc[] =
".. method:: scale_part()\n"
"\n"
" Return a the scale part of a 3x3 or 4x4 matrix.\n"
"\n"
" :return: Return a the scale of a matrix.\n"
" :rtype: :class:`Vector`\n"
"\n"
" .. note:: This method does not return negative a scale on any axis because it is not possible to obtain this data from the matrix alone.\n";
PyObject *Matrix_scalePart(MatrixObject * self)
{
float scale[3], rot[3];
float mat[3][3], imat[3][3], tmat[3][3];
if(!BaseMath_ReadCallback(self))
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if(self->colSize == 4 && self->rowSize == 4)
copy_m3_m4(mat, (float (*)[4])self->contigPtr);
else if(self->colSize == 3 && self->rowSize == 3)
copy_m3_m3(mat, (float (*)[3])self->contigPtr);
else {
PyErr_SetString(PyExc_AttributeError, "Matrix.scale_part(): inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
return NULL;
}
/* functionality copied from editobject.c apply_obmat */
mat3_to_eul( rot,mat);
eul_to_mat3( tmat,rot);
invert_m3_m3(imat, tmat);
mul_m3_m3m3(tmat, imat, mat);
scale[0]= tmat[0][0];
scale[1]= tmat[1][1];
scale[2]= tmat[2][2];
return newVectorObject(scale, 3, Py_NEW, NULL);
}
/*---------------------------Matrix.invert() ---------------------*/
static char Matrix_Invert_doc[] =
".. method:: invert()\n"
"\n"
" Set the matrix to its inverse.\n"
"\n"
" :return: an instance of itself.\n"
" :rtype: :class:`Matrix`\n"
"\n"
" .. note:: :exc:`ValueError` exception is raised.\n"
"\n"
" .. seealso:: <http://en.wikipedia.org/wiki/Inverse_matrix>\n";
PyObject *Matrix_Invert(MatrixObject * self)
{
int x, y, z = 0;
float det = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.invert(ed): only square matrices are supported");
return NULL;
}
/*calculate the determinant*/
det = matrix_determinant(self);
if(det != 0) {
/*calculate the classical adjoint*/
if(self->rowSize == 2) {
mat[0] = self->matrix[1][1];
mat[1] = -self->matrix[0][1];
mat[2] = -self->matrix[1][0];
mat[3] = self->matrix[0][0];
} else if(self->rowSize == 3) {
adjoint_m3_m3((float (*)[3]) mat,(float (*)[3])self->contigPtr);
} else if(self->rowSize == 4) {
adjoint_m4_m4((float (*)[4]) mat, (float (*)[4])self->contigPtr);
}
/*divide by determinate*/
for(x = 0; x < (self->rowSize * self->colSize); x++) {
mat[x] /= det;
}
/*set values*/
for(x = 0; x < self->rowSize; x++) {
for(y = 0; y < self->colSize; y++) {
self->matrix[x][y] = mat[z];
z++;
}
}
/*transpose
Matrix_Transpose(self);*/
} else {
PyErr_SetString(PyExc_ValueError, "matrix does not have an inverse");
return NULL;
}
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
/*---------------------------Matrix.determinant() ----------------*/
static char Matrix_Determinant_doc[] =
".. method:: determinant()\n"
"\n"
" Return the determinant of a matrix.\n"
"\n"
" :return: Return a the determinant of a matrix.\n"
" :rtype: float\n"
"\n"
" .. seealso:: <http://en.wikipedia.org/wiki/Determinant>\n";
PyObject *Matrix_Determinant(MatrixObject * self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.determinant: only square matrices are supported");
return NULL;
}
return PyFloat_FromDouble((double)matrix_determinant(self));
}
/*---------------------------Matrix.transpose() ------------------*/
static char Matrix_Transpose_doc[] =
".. method:: transpose()\n"
"\n"
" Set the matrix to its transpose.\n"
"\n"
" :return: an instance of itself\n"
" :rtype: :class:`Matrix`\n"
"\n"
" .. seealso:: <http://en.wikipedia.org/wiki/Transpose>\n";
PyObject *Matrix_Transpose(MatrixObject * self)
{
float t = 0.0f;
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.transpose(d): only square matrices are supported");
return NULL;
}
if(self->rowSize == 2) {
t = self->matrix[1][0];
self->matrix[1][0] = self->matrix[0][1];
self->matrix[0][1] = t;
} else if(self->rowSize == 3) {
