I removed config.h code from the files that had them. effect.c had nested /* so cleaned that up... added a newline to vector.c to shut gcc up ;) buttons_editing.c had a possible unintalized var (height) so I gave it a default value. removed an unused var i in interface_draw.c removed an unused var mti in outliner.c in BL_SkinDeformer.cpp commented out a call to bDeformGroup->data which no longer exists so it compiles again. Kent
		
			
				
	
	
		
			693 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			693 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /*
 | |
|  * $Id$
 | |
|  * ***** BEGIN GPL/BL DUAL LICENSE BLOCK *****
 | |
|  *
 | |
|  * This program is free software; you can redistribute it and/or
 | |
|  * modify it under the terms of the GNU General Public License
 | |
|  * as published by the Free Software Foundation; either version 2
 | |
|  * of the License, or (at your option) any later version. The Blender
 | |
|  * Foundation also sells licenses for use in proprietary software under
 | |
|  * the Blender License.  See http://www.blender.org/BL/ for information
 | |
|  * about this.
 | |
|  *
 | |
|  * This program is distributed in the hope that it will be useful,
 | |
|  * but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
|  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
|  * GNU General Public License for more details.
 | |
|  *
 | |
|  * You should have received a copy of the GNU General Public License
 | |
|  * along with this program; if not, write to the Free Software Foundation,
 | |
|  * Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 | |
|  *
 | |
|  * The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
 | |
|  * All rights reserved.
 | |
|  *
 | |
|  * 
 | |
|  * Contributor(s): Willian P. Germano & Joseph Gilbert, Ken Hughes
 | |
|  *
 | |
|  * ***** END GPL/BL DUAL LICENSE BLOCK *****
 | |
|  */
 | |
| 
 | |
| #include "Mathutils.h"
 | |
| 
 | |
| #include "BLI_blenlib.h"
 | |
| #include "BKE_utildefines.h"
 | |
| #include "gen_utils.h"
 | |
| 
 | |
| 
 | |
| //-------------------------DOC STRINGS ---------------------------
 | |
| char Vector_Zero_doc[] = "() - set all values in the vector to 0";
 | |
| char Vector_Normalize_doc[] = "() - normalize the vector";
 | |
| char Vector_Negate_doc[] = "() - changes vector to it's additive inverse";
 | |
| char Vector_Resize2D_doc[] = "() - resize a vector to [x,y]";
 | |
| char Vector_Resize3D_doc[] = "() - resize a vector to [x,y,z]";
 | |
| char Vector_Resize4D_doc[] = "() - resize a vector to [x,y,z,w]";
 | |
| char Vector_toPoint_doc[] = "() - create a new Point Object from this vector";
 | |
| //-----------------------METHOD DEFINITIONS ----------------------
 | |
| struct PyMethodDef Vector_methods[] = {
 | |
| 	{"zero", (PyCFunction) Vector_Zero, METH_NOARGS, Vector_Zero_doc},
 | |
| 	{"normalize", (PyCFunction) Vector_Normalize, METH_NOARGS, Vector_Normalize_doc},
 | |
| 	{"negate", (PyCFunction) Vector_Negate, METH_NOARGS, Vector_Negate_doc},
 | |
| 	{"resize2D", (PyCFunction) Vector_Resize2D, METH_NOARGS, Vector_Resize2D_doc},
 | |
| 	{"resize3D", (PyCFunction) Vector_Resize3D, METH_NOARGS, Vector_Resize2D_doc},
 | |
| 	{"resize4D", (PyCFunction) Vector_Resize4D, METH_NOARGS, Vector_Resize2D_doc},
 | |
| 	{"toPoint", (PyCFunction) Vector_toPoint, METH_NOARGS, Vector_toPoint_doc},
 | |
| 	{NULL, NULL, 0, NULL}
 | |
| };
 | |
| //-----------------------------METHODS----------------------------
