This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenlib/intern/math_matrix.c

1732 lines
40 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* The Original Code is: some of this file.
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/blenlib/intern/math_matrix.c
* \ingroup bli
*/
#include <assert.h>
#include "BLI_math.h"
/********************************* Init **************************************/
void zero_m3(float m[3][3])
{
memset(m, 0, 3*3*sizeof(float));
}
void zero_m4(float m[4][4])
{
memset(m, 0, 4*4*sizeof(float));
}
void unit_m3(float m[][3])
{
m[0][0]= m[1][1]= m[2][2]= 1.0;
m[0][1]= m[0][2]= 0.0;
m[1][0]= m[1][2]= 0.0;
m[2][0]= m[2][1]= 0.0;
}
void unit_m4(float m[][4])
{
m[0][0]= m[1][1]= m[2][2]= m[3][3]= 1.0;
m[0][1]= m[0][2]= m[0][3]= 0.0;
m[1][0]= m[1][2]= m[1][3]= 0.0;
m[2][0]= m[2][1]= m[2][3]= 0.0;
m[3][0]= m[3][1]= m[3][2]= 0.0;
}
void copy_m3_m3(float m1[][3], float m2[][3])
{
/* destination comes first: */
memcpy(&m1[0], &m2[0], 9*sizeof(float));
}
void copy_m4_m4(float m1[][4], float m2[][4])
{
memcpy(m1, m2, 4*4*sizeof(float));
}
void copy_m3_m4(float m1[][3], float m2[][4])
{
m1[0][0]= m2[0][0];
m1[0][1]= m2[0][1];
m1[0][2]= m2[0][2];
m1[1][0]= m2[1][0];
m1[1][1]= m2[1][1];
m1[1][2]= m2[1][2];
m1[2][0]= m2[2][0];
m1[2][1]= m2[2][1];
m1[2][2]= m2[2][2];
}
void copy_m4_m3(float m1[][4], float m2[][3]) /* no clear */
{
m1[0][0]= m2[0][0];
m1[0][1]= m2[0][1];
m1[0][2]= m2[0][2];
m1[1][0]= m2[1][0];
m1[1][1]= m2[1][1];
m1[1][2]= m2[1][2];
m1[2][0]= m2[2][0];
m1[2][1]= m2[2][1];
m1[2][2]= m2[2][2];
/* Reevan's Bugfix */
m1[0][3]=0.0F;
m1[1][3]=0.0F;
m1[2][3]=0.0F;
m1[3][0]=0.0F;
m1[3][1]=0.0F;
m1[3][2]=0.0F;
m1[3][3]=1.0F;
}
void swap_m3m3(float m1[][3], float m2[][3])
{
float t;
int i, j;
for(i = 0; i < 3; i++) {
for (j = 0; j < 3; j++) {
t = m1[i][j];
m1[i][j] = m2[i][j];
m2[i][j] = t;
}
}
}
void swap_m4m4(float m1[][4], float m2[][4])
{
float t;
int i, j;
for(i = 0; i < 4; i++) {
for (j = 0; j < 4; j++) {
t = m1[i][j];
m1[i][j] = m2[i][j];
m2[i][j] = t;
}
}
}
/******************************** Arithmetic *********************************/
void mul_m4_m4m4(float m1[][4], float m2_[][4], float m3_[][4])
{
float m2[4][4], m3[4][4];
/* copy so it works when m1 is the same pointer as m2 or m3 */
copy_m4_m4(m2, m2_);
copy_m4_m4(m3, m3_);
/* matrix product: m1[j][k] = m2[j][i].m3[i][k] */
m1[0][0] = m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0] + m2[0][3]*m3[3][0];
m1[0][1] = m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1] + m2[0][3]*m3[3][1];
m1[0][2] = m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2] + m2[0][3]*m3[3][2];
m1[0][3] = m2[0][0]*m3[0][3] + m2[0][1]*m3[1][3] + m2[0][2]*m3[2][3] + m2[0][3]*m3[3][3];