transpose_m3((float (*)[3])self->contigPtr);
} else {
transpose_m4((float (*)[4])self->contigPtr);
}
BaseMath_WriteCallback(self);
Py_INCREF(self);
return (PyObject *)self;
}
/*---------------------------Matrix.zero() -----------------------*/
static char Matrix_Zero_doc[] =
".. method:: zero()\n"
"\n"
" Set all the matrix values to zero.\n"
"\n"
" :return: an instance of itself\n"
" :rtype: :class:`Matrix`\n";
PyObject *Matrix_Zero(MatrixObject * self)
{
int row, col;
for(row = 0; row < self->rowSize; row++) {
for(col = 0; col < self->colSize; col++) {
self->matrix[row][col] = 0.0f;
}
}
if(!BaseMath_WriteCallback(self))
return NULL;
Py_INCREF(self);
return (PyObject *)self;
}
/*---------------------------Matrix.identity(() ------------------*/
static char Matrix_Identity_doc[] =
".. method:: identity()\n"
"\n"
" Set the matrix to the identity matrix.\n"
"\n"
" :return: an instance of itself\n"
" :rtype: :class:`Matrix`\n"
"\n"
" .. note:: An object with zero location and rotation, a scale of one, will have an identity matrix.\n"
"\n"
" .. seealso:: <http://en.wikipedia.org/wiki/Identity_matrix>\n";
PyObject *Matrix_Identity(MatrixObject * self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
if(self->rowSize != self->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix.identity: only square matrices are supported\n");
return NULL;
}
if(self->rowSize == 2) {
self->matrix[0][0] = 1.0f;
self->matrix[0][1] = 0.0f;
self->matrix[1][0] = 0.0f;
self->matrix[1][1] = 1.0f;
} else if(self->rowSize == 3) {
unit_m3((float (*)[3])self->contigPtr);
} else {
unit_m4((float (*)[4])self->contigPtr);
}
if(!BaseMath_WriteCallback(self))
return NULL;
Py_INCREF(self);
return (PyObject *)self;
}
/*---------------------------Matrix.copy() ------------------*/
static char Matrix_copy_doc[] =
".. method:: copy()\n"
"\n"
" Returns a copy of this matrix.\n"
"\n"
" :return: an instance of itself\n"
" :rtype: :class:`Matrix`\n";
PyObject *Matrix_copy(MatrixObject * self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
return (PyObject*)newMatrixObject((float (*))self->contigPtr, self->rowSize, self->colSize, Py_NEW, Py_TYPE(self));
}
/*----------------------------print object (internal)-------------*/
/*print the object to screen*/
static PyObject *Matrix_repr(MatrixObject * self)
{
int x, y;
char str[1024]="Matrix((", *str_p;
if(!BaseMath_ReadCallback(self))
return NULL;
str_p= &str[8];
for(x = 0; x < self->colSize; x++){
for(y = 0; y < (self->rowSize - 1); y++) {
str_p += sprintf(str_p, "%f, ", self->matrix[y][x]);
}
if(x < (self->colSize-1)){
str_p += sprintf(str_p, "%f), (", self->matrix[y][x]);
}
else{
str_p += sprintf(str_p, "%f)", self->matrix[y][x]);
}
}
strcat(str_p, ")");
return PyUnicode_FromString(str);
}
/*------------------------tp_richcmpr*/
/*returns -1 execption, 0 false, 1 true*/
static PyObject* Matrix_richcmpr(PyObject *objectA, PyObject *objectB, int comparison_type)
{
MatrixObject *matA = NULL, *matB = NULL;
int result = 0;
if (!MatrixObject_Check(objectA) || !MatrixObject_Check(objectB)){
if (comparison_type == Py_NE){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
matA = (MatrixObject*)objectA;
matB = (MatrixObject*)objectB;
if(!BaseMath_ReadCallback(matA) || !BaseMath_ReadCallback(matB))
return NULL;
if (matA->colSize != matB->colSize || matA->rowSize != matB->rowSize){
if (comparison_type == Py_NE){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
switch (comparison_type){
case Py_EQ:
/*contigPtr is basically a really long vector*/
result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
(matA->rowSize * matA->colSize), 1);
break;
case Py_NE:
result = EXPP_VectorsAreEqual(matA->contigPtr, matB->contigPtr,
(matA->rowSize * matA->colSize), 1);
if (result == 0){