 | |
| //--------------------------Vector.toPoint()----------------------
 | |
| //create a new point object to represent this vector
 | |
| PyObject *Vector_toPoint(VectorObject * self)
 | |
| {
 | |
| 	float coord[3];
 | |
| 	int x;
 | |
| 
 | |
| 	if(self->size < 2 || self->size > 3) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Vector.toPoint(): inappropriate vector size - expects 2d or 3d vector\n");
 | |
| 	} 
 | |
| 	for(x = 0; x < self->size; x++){
 | |
| 		coord[x] = self->vec[x];
 | |
| 	}
 | |
| 	
 | |
| 	return (PyObject *) newPointObject(coord, self->size, Py_NEW);
 | |
| }
 | |
| //----------------------------Vector.zero() ----------------------
 | |
| //set the vector data to 0,0,0
 | |
| PyObject *Vector_Zero(VectorObject * self)
 | |
| {
 | |
| 	int x;
 | |
| 	for(x = 0; x < self->size; x++) {
 | |
| 		self->vec[x] = 0.0f;
 | |
| 	}
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Vector.normalize() -----------------
 | |
| //normalize the vector data to a unit vector
 | |
| PyObject *Vector_Normalize(VectorObject * self)
 | |
| {
 | |
| 	int x;
 | |
| 	float norm = 0.0f;
 | |
| 
 | |
| 	for(x = 0; x < self->size; x++) {
 | |
| 		norm += self->vec[x] * self->vec[x];
 | |
| 	}
 | |
| 	norm = (float) sqrt(norm);
 | |
| 	for(x = 0; x < self->size; x++) {
 | |
| 		self->vec[x] /= norm;
 | |
| 	}
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Vector.resize2D() ------------------
 | |
| //resize the vector to x,y
 | |
| PyObject *Vector_Resize2D(VectorObject * self)
 | |
| {
 | |
| 	if(self->data.blend_data){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"vector.resize2d(): cannot resize wrapped data - only python vectors\n");
 | |
| 	}
 | |
| 
 | |
| 	self->data.py_data = 
 | |
| 		PyMem_Realloc(self->data.py_data, (sizeof(float) * 2));
 | |
| 	if(self->data.py_data == NULL) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | |
| 			"vector.resize2d(): problem allocating pointer space\n\n");
 | |
| 	}
 | |
| 	self->vec = self->data.py_data;  //force
 | |
| 	self->size = 2;
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Vector.resize3D() ------------------
 | |
| //resize the vector to x,y,z
 | |
| PyObject *Vector_Resize3D(VectorObject * self)
 | |
| {
 | |
| 	if(self->data.blend_data){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"vector.resize3d(): cannot resize wrapped data - only python vectors\n");
 | |
| 	}
 | |
| 
 | |
| 	self->data.py_data = 
 | |
| 		PyMem_Realloc(self->data.py_data, (sizeof(float) * 3));
 | |
| 	if(self->data.py_data == NULL) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | |
| 			"vector.resize3d(): problem allocating pointer space\n\n");
 | |
| 	}
 | |
| 	self->vec = self->data.py_data;  //force
 | |
| 	if(self->size == 2){
 | |
| 		self->data.py_data[2] = 0.0f;
 | |
| 	}
 | |
| 	self->size = 3;
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------Vector.resize4D() ------------------
 | |
| //resize the vector to x,y,z,w
 | |
| PyObject *Vector_Resize4D(VectorObject * self)
 | |
| {
 | |
| 	if(self->data.blend_data){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_TypeError,
 | |
| 			"vector.resize4d(): cannot resize wrapped data - only python vectors\n");
 | |
| 	}
 | |
| 
 | |
| 	self->data.py_data = 
 | |
| 		PyMem_Realloc(self->data.py_data, (sizeof(float) * 4));
 | |
| 	if(self->data.py_data == NULL) {
 | |
| 		return EXPP_ReturnPyObjError(PyExc_MemoryError,
 | |
