This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/compositor/operations/COM_CalculateMeanOperation.cc
Manuel Castilla e33814ef6b Compositor: Full frame Levels node
Adds full frame implementation to this node operations.
No functional changes.

Reviewed By: jbakker

Differential Revision: https://developer.blender.org/D11749
2021-07-26 20:13:55 +02:00

222 lines
6.3 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright 2011, Blender Foundation.
*/
#include "COM_CalculateMeanOperation.h"
#include "BLI_math.h"
#include "BLI_utildefines.h"
#include "COM_ExecutionSystem.h"
#include "IMB_colormanagement.h"
namespace blender::compositor {
CalculateMeanOperation::CalculateMeanOperation()
{
this->addInputSocket(DataType::Color, ResizeMode::None);
this->addOutputSocket(DataType::Value);
this->m_imageReader = nullptr;
this->m_iscalculated = false;
this->m_setting = 1;
this->flags.complex = true;
}
void CalculateMeanOperation::initExecution()
{
this->m_imageReader = this->getInputSocketReader(0);
this->m_iscalculated = false;
NodeOperation::initMutex();
}
void CalculateMeanOperation::executePixel(float output[4], int /*x*/, int /*y*/, void * /*data*/)
{
output[0] = this->m_result;
}
void CalculateMeanOperation::deinitExecution()
{
this->m_imageReader = nullptr;
NodeOperation::deinitMutex();
}
bool CalculateMeanOperation::determineDependingAreaOfInterest(rcti * /*input*/,
ReadBufferOperation *readOperation,
rcti *output)
{
rcti imageInput;
if (this->m_iscalculated) {
return false;
}
NodeOperation *operation = getInputOperation(0);
imageInput.xmax = operation->getWidth();
imageInput.xmin = 0;
imageInput.ymax = operation->getHeight();
imageInput.ymin = 0;
if (operation->determineDependingAreaOfInterest(&imageInput, readOperation, output)) {
return true;
}
return false;
}
void *CalculateMeanOperation::initializeTileData(rcti *rect)
{
lockMutex();
if (!this->m_iscalculated) {
MemoryBuffer *tile = (MemoryBuffer *)this->m_imageReader->initializeTileData(rect);
calculateMean(tile);
this->m_iscalculated = true;
}
unlockMutex();
return nullptr;
}
void CalculateMeanOperation::calculateMean(MemoryBuffer *tile)
{
this->m_result = 0.0f;
float *buffer = tile->getBuffer();
int size = tile->getWidth() * tile->getHeight();
int pixels = 0;
float sum = 0.0f;
for (int i = 0, offset = 0; i < size; i++, offset += 4) {
if (buffer[offset + 3] > 0) {
pixels++;
switch (this->m_setting) {
case 1: {
sum += IMB_colormanagement_get_luminance(&buffer[offset]);
break;
}
case 2: {
sum += buffer[offset];
break;
}
case 3: {
sum += buffer[offset + 1];
break;
}
case 4: {
sum += buffer[offset + 2];
break;
}
case 5: {
float yuv[3];
rgb_to_yuv(buffer[offset],
buffer[offset + 1],
buffer[offset + 2],
&yuv[0],
&yuv[1],
&yuv[2],
BLI_YUV_ITU_BT709);
sum += yuv[0];
break;
}
}
}
}
this->m_result = sum / pixels;
}
void CalculateMeanOperation::setSetting(int setting)
{
this->m_setting = setting;
switch (setting) {
case 1: {
setting_func_ = IMB_colormanagement_get_luminance;
break;
}
case 2: {
setting_func_ = [](const float *elem) { return elem[0]; };
break;
}
case 3: {
setting_func_ = [](const float *elem) { return elem[1]; };
break;
}
case 4: {
setting_func_ = [](const float *elem) { return elem[2]; };
break;
}
case 5: {
setting_func_ = [](const float *elem) {
float yuv[3];
rgb_to_yuv(elem[0], elem[1], elem[2], &yuv[0], &yuv[1], &yuv[2], BLI_YUV_ITU_BT709);
return yuv[0];
};
break;
}
}
}
void CalculateMeanOperation::get_area_of_interest(int input_idx,
const rcti &UNUSED(output_area),
rcti &r_input_area)
{
BLI_assert(input_idx == 0);
NodeOperation *operation = getInputOperation(input_idx);
r_input_area.xmin = 0;
r_input_area.ymin = 0;
r_input_area.xmax = operation->getWidth();
r_input_area.ymax = operation->getHeight();
}
void CalculateMeanOperation::update_memory_buffer_started(MemoryBuffer *UNUSED(output),
const rcti &UNUSED(area),
Span<MemoryBuffer *> inputs)
{
if (!this->m_iscalculated) {
MemoryBuffer *input = inputs[0];
m_result = calc_mean(input);
this->m_iscalculated = true;
}
}
void CalculateMeanOperation::update_memory_buffer_partial(MemoryBuffer *output,
const rcti &area,
Span<MemoryBuffer *> UNUSED(inputs))
{
output->fill(area, &m_result);
}
float CalculateMeanOperation::calc_mean(const MemoryBuffer *input)
{
PixelsSum total = {0};
exec_system_->execute_work<PixelsSum>(
input->get_rect(),
[=](const rcti &split) { return calc_area_sum(input, split); },
total,
[](PixelsSum &join, const PixelsSum &chunk) {
join.sum += chunk.sum;
join.num_pixels += chunk.num_pixels;
});
return total.num_pixels == 0 ? 0.0f : total.sum / total.num_pixels;
}
using PixelsSum = CalculateMeanOperation::PixelsSum;
PixelsSum CalculateMeanOperation::calc_area_sum(const MemoryBuffer *input, const rcti &area)
{
PixelsSum result = {0};
for (const float *elem : input->get_buffer_area(area)) {
if (elem[3] <= 0.0f) {
continue;
}
result.sum += setting_func_(elem);
result.num_pixels++;
}
return result;
}
} // namespace blender::compositor