result = 1;
}else{
result = 0;
}
break;
default:
printf("The result of the comparison could not be evaluated");
break;
}
if (result == 1){
Py_RETURN_TRUE;
}else{
Py_RETURN_FALSE;
}
}
/*---------------------SEQUENCE PROTOCOLS------------------------
----------------------------len(object)------------------------
sequence length*/
static int Matrix_len(MatrixObject * self)
{
return (self->rowSize);
}
/*----------------------------object[]---------------------------
sequence accessor (get)
the wrapped vector gives direct access to the matrix data*/
static PyObject *Matrix_item(MatrixObject * self, int i)
{
if(!BaseMath_ReadCallback(self))
return NULL;
if(i < 0 || i >= self->rowSize) {
PyErr_SetString(PyExc_IndexError, "matrix[attribute]: array index out of range");
return NULL;
}
return newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, i);
}
/*----------------------------object[]-------------------------
sequence accessor (set)*/
static int Matrix_ass_item(MatrixObject * self, int i, PyObject * ob)
{
int y, x, size = 0;
float vec[4];
PyObject *m, *f;
if(!BaseMath_ReadCallback(self))
return -1;
if(i >= self->rowSize || i < 0){
PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad column\n");
return -1;
}
if(PySequence_Check(ob)){
size = PySequence_Length(ob);
if(size != self->colSize){
PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: bad sequence size\n");
return -1;
}
for (x = 0; x < size; x++) {
m = PySequence_GetItem(ob, x);
if (m == NULL) { /*Failed to read sequence*/
PyErr_SetString(PyExc_RuntimeError, "matrix[attribute] = x: unable to read sequence\n");
return -1;
}
f = PyNumber_Float(m);
if(f == NULL) { /*parsed item not a number*/
Py_DECREF(m);
PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: sequence argument not a number\n");
return -1;
}
vec[x] = (float)PyFloat_AS_DOUBLE(f);
Py_DECREF(m);
Py_DECREF(f);
}
/*parsed well - now set in matrix*/
for(y = 0; y < size; y++){
self->matrix[i][y] = vec[y];
}
BaseMath_WriteCallback(self);
return 0;
}else{
PyErr_SetString(PyExc_TypeError, "matrix[attribute] = x: expects a sequence of column size\n");
return -1;
}
}
/*----------------------------object[z:y]------------------------
sequence slice (get)*/
static PyObject *Matrix_slice(MatrixObject * self, int begin, int end)
{
PyObject *list = NULL;
int count;
if(!BaseMath_ReadCallback(self))
return NULL;
CLAMP(begin, 0, self->rowSize);
CLAMP(end, 0, self->rowSize);
begin = MIN2(begin,end);
list = PyList_New(end - begin);
for(count = begin; count < end; count++) {
PyList_SetItem(list, count - begin,
newVectorObject_cb((PyObject *)self, self->colSize, mathutils_matrix_vector_cb_index, count));
}
return list;
}
/*----------------------------object[z:y]------------------------
sequence slice (set)*/
static int Matrix_ass_slice(MatrixObject * self, int begin, int end, PyObject * seq)
{
int i, x, y, size, sub_size = 0;
float mat[16], f;
PyObject *subseq;
PyObject *m;
if(!BaseMath_ReadCallback(self))
return -1;
CLAMP(begin, 0, self->rowSize);
CLAMP(end, 0, self->rowSize);
begin = MIN2(begin,end);
if(PySequence_Check(seq)){
size = PySequence_Length(seq);
if(size != (end - begin)){
PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
return -1;
}
/*parse sub items*/
for (i = 0; i < size; i++) {
/*parse each sub sequence*/
subseq = PySequence_GetItem(seq, i);
if (subseq == NULL) { /*Failed to read sequence*/
PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence");
return -1;
}
if(PySequence_Check(subseq)){
/*subsequence is also a sequence*/
sub_size = PySequence_Length(subseq);
if(sub_size != self->colSize){
Py_DECREF(subseq);
PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: size mismatch in slice assignment\n");
return -1;
}
for (y = 0; y < sub_size; y++) {