| 			"vector.resize4d(): problem allocating pointer space\n\n");
 | |
| 	}
 | |
| 	self->vec = self->data.py_data;  //force
 | |
| 	if(self->size == 2){
 | |
| 		self->data.py_data[2] = 0.0f;
 | |
| 		self->data.py_data[3] = 0.0f;
 | |
| 	}else if(self->size == 3){
 | |
| 		self->data.py_data[3] = 0.0f;
 | |
| 	}
 | |
| 	self->size = 4;
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //----------------------------dealloc()(internal) ----------------
 | |
| //free the py_object
 | |
| static void Vector_dealloc(VectorObject * self)
 | |
| {
 | |
| 	//only free py_data
 | |
| 	if(self->data.py_data){
 | |
| 		PyMem_Free(self->data.py_data);
 | |
| 	}
 | |
| 	PyObject_DEL(self);
 | |
| }
 | |
| //----------------------------getattr()(internal) ----------------
 | |
| //object.attribute access (get)
 | |
| static PyObject *Vector_getattr(VectorObject * self, char *name)
 | |
| {
 | |
| 	int x;
 | |
| 	double dot = 0.0f;
 | |
| 
 | |
| 	if(STREQ(name,"x")){
 | |
| 		return PyFloat_FromDouble(self->vec[0]);
 | |
| 	}else if(STREQ(name, "y")){
 | |
| 		return PyFloat_FromDouble(self->vec[1]);
 | |
| 	}else if(STREQ(name, "z")){
 | |
| 		if(self->size > 2){
 | |
| 			return PyFloat_FromDouble(self->vec[2]);
 | |
| 		}else{
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"vector.z: illegal attribute access\n");
 | |
| 		}
 | |
| 	}else if(STREQ(name, "w")){
 | |
| 		if(self->size > 3){
 | |
| 			return PyFloat_FromDouble(self->vec[3]);
 | |
| 		}else{
 | |
| 			return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"vector.w: illegal attribute access\n");
 | |
| 		}
 | |
| 	}else if(STREQ2(name, "length", "magnitude")) {
 | |
| 		for(x = 0; x < self->size; x++){
 | |
| 			dot += (self->vec[x] * self->vec[x]);
 | |
| 		}
 | |
| 		return PyFloat_FromDouble(sqrt(dot));
 | |
| 	}
 | |
| 	if(STREQ(name, "wrapped")){
 | |
| 		if(self->wrapped == Py_WRAP)
 | |
| 			return EXPP_incr_ret((PyObject *)Py_True);
 | |
| 		else 
 | |
| 			return EXPP_incr_ret((PyObject *)Py_False);
 | |
| 	}
 | |
| 	return Py_FindMethod(Vector_methods, (PyObject *) self, name);
 | |
| }
 | |
| //----------------------------setattr()(internal) ----------------
 | |
| //object.attribute access (set)
 | |
| static int Vector_setattr(VectorObject * self, char *name, PyObject * v)
 | |
| {
 | |
| 	PyObject *f = NULL;
 | |
| 
 | |
| 	f = PyNumber_Float(v);
 | |
| 	if(f == NULL) { // parsed item not a number
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 			"vector.attribute = x: argument not a number\n");
 | |
| 	}
 | |
| 
 | |
| 	if(STREQ(name,"x")){
 | |
| 		self->vec[0] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	}else if(STREQ(name, "y")){
 | |
| 		self->vec[1] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	}else if(STREQ(name, "z")){
 | |
| 		if(self->size > 2){
 | |
| 			self->vec[2] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 		}else{
 | |
| 			Py_DECREF(f);
 | |
| 			return EXPP_ReturnIntError(PyExc_AttributeError,
 | |
| 				"vector.z = x: illegal attribute access\n");
 | |
| 		}
 | |
| 	}else if(STREQ(name, "w")){
 | |
| 		if(self->size > 3){
 | |
| 			self->vec[3] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 		}else{
 | |
| 			Py_DECREF(f);
 | |
| 			return EXPP_ReturnIntError(PyExc_AttributeError,
 | |
| 				"vector.w = x: illegal attribute access\n");
 | |
| 		}
 | |
| 	}else{
 | |
| 		Py_DECREF(f);
 | |
| 		return EXPP_ReturnIntError(PyExc_AttributeError,
 | |
| 				"vector.attribute = x: unknown attribute\n");