m1[1][0] = m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0] + m2[1][3]*m3[3][0];
m1[1][1] = m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1] + m2[1][3]*m3[3][1];
m1[1][2] = m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2] + m2[1][3]*m3[3][2];
m1[1][3] = m2[1][0]*m3[0][3] + m2[1][1]*m3[1][3] + m2[1][2]*m3[2][3] + m2[1][3]*m3[3][3];
m1[2][0] = m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0] + m2[2][3]*m3[3][0];
m1[2][1] = m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1] + m2[2][3]*m3[3][1];
m1[2][2] = m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2] + m2[2][3]*m3[3][2];
m1[2][3] = m2[2][0]*m3[0][3] + m2[2][1]*m3[1][3] + m2[2][2]*m3[2][3] + m2[2][3]*m3[3][3];
m1[3][0] = m2[3][0]*m3[0][0] + m2[3][1]*m3[1][0] + m2[3][2]*m3[2][0] + m2[3][3]*m3[3][0];
m1[3][1] = m2[3][0]*m3[0][1] + m2[3][1]*m3[1][1] + m2[3][2]*m3[2][1] + m2[3][3]*m3[3][1];
m1[3][2] = m2[3][0]*m3[0][2] + m2[3][1]*m3[1][2] + m2[3][2]*m3[2][2] + m2[3][3]*m3[3][2];
m1[3][3] = m2[3][0]*m3[0][3] + m2[3][1]*m3[1][3] + m2[3][2]*m3[2][3] + m2[3][3]*m3[3][3];
}
void mul_m3_m3m3(float m1[][3], float m3_[][3], float m2_[][3])
{
float m2[3][3], m3[3][3];
/* copy so it works when m1 is the same pointer as m2 or m3 */
copy_m3_m3(m2, m2_);
copy_m3_m3(m3, m3_);
/* m1[i][j] = m2[i][k]*m3[k][j], args are flipped! */
m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
}
void mul_m4_m4m3(float (*m1)[4], float (*m3)[4], float (*m2)[3])
{
m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
}
/* m1 = m2 * m3, ignore the elements on the 4th row/column of m3*/
void mul_m3_m3m4(float m1[][3], float m2[][3], float m3[][4])
{
/* m1[i][j] = m2[i][k] * m3[k][j] */
m1[0][0] = m2[0][0] * m3[0][0] + m2[0][1] * m3[1][0] +m2[0][2] * m3[2][0];
m1[0][1] = m2[0][0] * m3[0][1] + m2[0][1] * m3[1][1] +m2[0][2] * m3[2][1];
m1[0][2] = m2[0][0] * m3[0][2] + m2[0][1] * m3[1][2] +m2[0][2] * m3[2][2];
m1[1][0] = m2[1][0] * m3[0][0] + m2[1][1] * m3[1][0] +m2[1][2] * m3[2][0];
m1[1][1] = m2[1][0] * m3[0][1] + m2[1][1] * m3[1][1] +m2[1][2] * m3[2][1];
m1[1][2] = m2[1][0] * m3[0][2] + m2[1][1] * m3[1][2] +m2[1][2] * m3[2][2];
m1[2][0] = m2[2][0] * m3[0][0] + m2[2][1] * m3[1][0] +m2[2][2] * m3[2][0];
m1[2][1] = m2[2][0] * m3[0][1] + m2[2][1] * m3[1][1] +m2[2][2] * m3[2][1];
m1[2][2] = m2[2][0] * m3[0][2] + m2[2][1] * m3[1][2] +m2[2][2] * m3[2][2];
}
void mul_m4_m3m4(float (*m1)[4], float (*m3)[3], float (*m2)[4])
{
m1[0][0]= m2[0][0]*m3[0][0] + m2[0][1]*m3[1][0] + m2[0][2]*m3[2][0];
m1[0][1]= m2[0][0]*m3[0][1] + m2[0][1]*m3[1][1] + m2[0][2]*m3[2][1];
m1[0][2]= m2[0][0]*m3[0][2] + m2[0][1]*m3[1][2] + m2[0][2]*m3[2][2];
m1[1][0]= m2[1][0]*m3[0][0] + m2[1][1]*m3[1][0] + m2[1][2]*m3[2][0];
m1[1][1]= m2[1][0]*m3[0][1] + m2[1][1]*m3[1][1] + m2[1][2]*m3[2][1];