m = PySequence_GetItem(subseq, y);
if (m == NULL) { /*Failed to read sequence*/
Py_DECREF(subseq);
PyErr_SetString(PyExc_RuntimeError, "matrix[begin:end] = []: unable to read sequence\n");
return -1;
}
f = PyFloat_AsDouble(m); /* faster to assume a float and raise an error after */
if(f == -1 && PyErr_Occurred()) { /*parsed item not a number*/
Py_DECREF(m);
Py_DECREF(subseq);
PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: sequence argument not a number\n");
return -1;
}
mat[(i * self->colSize) + y] = f;
Py_DECREF(m);
}
}else{
Py_DECREF(subseq);
PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
return -1;
}
Py_DECREF(subseq);
}
/*parsed well - now set in matrix*/
for(x = 0; x < (size * sub_size); x++){
self->matrix[begin + (int)floor(x / self->colSize)][x % self->colSize] = mat[x];
}
BaseMath_WriteCallback(self);
return 0;
}else{
PyErr_SetString(PyExc_TypeError, "matrix[begin:end] = []: illegal argument type for built-in operation\n");
return -1;
}
}
/*------------------------NUMERIC PROTOCOLS----------------------
------------------------obj + obj------------------------------*/
static PyObject *Matrix_add(PyObject * m1, PyObject * m2)
{
int x, y;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
MatrixObject *mat1 = NULL, *mat2 = NULL;
mat1 = (MatrixObject*)m1;
mat2 = (MatrixObject*)m2;
if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
return NULL;
}
if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
return NULL;
if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
return NULL;
}
for(x = 0; x < mat1->rowSize; x++) {
for(y = 0; y < mat1->colSize; y++) {
mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] + mat2->matrix[x][y];
}
}
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
}
/*------------------------obj - obj------------------------------
subtraction*/
static PyObject *Matrix_sub(PyObject * m1, PyObject * m2)
{
int x, y;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
MatrixObject *mat1 = NULL, *mat2 = NULL;
mat1 = (MatrixObject*)m1;
mat2 = (MatrixObject*)m2;
if(!MatrixObject_Check(m1) || !MatrixObject_Check(m2)) {
PyErr_SetString(PyExc_AttributeError, "Matrix addition: arguments not valid for this operation....");
return NULL;
}
if(!BaseMath_ReadCallback(mat1) || !BaseMath_ReadCallback(mat2))
return NULL;
if(mat1->rowSize != mat2->rowSize || mat1->colSize != mat2->colSize){
PyErr_SetString(PyExc_AttributeError, "Matrix addition: matrices must have the same dimensions for this operation");
return NULL;
}
for(x = 0; x < mat1->rowSize; x++) {
for(y = 0; y < mat1->colSize; y++) {
mat[((x * mat1->colSize) + y)] = mat1->matrix[x][y] - mat2->matrix[x][y];
}
}
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
}
/*------------------------obj * obj------------------------------
mulplication*/
static PyObject *Matrix_mul(PyObject * m1, PyObject * m2)
{
int x, y, z;
float scalar;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
double dot = 0.0f;
MatrixObject *mat1 = NULL, *mat2 = NULL;
if(MatrixObject_Check(m1)) {
mat1 = (MatrixObject*)m1;
if(!BaseMath_ReadCallback(mat1))
return NULL;
}
if(MatrixObject_Check(m2)) {
mat2 = (MatrixObject*)m2;
if(!BaseMath_ReadCallback(mat2))
return NULL;
}
if(mat1 && mat2) { /*MATRIX * MATRIX*/
if(mat1->rowSize != mat2->colSize){
PyErr_SetString(PyExc_AttributeError,"Matrix multiplication: matrix A rowsize must equal matrix B colsize");
return NULL;
}
for(x = 0; x < mat2->rowSize; x++) {
for(y = 0; y < mat1->colSize; y++) {
for(z = 0; z < mat1->rowSize; z++) {
dot += (mat1->matrix[z][y] * mat2->matrix[x][z]);
}
mat[((x * mat1->colSize) + y)] = (float)dot;
dot = 0.0f;
}
}
return newMatrixObject(mat, mat2->rowSize, mat1->colSize, Py_NEW, NULL);
}
if(mat1==NULL){
scalar=PyFloat_AsDouble(m1); // may not be a float...