 | |
| 	}
 | |
| 
 | |
| 	Py_DECREF(f);
 | |
| 	return 0;
 | |
| }
 | |
| //----------------------------print object (internal)-------------
 | |
| //print the object to screen
 | |
| static PyObject *Vector_repr(VectorObject * self)
 | |
| {
 | |
| 	int i;
 | |
| 	char buffer[48], str[1024];
 | |
| 
 | |
| 	BLI_strncpy(str,"[",1024);
 | |
| 	for(i = 0; i < self->size; i++){
 | |
| 		if(i < (self->size - 1)){
 | |
| 			sprintf(buffer, "%.6f, ", self->vec[i]);
 | |
| 			strcat(str,buffer);
 | |
| 		}else{
 | |
| 			sprintf(buffer, "%.6f", self->vec[i]);
 | |
| 			strcat(str,buffer);
 | |
| 		}
 | |
| 	}
 | |
| 	strcat(str, "](vector)");
 | |
| 
 | |
| 	return EXPP_incr_ret(PyString_FromString(str));
 | |
| }
 | |
| //---------------------SEQUENCE PROTOCOLS------------------------
 | |
| //----------------------------len(object)------------------------
 | |
| //sequence length
 | |
| static int Vector_len(VectorObject * self)
 | |
| {
 | |
| 	return self->size;
 | |
| }
 | |
| //----------------------------object[]---------------------------
 | |
| //sequence accessor (get)
 | |
| static PyObject *Vector_item(VectorObject * self, int i)
 | |
| {
 | |
| 	if(i < 0 || i >= self->size)
 | |
| 		return EXPP_ReturnPyObjError(PyExc_IndexError,
 | |
| 		"vector[attribute]: array index out of range\n");
 | |
| 
 | |
| 	return Py_BuildValue("f", self->vec[i]);
 | |
| 
 | |
| }
 | |
| //----------------------------object[]-------------------------
 | |
| //sequence accessor (set)
 | |
| static int Vector_ass_item(VectorObject * self, int i, PyObject * ob)
 | |
| {
 | |
| 	PyObject *f = NULL;
 | |
| 
 | |
| 	f = PyNumber_Float(ob);
 | |
| 	if(f == NULL) { // parsed item not a number
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 			"vector[attribute] = x: argument not a number\n");
 | |
| 	}
 | |
| 
 | |
| 	if(i < 0 || i >= self->size){
 | |
| 		Py_DECREF(f);
 | |
| 		return EXPP_ReturnIntError(PyExc_IndexError,
 | |
| 			"vector[attribute] = x: array assignment index out of range\n");
 | |
| 	}
 | |
| 	self->vec[i] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 	Py_DECREF(f);
 | |
| 	return 0;
 | |
| }
 | |
| //----------------------------object[z:y]------------------------
 | |
| //sequence slice (get)
 | |
| static PyObject *Vector_slice(VectorObject * self, int begin, int end)
 | |
| {
 | |
| 	PyObject *list = NULL;
 | |
| 	int count;
 | |
| 
 | |
| 	CLAMP(begin, 0, self->size);
 | |
| 	CLAMP(end, 0, self->size);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	list = PyList_New(end - begin);
 | |
| 	for(count = begin; count < end; count++) {
 | |
| 		PyList_SetItem(list, count - begin,
 | |
| 				PyFloat_FromDouble(self->vec[count]));
 | |
| 	}
 | |
| 
 | |
| 	return list;
 | |
| }
 | |
| //----------------------------object[z:y]------------------------
 | |
| //sequence slice (set)
 | |
| static int Vector_ass_slice(VectorObject * self, int begin, int end,
 | |
| 			     PyObject * seq)
 | |
| {
 | |
| 	int i, y, size = 0;
 | |
| 	float vec[4];
 | |
| 
 | |
| 	CLAMP(begin, 0, self->size);
 | |
| 	CLAMP(end, 0, self->size);
 | |
| 	begin = MIN2(begin,end);
 | |
| 
 | |
| 	size = PySequence_Length(seq);
 | |
| 	if(size != (end - begin)){
 | |
| 		return EXPP_ReturnIntError(PyExc_TypeError,
 | |
| 			"vector[begin:end] = []: size mismatch in slice assignment\n");
 | |
| 	}
 | |
| 
 | |
| 	for (i = 0; i < size; i++) {
 | |
| 		PyObject *v, *f;
 | |
| 
 | |
| 		v = PySequence_GetItem(seq, i);