m1[1][2]= m2[1][0]*m3[0][2] + m2[1][1]*m3[1][2] + m2[1][2]*m3[2][2];
m1[2][0]= m2[2][0]*m3[0][0] + m2[2][1]*m3[1][0] + m2[2][2]*m3[2][0];
m1[2][1]= m2[2][0]*m3[0][1] + m2[2][1]*m3[1][1] + m2[2][2]*m3[2][1];
m1[2][2]= m2[2][0]*m3[0][2] + m2[2][1]*m3[1][2] + m2[2][2]*m3[2][2];
}
void mul_serie_m3(float answ[][3],
float m1[][3], float m2[][3], float m3[][3],
float m4[][3], float m5[][3], float m6[][3],
float m7[][3], float m8[][3])
{
float temp[3][3];
if(m1==NULL || m2==NULL) return;
mul_m3_m3m3(answ, m2, m1);
if(m3) {
mul_m3_m3m3(temp, m3, answ);
if(m4) {
mul_m3_m3m3(answ, m4, temp);
if(m5) {
mul_m3_m3m3(temp, m5, answ);
if(m6) {
mul_m3_m3m3(answ, m6, temp);
if(m7) {
mul_m3_m3m3(temp, m7, answ);
if(m8) {
mul_m3_m3m3(answ, m8, temp);
}
else copy_m3_m3(answ, temp);
}
}
else copy_m3_m3(answ, temp);
}
}
else copy_m3_m3(answ, temp);
}
}
void mul_serie_m4(float answ[][4], float m1[][4],
float m2[][4], float m3[][4], float m4[][4],
float m5[][4], float m6[][4], float m7[][4],
float m8[][4])
{
float temp[4][4];
if(m1==NULL || m2==NULL) return;
mul_m4_m4m4(answ, m2, m1);
if(m3) {
mul_m4_m4m4(temp, m3, answ);
if(m4) {
mul_m4_m4m4(answ, m4, temp);
if(m5) {
mul_m4_m4m4(temp, m5, answ);
if(m6) {
mul_m4_m4m4(answ, m6, temp);
if(m7) {
mul_m4_m4m4(temp, m7, answ);
if(m8) {
mul_m4_m4m4(answ, m8, temp);
}
else copy_m4_m4(answ, temp);
}
}
else copy_m4_m4(answ, temp);
}
}
else copy_m4_m4(answ, temp);
}
}
void mul_m4_v3(float mat[][4], float vec[3])
{
float x,y;
x=vec[0];
y=vec[1];
vec[0]=x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
vec[1]=x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
vec[2]=x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
}
void mul_v3_m4v3(float in[3], float mat[][4], const float vec[3])
{
float x,y;
x=vec[0];
y=vec[1];
in[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2] + mat[3][0];
in[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2] + mat[3][1];
in[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2] + mat[3][2];
}
/* same as mul_m4_v3() but doesnt apply translation component */
void mul_mat3_m4_v3(float mat[][4], float vec[3])
{
float x,y;
x= vec[0];
y= vec[1];
vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
}
void mul_project_m4_v3(float mat[][4], float vec[3])
{
const float w= vec[0]*mat[0][3] + vec[1]*mat[1][3] + vec[2]*mat[2][3] + mat[3][3];
mul_m4_v3(mat, vec);
vec[0] /= w;
vec[1] /= w;
vec[2] /= w;
}
void mul_v4_m4v4(float r[4], float mat[4][4], float v[4])
{
float x, y, z;
x= v[0];
y= v[1];
z= v[2];
r[0]= x*mat[0][0] + y*mat[1][0] + z*mat[2][0] + mat[3][0]*v[3];
r[1]= x*mat[0][1] + y*mat[1][1] + z*mat[2][1] + mat[3][1]*v[3];
r[2]= x*mat[0][2] + y*mat[1][2] + z*mat[2][2] + mat[3][2]*v[3];