if ((scalar == -1.0 && PyErr_Occurred())==0) { /*FLOAT/INT * MATRIX, this line annoys theeth, lets see if he finds it */
for(x = 0; x < mat2->rowSize; x++) {
for(y = 0; y < mat2->colSize; y++) {
mat[((x * mat2->colSize) + y)] = scalar * mat2->matrix[x][y];
}
}
return newMatrixObject(mat, mat2->rowSize, mat2->colSize, Py_NEW, NULL);
}
PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
return NULL;
}
else /* if(mat1) { */ {
if(VectorObject_Check(m2)) { /* MATRIX*VECTOR */
return column_vector_multiplication(mat1, (VectorObject *)m2); /* vector update done inside the function */
}
else {
scalar= PyFloat_AsDouble(m2);
if ((scalar == -1.0 && PyErr_Occurred())==0) { /* MATRIX*FLOAT/INT */
for(x = 0; x < mat1->rowSize; x++) {
for(y = 0; y < mat1->colSize; y++) {
mat[((x * mat1->colSize) + y)] = scalar * mat1->matrix[x][y];
}
}
return newMatrixObject(mat, mat1->rowSize, mat1->colSize, Py_NEW, NULL);
}
}
PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation");
return NULL;
}
PyErr_SetString(PyExc_TypeError, "Matrix multiplication: arguments not acceptable for this operation\n");
return NULL;
}
static PyObject* Matrix_inv(MatrixObject *self)
{
if(!BaseMath_ReadCallback(self))
return NULL;
return Matrix_Invert(self);
}
/*-----------------PROTOCOL DECLARATIONS--------------------------*/
static PySequenceMethods Matrix_SeqMethods = {
(lenfunc) Matrix_len, /* sq_length */
(binaryfunc) NULL, /* sq_concat */
(ssizeargfunc) NULL, /* sq_repeat */
(ssizeargfunc) Matrix_item, /* sq_item */
(ssizessizeargfunc) Matrix_slice, /* sq_slice, deprecated TODO, replace */
(ssizeobjargproc) Matrix_ass_item, /* sq_ass_item */
(ssizessizeobjargproc) Matrix_ass_slice, /* sq_ass_slice, deprecated TODO, replace */
(objobjproc) NULL, /* sq_contains */
(binaryfunc) NULL, /* sq_inplace_concat */
(ssizeargfunc) NULL, /* sq_inplace_repeat */
};
static PyObject *Matrix_subscript(MatrixObject* self, PyObject* item)
{
if (PyIndex_Check(item)) {
Py_ssize_t i;
i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return NULL;
if (i < 0)
i += self->rowSize;
return Matrix_item(self, i);
} else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
return NULL;
if (slicelength <= 0) {
return PyList_New(0);
}
else if (step == 1) {
return Matrix_slice(self, start, stop);
}
else {
PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
return NULL;
}
}
else {
PyErr_Format(PyExc_TypeError,
"vector indices must be integers, not %.200s",
item->ob_type->tp_name);
return NULL;
}
}
static int Matrix_ass_subscript(MatrixObject* self, PyObject* item, PyObject* value)
{
if (PyIndex_Check(item)) {
Py_ssize_t i = PyNumber_AsSsize_t(item, PyExc_IndexError);
if (i == -1 && PyErr_Occurred())
return -1;
if (i < 0)
i += self->rowSize;
return Matrix_ass_item(self, i, value);
}
else if (PySlice_Check(item)) {
Py_ssize_t start, stop, step, slicelength;
if (PySlice_GetIndicesEx((PySliceObject*)item, self->rowSize, &start, &stop, &step, &slicelength) < 0)
return -1;
if (step == 1)
return Matrix_ass_slice(self, start, stop, value);
else {
PyErr_SetString(PyExc_TypeError, "slice steps not supported with matricies");
return -1;
}
}
else {
PyErr_Format(PyExc_TypeError,
"matrix indices must be integers, not %.200s",
item->ob_type->tp_name);
return -1;
}
}
static PyMappingMethods Matrix_AsMapping = {
(lenfunc)Matrix_len,