 | |
| 		if (v == NULL) { // Failed to read sequence
 | |
| 			return EXPP_ReturnIntError(PyExc_RuntimeError, 
 | |
| 				"vector[begin:end] = []: unable to read sequence\n");
 | |
| 		}
 | |
| 		f = PyNumber_Float(v);
 | |
| 		if(f == NULL) { // parsed item not a number
 | |
| 			Py_DECREF(v);
 | |
| 			return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 				"vector[begin:end] = []: sequence argument not a number\n");
 | |
| 		}
 | |
| 		vec[i] = (float)PyFloat_AS_DOUBLE(f);
 | |
| 		EXPP_decr2(f,v);
 | |
| 	}
 | |
| 	//parsed well - now set in vector
 | |
| 	for(y = 0; y < size; y++){
 | |
| 		self->vec[begin + y] = vec[y];
 | |
| 	}
 | |
| 	return 0;
 | |
| }
 | |
| //------------------------NUMERIC PROTOCOLS----------------------
 | |
| //------------------------obj + obj------------------------------
 | |
| //addition
 | |
| static PyObject *Vector_add(PyObject * v1, PyObject * v2)
 | |
| {
 | |
| 	int x, size;
 | |
| 	float vec[4];
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	PointObject *pt = NULL;
 | |
| 
 | |
| 	EXPP_incr2(v1, v2);
 | |
| 	vec1 = (VectorObject*)v1;
 | |
| 	vec2 = (VectorObject*)v2;
 | |
| 
 | |
| 	if(!vec1->coerced_object){
 | |
| 		if(vec2->coerced_object){
 | |
| 			if(PointObject_Check(vec2->coerced_object)){  //VECTOR + POINT
 | |
| 				//Point translation
 | |
| 				pt = (PointObject*)EXPP_incr_ret(vec2->coerced_object);
 | |
| 				size = vec1->size;
 | |
| 				if(pt->size == size){
 | |
| 					for(x = 0; x < size; x++){
 | |
| 						vec[x] = vec1->vec[x] + pt->coord[x];
 | |
| 					}	
 | |
| 				}else{
 | |
| 					EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)pt);
 | |
| 					return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 						"Vector addition: arguments are the wrong size....\n");
 | |
| 				}
 | |
| 				EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)pt);
 | |
| 				return (PyObject *) newPointObject(vec, size, Py_NEW);
 | |
| 			}
 | |
| 		}else{ //VECTOR + VECTOR
 | |
| 			if(vec1->size != vec2->size){
 | |
| 				EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 				return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 				"Vector addition: vectors must have the same dimensions for this operation\n");
 | |
| 			}
 | |
| 			size = vec1->size;
 | |
| 			for(x = 0; x < size; x++) {
 | |
| 				vec[x] = vec1->vec[x] +	vec2->vec[x];
 | |
| 			}
 | |
| 			EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 			return (PyObject *) newVectorObject(vec, size, Py_NEW);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 		"Vector addition: arguments not valid for this operation....\n");
 | |
| }
 | |
| //------------------------obj - obj------------------------------
 | |
| //subtraction
 | |
| static PyObject *Vector_sub(PyObject * v1, PyObject * v2)
 | |
| {
 | |
| 	int x, size;
 | |
| 	float vec[4];
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 
 | |
| 	EXPP_incr2(v1, v2);
 | |
| 	vec1 = (VectorObject*)v1;
 | |
| 	vec2 = (VectorObject*)v2;
 | |
| 
 | |
| 	if(vec1->coerced_object || vec2->coerced_object){
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 			"Vector subtraction: arguments not valid for this operation....\n");
 | |
| 	}
 | |
| 	if(vec1->size != vec2->size){
 | |
| 		EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 		return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 		"Vector subtraction: vectors must have the same dimensions for this operation\n");
 | |
| 	}
 | |
| 