r[3]= x*mat[0][3] + y*mat[1][3] + z*mat[2][3] + mat[3][3]*v[3];
}
void mul_m4_v4(float mat[4][4], float r[4])
{
mul_v4_m4v4(r, mat, r);
}
void mul_v3_m3v3(float r[3], float M[3][3], float a[3])
{
r[0]= M[0][0]*a[0] + M[1][0]*a[1] + M[2][0]*a[2];
r[1]= M[0][1]*a[0] + M[1][1]*a[1] + M[2][1]*a[2];
r[2]= M[0][2]*a[0] + M[1][2]*a[1] + M[2][2]*a[2];
}
void mul_m3_v3(float M[3][3], float r[3])
{
float tmp[3];
mul_v3_m3v3(tmp, M, r);
copy_v3_v3(r, tmp);
}
void mul_transposed_m3_v3(float mat[][3], float vec[3])
{
float x,y;
x=vec[0];
y=vec[1];
vec[0]= x*mat[0][0] + y*mat[0][1] + mat[0][2]*vec[2];
vec[1]= x*mat[1][0] + y*mat[1][1] + mat[1][2]*vec[2];
vec[2]= x*mat[2][0] + y*mat[2][1] + mat[2][2]*vec[2];
}
void mul_m3_fl(float m[3][3], float f)
{
int i, j;
for(i=0;i<3;i++)
for(j=0;j<3;j++)
m[i][j] *= f;
}
void mul_m4_fl(float m[4][4], float f)
{
int i, j;
for(i=0;i<4;i++)
for(j=0;j<4;j++)
m[i][j] *= f;
}
void mul_mat3_m4_fl(float m[4][4], float f)
{
int i, j;
for(i=0; i<3; i++)
for(j=0; j<3; j++)
m[i][j] *= f;
}
void mul_m3_v3_double(float mat[][3], double vec[3])
{
double x,y;
x=vec[0];
y=vec[1];
vec[0]= x*mat[0][0] + y*mat[1][0] + mat[2][0]*vec[2];
vec[1]= x*mat[0][1] + y*mat[1][1] + mat[2][1]*vec[2];
vec[2]= x*mat[0][2] + y*mat[1][2] + mat[2][2]*vec[2];
}
void add_m3_m3m3(float m1[][3], float m2[][3], float m3[][3])
{
int i, j;
for(i=0;i<3;i++)
for(j=0;j<3;j++)
m1[i][j]= m2[i][j] + m3[i][j];
}
void add_m4_m4m4(float m1[][4], float m2[][4], float m3[][4])
{
int i, j;
for(i=0;i<4;i++)
for(j=0;j<4;j++)
m1[i][j]= m2[i][j] + m3[i][j];
}
void sub_m3_m3m3(float m1[][3], float m2[][3], float m3[][3])
{
int i, j;
for(i=0;i<3;i++)
for(j=0;j<3;j++)
m1[i][j]= m2[i][j] - m3[i][j];
}
void sub_m4_m4m4(float m1[][4], float m2[][4], float m3[][4])
{
int i, j;
for(i=0;i<4;i++)
for(j=0;j<4;j++)
m1[i][j]= m2[i][j] - m3[i][j];
}
int invert_m3(float m[3][3])
{
float tmp[3][3];
int success;
success= invert_m3_m3(tmp, m);
copy_m3_m3(m, tmp);
return success;
}
int invert_m3_m3(float m1[3][3], float m2[3][3])
{
float det;
int a, b, success;
/* calc adjoint */
adjoint_m3_m3(m1,m2);
/* then determinant old matrix! */
det= m2[0][0]* (m2[1][1]*m2[2][2] - m2[1][2]*m2[2][1])
-m2[1][0]* (m2[0][1]*m2[2][2] - m2[0][2]*m2[2][1])
+m2[2][0]* (m2[0][1]*m2[1][2] - m2[0][2]*m2[1][1]);
success= (det != 0);
if(det==0) det=1;
det= 1/det;
for(a=0;a<3;a++) {
for(b=0;b<3;b++) {
m1[a][b]*=det;
}
}
return success;
}
int invert_m4(float m[4][4])
{
float tmp[4][4];
int success;
success= invert_m4_m4(tmp, m);
copy_m4_m4(m, tmp);
return success;
}
/*
* invertmat -
* computes the inverse of mat and puts it in inverse. Returns
* TRUE on success (i.e. can always find a pivot) and FALSE on failure.
* Uses Gaussian Elimination with partial (maximal column) pivoting.