(binaryfunc)Matrix_subscript,
(objobjargproc)Matrix_ass_subscript
};
static PyNumberMethods Matrix_NumMethods = {
(binaryfunc) Matrix_add, /*nb_add*/
(binaryfunc) Matrix_sub, /*nb_subtract*/
(binaryfunc) Matrix_mul, /*nb_multiply*/
0, /*nb_remainder*/
0, /*nb_divmod*/
0, /*nb_power*/
(unaryfunc) 0, /*nb_negative*/
(unaryfunc) 0, /*tp_positive*/
(unaryfunc) 0, /*tp_absolute*/
(inquiry) 0, /*tp_bool*/
(unaryfunc) Matrix_inv, /*nb_invert*/
0, /*nb_lshift*/
(binaryfunc)0, /*nb_rshift*/
0, /*nb_and*/
0, /*nb_xor*/
0, /*nb_or*/
0, /*nb_int*/
0, /*nb_reserved*/
0, /*nb_float*/
0, /* nb_inplace_add */
0, /* nb_inplace_subtract */
0, /* nb_inplace_multiply */
0, /* nb_inplace_remainder */
0, /* nb_inplace_power */
0, /* nb_inplace_lshift */
0, /* nb_inplace_rshift */
0, /* nb_inplace_and */
0, /* nb_inplace_xor */
0, /* nb_inplace_or */
0, /* nb_floor_divide */
0, /* nb_true_divide */
0, /* nb_inplace_floor_divide */
0, /* nb_inplace_true_divide */
0, /* nb_index */
};
static PyObject *Matrix_getRowSize( MatrixObject * self, void *type )
{
return PyLong_FromLong((long) self->rowSize);
}
static PyObject *Matrix_getColSize( MatrixObject * self, void *type )
{
return PyLong_FromLong((long) self->colSize);
}
static PyObject *Matrix_getMedianScale( MatrixObject * self, void *type )
{
float mat[3][3];
if(!BaseMath_ReadCallback(self))
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if(self->colSize == 4 && self->rowSize == 4)
copy_m3_m4(mat, (float (*)[4])self->contigPtr);
else if(self->colSize == 3 && self->rowSize == 3)
copy_m3_m3(mat, (float (*)[3])self->contigPtr);
else {
PyErr_SetString(PyExc_AttributeError, "Matrix.median_scale: inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
return NULL;
}
return PyFloat_FromDouble(mat3_to_scale(mat));
}
static PyObject *Matrix_getIsNegative( MatrixObject * self, void *type )
{
if(!BaseMath_ReadCallback(self))
return NULL;
/*must be 3-4 cols, 3-4 rows, square matrix*/
if(self->colSize == 4 && self->rowSize == 4)
return PyBool_FromLong(is_negative_m4((float (*)[4])self->contigPtr));
else if(self->colSize == 3 && self->rowSize == 3)
return PyBool_FromLong(is_negative_m3((float (*)[3])self->contigPtr));
else {
PyErr_SetString(PyExc_AttributeError, "Matrix.is_negative: inappropriate matrix size - expects 3x3 or 4x4 matrix\n");
return NULL;
}
}
/*****************************************************************************/
/* Python attributes get/set structure: */
/*****************************************************************************/
static PyGetSetDef Matrix_getseters[] = {
{"row_size", (getter)Matrix_getRowSize, (setter)NULL, "The row size of the matrix (readonly).\n\n:type: int", NULL},
{"col_size", (getter)Matrix_getColSize, (setter)NULL, "The column size of the matrix (readonly).\n\n:type: int", NULL},
{"median_scale", (getter)Matrix_getMedianScale, (setter)NULL, "The average scale applied to each axis (readonly).\n\n:type: float", NULL},
{"is_negative", (getter)Matrix_getIsNegative, (setter)NULL, "True if this matrix results in a negative scale, 3x3 and 4x4 only, (readonly).\n\n:type: bool", NULL},
{"is_wrapped", (getter)BaseMathObject_getWrapped, (setter)NULL, BaseMathObject_Wrapped_doc, NULL},
{"owner",(getter)BaseMathObject_getOwner, (setter)NULL, BaseMathObject_Owner_doc, NULL},