 | |
| 	size = vec1->size;
 | |
| 	for(x = 0; x < size; x++) {
 | |
| 		vec[x] = vec1->vec[x] -	vec2->vec[x];
 | |
| 	}
 | |
| 
 | |
| 	EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 	return (PyObject *) newVectorObject(vec, size, Py_NEW);
 | |
| }
 | |
| //------------------------obj * obj------------------------------
 | |
| //mulplication
 | |
| static PyObject *Vector_mul(PyObject * v1, PyObject * v2)
 | |
| {
 | |
| 	int x, size;
 | |
| 	float vec[4], scalar;
 | |
| 	double dot = 0.0f;
 | |
| 	VectorObject *vec1 = NULL, *vec2 = NULL;
 | |
| 	PyObject *f = NULL, *retObj = NULL;
 | |
| 	MatrixObject *mat = NULL;
 | |
| 	QuaternionObject *quat = NULL;
 | |
| 
 | |
| 	EXPP_incr2(v1, v2);
 | |
| 	vec1 = (VectorObject*)v1;
 | |
| 	vec2 = (VectorObject*)v2;
 | |
| 
 | |
| 	if(vec1->coerced_object){
 | |
| 		if (PyFloat_Check(vec1->coerced_object) || 
 | |
| 			PyInt_Check(vec1->coerced_object)){	// FLOAT/INT * VECTOR
 | |
| 			f = PyNumber_Float(vec1->coerced_object);
 | |
| 			if(f == NULL) { // parsed item not a number
 | |
| 				EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 				return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 					"Vector multiplication: arguments not acceptable for this operation\n");
 | |
| 			}
 | |
| 			scalar = (float)PyFloat_AS_DOUBLE(f);
 | |
| 			size = vec2->size;
 | |
| 			for(x = 0; x < size; x++) {
 | |
| 				vec[x] = vec2->vec[x] *	scalar;
 | |
| 			}
 | |
| 			EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 			return (PyObject *) newVectorObject(vec, size, Py_NEW);
 | |
| 		}
 | |
| 	}else{
 | |
| 		if(vec2->coerced_object){
 | |
| 			if(MatrixObject_Check(vec2->coerced_object)){ //VECTOR * MATRIX
 | |
| 				mat = (MatrixObject*)EXPP_incr_ret(vec2->coerced_object);
 | |
| 				retObj = row_vector_multiplication(vec1, mat);
 | |
| 				EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)mat);
 | |
| 				return retObj;
 | |
| 			}else if (PyFloat_Check(vec2->coerced_object) || 
 | |
| 				PyInt_Check(vec2->coerced_object)){	// VECTOR * FLOAT/INT
 | |
| 				f = PyNumber_Float(vec2->coerced_object);
 | |
| 				if(f == NULL) { // parsed item not a number
 | |
| 					EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 						"Vector multiplication: arguments not acceptable for this operation\n");
 | |
| 				}
 | |
| 				scalar = (float)PyFloat_AS_DOUBLE(f);
 | |
| 				size = vec1->size;
 | |
| 				for(x = 0; x < size; x++) {
 | |
| 					vec[x] = vec1->vec[x] *	scalar;
 | |
| 				}
 | |
| 				EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 				return (PyObject *) newVectorObject(vec, size, Py_NEW);
 | |
| 			}else if(QuaternionObject_Check(vec2->coerced_object)){  //VECTOR * QUATERNION
 | |
| 				quat = (QuaternionObject*)EXPP_incr_ret(vec2->coerced_object);
 | |
| 				if(vec1->size != 3){
 | |
| 					EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 					return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 						"Vector multiplication: only 3D vector rotations (with quats) currently supported\n");
 | |
| 				}
 | |
| 				retObj = quat_rotation((PyObject*)vec1, (PyObject*)quat);
 | |
| 				EXPP_decr3((PyObject*)vec1, (PyObject*)vec2, (PyObject*)quat);
 | |
| 				return retObj;
 | |
| 			}
 | |
| 		}else{  //VECTOR * VECTOR
 | |
| 			if(vec1->size != vec2->size){
 | |
| 				EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 				return EXPP_ReturnPyObjError(PyExc_AttributeError,
 | |