*
* Mark Segal - 1992
*/
int invert_m4_m4(float inverse[4][4], float mat[4][4])
{
int i, j, k;
double temp;
float tempmat[4][4];
float max;
int maxj;
/* Set inverse to identity */
for (i=0; i<4; i++)
for (j=0; j<4; j++)
inverse[i][j] = 0;
for (i=0; i<4; i++)
inverse[i][i] = 1;
/* Copy original matrix so we don't mess it up */
for(i = 0; i < 4; i++)
for(j = 0; j <4; j++)
tempmat[i][j] = mat[i][j];
for(i = 0; i < 4; i++) {
/* Look for row with max pivot */
max = fabs(tempmat[i][i]);
maxj = i;
for(j = i + 1; j < 4; j++) {
if(fabsf(tempmat[j][i]) > max) {
max = fabs(tempmat[j][i]);
maxj = j;
}
}
/* Swap rows if necessary */
if (maxj != i) {
for(k = 0; k < 4; k++) {
SWAP(float, tempmat[i][k], tempmat[maxj][k]);
SWAP(float, inverse[i][k], inverse[maxj][k]);
}
}
temp = tempmat[i][i];
if (temp == 0)
return 0; /* No non-zero pivot */
for(k = 0; k < 4; k++) {
tempmat[i][k] = (float)(tempmat[i][k]/temp);
inverse[i][k] = (float)(inverse[i][k]/temp);
}
for(j = 0; j < 4; j++) {
if(j != i) {
temp = tempmat[j][i];
for(k = 0; k < 4; k++) {
tempmat[j][k] -= (float)(tempmat[i][k]*temp);
inverse[j][k] -= (float)(inverse[i][k]*temp);
}
}
}
}
return 1;
}
/****************************** Linear Algebra *******************************/
void transpose_m3(float mat[][3])
{
float t;
t = mat[0][1] ;
mat[0][1] = mat[1][0] ;
mat[1][0] = t;
t = mat[0][2] ;
mat[0][2] = mat[2][0] ;
mat[2][0] = t;
t = mat[1][2] ;
mat[1][2] = mat[2][1] ;
mat[2][1] = t;
}
void transpose_m4(float mat[][4])
{
float t;
t = mat[0][1] ;
mat[0][1] = mat[1][0] ;
mat[1][0] = t;
t = mat[0][2] ;
mat[0][2] = mat[2][0] ;
mat[2][0] = t;
t = mat[0][3] ;
mat[0][3] = mat[3][0] ;
mat[3][0] = t;
t = mat[1][2] ;
mat[1][2] = mat[2][1] ;
mat[2][1] = t;
t = mat[1][3] ;
mat[1][3] = mat[3][1] ;
mat[3][1] = t;
t = mat[2][3] ;
mat[2][3] = mat[3][2] ;
mat[3][2] = t;
}
void orthogonalize_m3(float mat[][3], int axis)
{
float size[3];
mat3_to_size(size, mat);
normalize_v3(mat[axis]);
switch(axis)
{
case 0:
if (dot_v3v3(mat[0], mat[1]) < 1) {
cross_v3_v3v3(mat[2], mat[0], mat[1]);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
} else if (dot_v3v3(mat[0], mat[2]) < 1) {
cross_v3_v3v3(mat[1], mat[2], mat[0]);
normalize_v3(mat[1]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
} else {
float vec[3];
vec[0]= mat[0][1];
vec[1]= mat[0][2];
vec[2]= mat[0][0];
cross_v3_v3v3(mat[2], mat[0], vec);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
case 1:
if (dot_v3v3(mat[1], mat[0]) < 1) {
cross_v3_v3v3(mat[2], mat[0], mat[1]);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[0], mat[1], mat[2]);
} else if (dot_v3v3(mat[0], mat[2]) < 1) {
cross_v3_v3v3(mat[0], mat[1], mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
} else {
float vec[3];
vec[0]= mat[1][1];
vec[1]= mat[1][2];
vec[2]= mat[1][0];
cross_v3_v3v3(mat[0], mat[1], vec);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
}
case 2:
if (dot_v3v3(mat[2], mat[0]) < 1) {
cross_v3_v3v3(mat[1], mat[2], mat[0]);
normalize_v3(mat[1]);
cross_v3_v3v3(mat[0], mat[1], mat[2]);
} else if (dot_v3v3(mat[2], mat[1]) < 1) {
cross_v3_v3v3(mat[0], mat[1], mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
} else {
float vec[3];
vec[0]= mat[2][1];
vec[1]= mat[2][2];