{NULL,NULL,NULL,NULL,NULL} /* Sentinel */
};
/*-----------------------METHOD DEFINITIONS ----------------------*/
static struct PyMethodDef Matrix_methods[] = {
{"zero", (PyCFunction) Matrix_Zero, METH_NOARGS, Matrix_Zero_doc},
{"identity", (PyCFunction) Matrix_Identity, METH_NOARGS, Matrix_Identity_doc},
{"transpose", (PyCFunction) Matrix_Transpose, METH_NOARGS, Matrix_Transpose_doc},
{"determinant", (PyCFunction) Matrix_Determinant, METH_NOARGS, Matrix_Determinant_doc},
{"invert", (PyCFunction) Matrix_Invert, METH_NOARGS, Matrix_Invert_doc},
{"translation_part", (PyCFunction) Matrix_TranslationPart, METH_NOARGS, Matrix_TranslationPart_doc},
{"rotation_part", (PyCFunction) Matrix_RotationPart, METH_NOARGS, Matrix_RotationPart_doc},
{"scale_part", (PyCFunction) Matrix_scalePart, METH_NOARGS, Matrix_scalePart_doc},
{"resize4x4", (PyCFunction) Matrix_Resize4x4, METH_NOARGS, Matrix_Resize4x4_doc},
{"to_4x4", (PyCFunction) Matrix_to_4x4, METH_NOARGS, Matrix_to_4x4_doc},
{"to_3x3", (PyCFunction) Matrix_to_3x3, METH_NOARGS, Matrix_to_3x3_doc},
{"to_euler", (PyCFunction) Matrix_toEuler, METH_VARARGS, Matrix_toEuler_doc},
{"to_quat", (PyCFunction) Matrix_toQuat, METH_NOARGS, Matrix_toQuat_doc},
{"copy", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
{"__copy__", (PyCFunction) Matrix_copy, METH_NOARGS, Matrix_copy_doc},
/* class methods */
{"Rotation", (PyCFunction) C_Matrix_Rotation, METH_VARARGS | METH_CLASS, C_Matrix_Rotation_doc},
{"Scale", (PyCFunction) C_Matrix_Scale, METH_VARARGS | METH_CLASS, C_Matrix_Scale_doc},
{"Shear", (PyCFunction) C_Matrix_Shear, METH_VARARGS | METH_CLASS, C_Matrix_Shear_doc},
{"Translation", (PyCFunction) C_Matrix_Translation, METH_O | METH_CLASS, C_Matrix_Translation_doc},
{"OrthoProjection", (PyCFunction) C_Matrix_OrthoProjection, METH_VARARGS | METH_CLASS, C_Matrix_OrthoProjection_doc},
{NULL, NULL, 0, NULL}
};
/*------------------PY_OBECT DEFINITION--------------------------*/
static char matrix_doc[] =
"This object gives access to Matrices in Blender.";
PyTypeObject matrix_Type = {
PyVarObject_HEAD_INIT(NULL, 0)
"matrix", /*tp_name*/
sizeof(MatrixObject), /*tp_basicsize*/
0, /*tp_itemsize*/
(destructor)BaseMathObject_dealloc, /*tp_dealloc*/
0, /*tp_print*/
0, /*tp_getattr*/
0, /*tp_setattr*/
0, /*tp_compare*/
(reprfunc) Matrix_repr, /*tp_repr*/
&Matrix_NumMethods, /*tp_as_number*/
&Matrix_SeqMethods, /*tp_as_sequence*/
&Matrix_AsMapping, /*tp_as_mapping*/
0, /*tp_hash*/
0, /*tp_call*/
0, /*tp_str*/
0, /*tp_getattro*/
0, /*tp_setattro*/
0, /*tp_as_buffer*/
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
matrix_doc, /*tp_doc*/
0, /*tp_traverse*/
0, /*tp_clear*/
(richcmpfunc)Matrix_richcmpr, /*tp_richcompare*/
0, /*tp_weaklistoffset*/
0, /*tp_iter*/
0, /*tp_iternext*/
Matrix_methods, /*tp_methods*/
0, /*tp_members*/
Matrix_getseters, /*tp_getset*/
0, /*tp_base*/
0, /*tp_dict*/
0, /*tp_descr_get*/
0, /*tp_descr_set*/
0, /*tp_dictoffset*/
0, /*tp_init*/
0, /*tp_alloc*/
Matrix_new, /*tp_new*/
0, /*tp_free*/
0, /*tp_is_gc*/
0, /*tp_bases*/
0, /*tp_mro*/
0, /*tp_cache*/
0, /*tp_subclasses*/
0, /*tp_weaklist*/
0 /*tp_del*/
};
/*------------------------newMatrixObject (internal)-------------
creates a new matrix object
self->matrix self->contiguous_ptr (reference to data.xxx)
[0]------------->[0]
[1]
[2]
[1]------------->[3]
[4]
[5]
....