| 					"Vector multiplication: vectors must have the same dimensions for this operation\n");
 | |
| 			}
 | |
| 			size = vec1->size;
 | |
| 			//dot product
 | |
| 			for(x = 0; x < size; x++) {
 | |
| 				dot += vec1->vec[x] * vec2->vec[x];
 | |
| 			}
 | |
| 			EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 			return PyFloat_FromDouble(dot);
 | |
| 		}
 | |
| 	}
 | |
| 
 | |
| 	EXPP_decr2((PyObject*)vec1, (PyObject*)vec2);
 | |
| 	return EXPP_ReturnPyObjError(PyExc_TypeError, 
 | |
| 		"Vector multiplication: arguments not acceptable for this operation\n");
 | |
| }
 | |
| //-------------------------- -obj -------------------------------
 | |
| //returns the negative of this object
 | |
| static PyObject *Vector_neg(VectorObject *self)
 | |
| {
 | |
| 	int x;
 | |
| 	for(x = 0; x < self->size; x++){
 | |
| 		self->vec[x] = -self->vec[x];
 | |
| 	}
 | |
| 
 | |
| 	return EXPP_incr_ret((PyObject *)self);
 | |
| }
 | |
| //------------------------coerce(obj, obj)-----------------------
 | |
| //coercion of unknown types to type VectorObject for numeric protocols
 | |
| /*Coercion() is called whenever a math operation has 2 operands that
 | |
|  it doesn't understand how to evaluate. 2+Matrix for example. We want to 
 | |
|  evaluate some of these operations like: (vector * 2), however, for math
 | |
|  to proceed, the unknown operand must be cast to a type that python math will
 | |
|  understand. (e.g. in the case above case, 2 must be cast to a vector and 
 | |
|  then call vector.multiply(vector, scalar_cast_as_vector)*/
 | |
| static int Vector_coerce(PyObject ** v1, PyObject ** v2)
 | |
| {
 | |
| 	PyObject *coerced = NULL;
 | |
| 
 | |
| 	if(!VectorObject_Check(*v2)) {
 | |
| 		if(MatrixObject_Check(*v2) || PyFloat_Check(*v2) || PyInt_Check(*v2) || 
 | |
| 			QuaternionObject_Check(*v2) || PointObject_Check(*v2)) {
 | |
| 			coerced = EXPP_incr_ret(*v2);
 | |
| 			*v2 = newVectorObject(NULL,3,Py_NEW);
 | |
| 			((VectorObject*)*v2)->coerced_object = coerced;
 | |
| 		}else{
 | |
| 			return EXPP_ReturnIntError(PyExc_TypeError, 
 | |
| 				"vector.coerce(): unknown operand - can't coerce for numeric protocols\n");
 | |
| 		}
 | |
| 	}
 | |
| 	EXPP_incr2(*v1, *v2);
 | |
| 	return 0;
 | |
| }
 | |
| //-----------------PROTCOL DECLARATIONS--------------------------
 | |
| static PySequenceMethods Vector_SeqMethods = {
 | |
| 	(inquiry) Vector_len,						/* sq_length */
 | |
| 	(binaryfunc) 0,								/* sq_concat */
 | |
| 	(intargfunc) 0,								/* sq_repeat */
 | |
| 	(intargfunc) Vector_item,					/* sq_item */
 | |
| 	(intintargfunc) Vector_slice,				/* sq_slice */
 | |
| 	(intobjargproc) Vector_ass_item,			/* sq_ass_item */
 | |
| 	(intintobjargproc) Vector_ass_slice,		/* sq_ass_slice */
 | |
| };
 | |
| static PyNumberMethods Vector_NumMethods = {
 | |
| 	(binaryfunc) Vector_add,					/* __add__ */
 | |
| 	(binaryfunc) Vector_sub,					/* __sub__ */
 | |
| 	(binaryfunc) Vector_mul,					/* __mul__ */
 | |
| 	(binaryfunc) 0,								/* __div__ */
 | |
| 	(binaryfunc) 0,								/* __mod__ */
 | |
| 	(binaryfunc) 0,								/* __divmod__ */
 | |
| 	(ternaryfunc) 0,							/* __pow__ */
 | |
| 	(unaryfunc) Vector_neg,						/* __neg__ */
 | |
| 	(unaryfunc) 0,								/* __pos__ */
 | |
| 	(unaryfunc) 0,								/* __abs__ */
 | |
| 	(inquiry) 0,								/* __nonzero__ */
 | |
| 	(unaryfunc) 0,								/* __invert__ */
 | |
| 	(binaryfunc) 0,								/* __lshift__ */
 | |
| 	(binaryfunc) 0,								/* __rshift__ */
 | |