vec[2]= mat[2][0];
cross_v3_v3v3(mat[0], vec, mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
}
mul_v3_fl(mat[0], size[0]);
mul_v3_fl(mat[1], size[1]);
mul_v3_fl(mat[2], size[2]);
}
void orthogonalize_m4(float mat[][4], int axis)
{
float size[3];
mat4_to_size(size, mat);
normalize_v3(mat[axis]);
switch(axis)
{
case 0:
if (dot_v3v3(mat[0], mat[1]) < 1) {
cross_v3_v3v3(mat[2], mat[0], mat[1]);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
} else if (dot_v3v3(mat[0], mat[2]) < 1) {
cross_v3_v3v3(mat[1], mat[2], mat[0]);
normalize_v3(mat[1]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
} else {
float vec[3];
vec[0]= mat[0][1];
vec[1]= mat[0][2];
vec[2]= mat[0][0];
cross_v3_v3v3(mat[2], mat[0], vec);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
case 1:
normalize_v3(mat[0]);
if (dot_v3v3(mat[1], mat[0]) < 1) {
cross_v3_v3v3(mat[2], mat[0], mat[1]);
normalize_v3(mat[2]);
cross_v3_v3v3(mat[0], mat[1], mat[2]);
} else if (dot_v3v3(mat[0], mat[2]) < 1) {
cross_v3_v3v3(mat[0], mat[1], mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
} else {
float vec[3];
vec[0]= mat[1][1];
vec[1]= mat[1][2];
vec[2]= mat[1][0];
cross_v3_v3v3(mat[0], mat[1], vec);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[2], mat[0], mat[1]);
}
case 2:
if (dot_v3v3(mat[2], mat[0]) < 1) {
cross_v3_v3v3(mat[1], mat[2], mat[0]);
normalize_v3(mat[1]);
cross_v3_v3v3(mat[0], mat[1], mat[2]);
} else if (dot_v3v3(mat[2], mat[1]) < 1) {
cross_v3_v3v3(mat[0], mat[1], mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
} else {
float vec[3];
vec[0]= mat[2][1];
vec[1]= mat[2][2];
vec[2]= mat[2][0];
cross_v3_v3v3(mat[0], vec, mat[2]);
normalize_v3(mat[0]);
cross_v3_v3v3(mat[1], mat[2], mat[0]);
}
}
mul_v3_fl(mat[0], size[0]);
mul_v3_fl(mat[1], size[1]);
mul_v3_fl(mat[2], size[2]);
}
int is_orthogonal_m3(float mat[][3])
{
if (fabsf(dot_v3v3(mat[0], mat[1])) > 1.5f * FLT_EPSILON)
return 0;
if (fabsf(dot_v3v3(mat[1], mat[2])) > 1.5f * FLT_EPSILON)
return 0;
if (fabsf(dot_v3v3(mat[0], mat[2])) > 1.5f * FLT_EPSILON)
return 0;
return 1;
}
int is_orthogonal_m4(float mat[][4])
{
if (fabsf(dot_v3v3(mat[0], mat[1])) > 1.5f * FLT_EPSILON)
return 0;
if (fabsf(dot_v3v3(mat[1], mat[2])) > 1.5f * FLT_EPSILON)
return 0;
if (fabsf(dot_v3v3(mat[0], mat[2])) > 1.5f * FLT_EPSILON)
return 0;
return 1;
}
void normalize_m3(float mat[][3])
{
normalize_v3(mat[0]);
normalize_v3(mat[1]);
normalize_v3(mat[2]);
}
void normalize_m3_m3(float rmat[][3], float mat[][3])
{
normalize_v3_v3(rmat[0], mat[0]);
normalize_v3_v3(rmat[1], mat[1]);
normalize_v3_v3(rmat[2], mat[2]);
}
void normalize_m4(float mat[][4])
{
float len;
len= normalize_v3(mat[0]);
if(len!=0.0f) mat[0][3]/= len;
len= normalize_v3(mat[1]);
if(len!=0.0f) mat[1][3]/= len;
len= normalize_v3(mat[2]);
if(len!=0.0f) mat[2][3]/= len;
}
void normalize_m4_m4(float rmat[][4], float mat[][4])
{
float len;
len= normalize_v3_v3(rmat[0], mat[0]);
if(len!=0.0f) rmat[0][3]= mat[0][3] / len;
len= normalize_v3_v3(rmat[1], mat[1]);
if(len!=0.0f) rmat[1][3]= mat[1][3] / len;
len= normalize_v3_v3(rmat[2], mat[2]);
if(len!=0.0f) rmat[2][3]= mat[2][3] / len;
}
void adjoint_m3_m3(float m1[][3], float m[][3])
{
m1[0][0]=m[1][1]*m[2][2]-m[1][2]*m[2][1];