self->matrix[1][1] = self->contigPtr[4] */
/*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
(i.e. it was allocated elsewhere by MEM_mallocN())
pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
(i.e. it must be created here with PyMEM_malloc())*/
PyObject *newMatrixObject(float *mat, int rowSize, int colSize, int type, PyTypeObject *base_type)
{
MatrixObject *self;
int x, row, col;
/*matrix objects can be any 2-4row x 2-4col matrix*/
if(rowSize < 2 || rowSize > 4 || colSize < 2 || colSize > 4){
PyErr_SetString(PyExc_RuntimeError, "matrix(): row and column sizes must be between 2 and 4");
return NULL;
}
if(base_type) self = (MatrixObject *)base_type->tp_alloc(base_type, 0);
else self = PyObject_NEW(MatrixObject, &matrix_Type);
self->rowSize = rowSize;
self->colSize = colSize;
/* init callbacks as NULL */
self->cb_user= NULL;
self->cb_type= self->cb_subtype= 0;
if(type == Py_WRAP){
self->contigPtr = mat;
/*pointer array points to contigous memory*/
for(x = 0; x < rowSize; x++) {
self->matrix[x] = self->contigPtr + (x * colSize);
}
self->wrapped = Py_WRAP;
}else if (type == Py_NEW){
self->contigPtr = PyMem_Malloc(rowSize * colSize * sizeof(float));
if(self->contigPtr == NULL) { /*allocation failure*/
PyErr_SetString( PyExc_MemoryError, "matrix(): problem allocating pointer space\n");
return NULL;
}
/*pointer array points to contigous memory*/
for(x = 0; x < rowSize; x++) {
self->matrix[x] = self->contigPtr + (x * colSize);
}
/*parse*/
if(mat) { /*if a float array passed*/
for(row = 0; row < rowSize; row++) {
for(col = 0; col < colSize; col++) {
self->matrix[row][col] = mat[(row * colSize) + col];
}
}
} else if (rowSize == colSize ) { /*or if no arguments are passed return identity matrix for square matrices */
Matrix_Identity(self);
Py_DECREF(self);
}
self->wrapped = Py_NEW;
}else{ /*bad type*/
return NULL;
}
return (PyObject *) self;
}
PyObject *newMatrixObject_cb(PyObject *cb_user, int rowSize, int colSize, int cb_type, int cb_subtype)
{
MatrixObject *self= (MatrixObject *)newMatrixObject(NULL, rowSize, colSize, Py_NEW, NULL);
if(self) {
Py_INCREF(cb_user);
self->cb_user= cb_user;
self->cb_type= (unsigned char)cb_type;
self->cb_subtype= (unsigned char)cb_subtype;
}
return (PyObject *) self;
}
//----------------column_vector_multiplication (internal)---------
//COLUMN VECTOR Multiplication (Matrix X Vector)
// [1][4][7] [a]
// [2][5][8] * [b]
// [3][6][9] [c]
//vector/matrix multiplication IS NOT COMMUTATIVE!!!!
static PyObject *column_vector_multiplication(MatrixObject * mat, VectorObject* vec)
{
float vecNew[4], vecCopy[4];
double dot = 0.0f;
int x, y, z = 0;
if(!BaseMath_ReadCallback(mat) || !BaseMath_ReadCallback(vec))
return NULL;
if(mat->rowSize != vec->size){
if(mat->rowSize == 4 && vec->size != 3){
PyErr_SetString(PyExc_AttributeError, "matrix * vector: matrix row size and vector size must be the same");
return NULL;
}else{
vecCopy[3] = 1.0f;
}
}
for(x = 0; x < vec->size; x++){
vecCopy[x] = vec->vec[x];
}
vecNew[3] = 1.0f;
for(x = 0; x < mat->colSize; x++) {
for(y = 0; y < mat->rowSize; y++) {
dot += mat->matrix[y][x] * vecCopy[y];
}
vecNew[z++] = (float)dot;
dot = 0.0f;
}
return newVectorObject(vecNew, vec->size, Py_NEW, NULL);
}