| 	(binaryfunc) 0,								/* __and__ */
 | |
| 	(binaryfunc) 0,								/* __xor__ */
 | |
| 	(binaryfunc) 0,								/* __or__ */
 | |
| 	(coercion)  Vector_coerce,					/* __coerce__ */
 | |
| 	(unaryfunc) 0,								/* __int__ */
 | |
| 	(unaryfunc) 0,								/* __long__ */
 | |
| 	(unaryfunc) 0,								/* __float__ */
 | |
| 	(unaryfunc) 0,								/* __oct__ */
 | |
| 	(unaryfunc) 0,								/* __hex__ */
 | |
| 
 | |
| };
 | |
| //------------------PY_OBECT DEFINITION--------------------------
 | |
| PyTypeObject vector_Type = {
 | |
| 	PyObject_HEAD_INIT(NULL) 
 | |
| 	0,											/*ob_size */
 | |
| 	"vector",									/*tp_name */
 | |
| 	sizeof(VectorObject),						/*tp_basicsize */
 | |
| 	0,											/*tp_itemsize */
 | |
| 	(destructor) Vector_dealloc,				/*tp_dealloc */
 | |
| 	(printfunc) 0,								/*tp_print */
 | |
| 	(getattrfunc) Vector_getattr,				/*tp_getattr */
 | |
| 	(setattrfunc) Vector_setattr,				/*tp_setattr */
 | |
| 	0,											/*tp_compare */
 | |
| 	(reprfunc) Vector_repr,						/*tp_repr */
 | |
| 	&Vector_NumMethods,							/*tp_as_number */
 | |
| 	&Vector_SeqMethods,							/*tp_as_sequence */
 | |
| };
 | |
| //------------------------newVectorObject (internal)-------------
 | |
| //creates a new vector object
 | |
| /*pass Py_WRAP - if vector is a WRAPPER for data allocated by BLENDER
 | |
|  (i.e. it was allocated elsewhere by MEM_mallocN())
 | |
|   pass Py_NEW - if vector is not a WRAPPER and managed by PYTHON
 | |
|  (i.e. it must be created here with PyMEM_malloc())*/
 | |
| PyObject *newVectorObject(float *vec, int size, int type)
 | |
| {
 | |
| 	VectorObject *self;
 | |
| 	int x;
 | |
| 
 | |
| 	vector_Type.ob_type = &PyType_Type;
 | |
| 	self = PyObject_NEW(VectorObject, &vector_Type);
 | |
| 	self->data.blend_data = NULL;
 | |
| 	self->data.py_data = NULL;
 | |
| 	if(size > 4 || size < 2)
 | |
| 		return NULL;
 | |
| 	self->size = size;
 | |
| 	self->coerced_object = NULL;
 | |
| 
 | |
| 	if(type == Py_WRAP){
 | |
| 		self->data.blend_data = vec;
 | |
| 		self->vec = self->data.blend_data;
 | |
| 		self->wrapped = Py_WRAP;
 | |
| 	}else if (type == Py_NEW){
 | |
| 		self->data.py_data = PyMem_Malloc(size * sizeof(float));
 | |
| 		self->vec = self->data.py_data;
 | |
| 		if(!vec) { //new empty
 | |
| 			for(x = 0; x < size; x++){
 | |
| 				self->vec[x] = 0.0f;
 | |
| 			}
 | |
| 			if(size == 4)  /* do the homogenous thing */
 | |
| 				self->vec[3] = 1.0f;
 | |
| 		}else{
 | |
| 			for(x = 0; x < size; x++){
 | |
| 				self->vec[x] = vec[x];
 | |
| 			}
 | |
| 		}
 | |
| 		self->wrapped = Py_NEW;
 | |
| 	}else{ //bad type
 | |
| 		return NULL;
 | |
| 	}
 | |
| 	return (PyObject *) EXPP_incr_ret((PyObject *)self);
 | |
| }
 | |
| 
 | |
| //#############################DEPRECATED################################
 | |
| //#######################################################################
 | |
| //----------------------------Vector.negate() --------------------
 | |
| //set the vector to it's negative -x, -y, -z
 | |
| PyObject *Vector_Negate(VectorObject * self)
 | |
| {
 | |
| 	int x;
 | |
| 	for(x = 0; x < self->size; x++) {
 | |
| 		self->vec[x] = -(self->vec[x]);
 | |
| 	}
 | |
| 	printf("Vector.negate(): Deprecated: use -vector instead\n");
 | |
| 	return EXPP_incr_ret((PyObject*)self);
 | |
| }
 | |
| //#######################################################################
 | |
| //#############################DEPRECATED################################
 | |
| 
 |