m1[0][1]= -m[0][1]*m[2][2]+m[0][2]*m[2][1];
m1[0][2]=m[0][1]*m[1][2]-m[0][2]*m[1][1];
m1[1][0]= -m[1][0]*m[2][2]+m[1][2]*m[2][0];
m1[1][1]=m[0][0]*m[2][2]-m[0][2]*m[2][0];
m1[1][2]= -m[0][0]*m[1][2]+m[0][2]*m[1][0];
m1[2][0]=m[1][0]*m[2][1]-m[1][1]*m[2][0];
m1[2][1]= -m[0][0]*m[2][1]+m[0][1]*m[2][0];
m1[2][2]=m[0][0]*m[1][1]-m[0][1]*m[1][0];
}
void adjoint_m4_m4(float out[][4], float in[][4]) /* out = ADJ(in) */
{
float a1, a2, a3, a4, b1, b2, b3, b4;
float c1, c2, c3, c4, d1, d2, d3, d4;
a1= in[0][0];
b1= in[0][1];
c1= in[0][2];
d1= in[0][3];
a2= in[1][0];
b2= in[1][1];
c2= in[1][2];
d2= in[1][3];
a3= in[2][0];
b3= in[2][1];
c3= in[2][2];
d3= in[2][3];
a4= in[3][0];
b4= in[3][1];
c4= in[3][2];
d4= in[3][3];
out[0][0] = determinant_m3(b2, b3, b4, c2, c3, c4, d2, d3, d4);
out[1][0] = - determinant_m3(a2, a3, a4, c2, c3, c4, d2, d3, d4);
out[2][0] = determinant_m3(a2, a3, a4, b2, b3, b4, d2, d3, d4);
out[3][0] = - determinant_m3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
out[0][1] = - determinant_m3(b1, b3, b4, c1, c3, c4, d1, d3, d4);
out[1][1] = determinant_m3(a1, a3, a4, c1, c3, c4, d1, d3, d4);
out[2][1] = - determinant_m3(a1, a3, a4, b1, b3, b4, d1, d3, d4);
out[3][1] = determinant_m3(a1, a3, a4, b1, b3, b4, c1, c3, c4);
out[0][2] = determinant_m3(b1, b2, b4, c1, c2, c4, d1, d2, d4);
out[1][2] = - determinant_m3(a1, a2, a4, c1, c2, c4, d1, d2, d4);
out[2][2] = determinant_m3(a1, a2, a4, b1, b2, b4, d1, d2, d4);
out[3][2] = - determinant_m3(a1, a2, a4, b1, b2, b4, c1, c2, c4);
out[0][3] = - determinant_m3(b1, b2, b3, c1, c2, c3, d1, d2, d3);
out[1][3] = determinant_m3(a1, a2, a3, c1, c2, c3, d1, d2, d3);
out[2][3] = - determinant_m3(a1, a2, a3, b1, b2, b3, d1, d2, d3);
out[3][3] = determinant_m3(a1, a2, a3, b1, b2, b3, c1, c2, c3);
}
float determinant_m2(float a,float b,float c,float d)
{
return a*d - b*c;
}
float determinant_m3(float a1, float a2, float a3,
float b1, float b2, float b3,
float c1, float c2, float c3)
{
float ans;
ans = a1 * determinant_m2(b2, b3, c2, c3)
- b1 * determinant_m2(a2, a3, c2, c3)
+ c1 * determinant_m2(a2, a3, b2, b3);
return ans;
}
float determinant_m4(float m[][4])
{
float ans;
float a1,a2,a3,a4,b1,b2,b3,b4,c1,c2,c3,c4,d1,d2,d3,d4;
a1= m[0][0];
b1= m[0][1];
c1= m[0][2];
d1= m[0][3];
a2= m[1][0];
b2= m[1][1];
c2= m[1][2];
d2= m[1][3];
a3= m[2][0];
b3= m[2][1];
c3= m[2][2];
d3= m[2][3];
a4= m[3][0];
b4= m[3][1];
c4= m[3][2];
d4= m[3][3];
ans = a1 * determinant_m3(b2, b3, b4, c2, c3, c4, d2, d3, d4)
- b1 * determinant_m3(a2, a3, a4, c2, c3, c4, d2, d3, d4)
+ c1 * determinant_m3(a2, a3, a4, b2, b3, b4, d2, d3, d4)
- d1 * determinant_m3(a2, a3, a4, b2, b3, b4, c2, c3, c4);
return ans;
}
/****************************** Transformations ******************************/
void size_to_mat3(float mat[][3], const float size[3])
{
mat[0][0]= size[0];
mat[0][1]= 0.0f;
mat[0][2]= 0.0f;
mat[1][1]= size[1];
mat[1][0]= 0.0f;
mat[1][2]= 0.0f;
mat[2][2]= size[2];
mat[2][1]= 0.0f;
mat[2][0]= 0.0f;
}
void size_to_mat4(float mat[][4], const float size[3])
{
float tmat[3][3];
size_to_mat3(tmat,size);
unit_m4(mat);
copy_m4_m3(mat, tmat);
}
void mat3_to_size(float size[3], float mat[][3])
{
size[0]= len_v3(mat[0]);
size[1]= len_v3(mat[1]);
size[2]= len_v3(mat[2]);
}
void mat4_to_size(float size[3], float mat[][4])
{
size[0]= len_v3(mat[0]);
size[1]= len_v3(mat[1]);
size[2]= len_v3(mat[2]);
}
/* this gets the average scale of a matrix, only use when your scaling
* data that has no idea of scale axis, examples are bone-envelope-radius
* and curve radius */
float mat3_to_scale(float mat[][3])
{
/* unit length vector */
float unit_vec[3] = {0.577350269189626f, 0.577350269189626f, 0.577350269189626f};
mul_m3_v3(mat, unit_vec);
return len_v3(unit_vec);
}
float mat4_to_scale(float mat[][4])
{
float tmat[3][3];
copy_m3_m4(tmat, mat);
return mat3_to_scale(tmat);
}
void mat3_to_rot_size(float rot[3][3], float size[3], float mat3[3][3])
{
float mat3_n[3][3]; /* mat3 -> normalized, 3x3 */
float imat3_n[3][3]; /* mat3 -> normalized & inverted, 3x3 */
/* rotation & scale are linked, we need to create the mat's
* for these together since they are related. */
/* so scale doesnt interfear with rotation [#24291] */
/* note: this is a workaround for negative matrix not working for rotation conversion, FIXME */
normalize_m3_m3(mat3_n, mat3);
if(is_negative_m3(mat3)) {
negate_v3(mat3_n[0]);
negate_v3(mat3_n[1]);
negate_v3(mat3_n[2]);
}
/* rotation */
/* keep rot as a 3x3 matrix, the caller can convert into a quat or euler */
copy_m3_m3(rot, mat3_n);
/* scale */
/* note: mat4_to_size(ob->size, mat) fails for negative scale */
invert_m3_m3(imat3_n, mat3_n);
mul_m3_m3m3(mat3, imat3_n, mat3);
size[0]= mat3[0][0];
size[1]= mat3[1][1];
size[2]= mat3[2][2];
}
void mat4_to_loc_rot_size(float loc[3], float rot[3][3], float size[3], float wmat[][4])
{
float mat3[3][3]; /* wmat -> 3x3 */
copy_m3_m4(mat3, wmat);
mat3_to_rot_size(rot, size, mat3);
/* location */
copy_v3_v3(loc, wmat[3]);
}
void scale_m3_fl(float m[][3], float scale)
{
m[0][0]= m[1][1]= m[2][2]= scale;
m[0][1]= m[0][2]= 0.0;
m[1][0]= m[1][2]= 0.0;
m[2][0]= m[2][1]= 0.0;
}
void scale_m4_fl(float m[][4], float scale)
{
m[0][0]= m[1][1]= m[2][2]= scale;
m[3][3]= 1.0;
m[0][1]= m[0][2]= m[0][3]= 0.0;
m[1][0]= m[1][2]= m[1][3]= 0.0;
m[2][0]= m[2][1]= m[2][3]= 0.0;
m[3][0]= m[3][1]= m[3][2]= 0.0;
}
void translate_m4(float mat[][4],float Tx, float Ty, float Tz)
{
mat[3][0] += (Tx*mat[0][0] + Ty*mat[1][0] + Tz*mat[2][0]);
mat[3][1] += (Tx*mat[0][1] + Ty*mat[1][1] + Tz*mat[2][1]);
mat[3][2] += (Tx*mat[0][2] + Ty*mat[1][2] + Tz*mat[2][2]);
}
void rotate_m4(float mat[][4], const char axis, const float angle)
{
int col;
float temp[4]= {0.0f, 0.0f, 0.0f, 0.0f};
float cosine, sine;
assert(axis >= 'X' && axis <= 'Z');
cosine = (float)cos(angle);
sine = (float)sin(angle);
switch(axis){
case 'X':
for(col=0 ; col<4 ; col++)
temp[col] = cosine*mat[1][col] + sine*mat[2][col];
for(col=0 ; col<4 ; col++) {
mat[2][col] = - sine*mat[1][col] + cosine*mat[2][col];
mat[1][col] = temp[col];
}
break;
case 'Y':
for(col=0 ; col<4 ; col++)
temp[col] = cosine*mat[0][col] - sine*mat[2][col];
for(col=0 ; col<4 ; col++) {
mat[2][col] = sine*mat[0][col] + cosine*mat[2][col];
mat[0][col] = temp[col];
}
break;
case 'Z':
for(col=0 ; col<4 ; col++)
temp[col] = cosine*mat[0][col] + sine*mat[1][col];
for(col=0 ; col<4 ; col++) {
mat[1][col] = - sine*mat[0][col] + cosine*mat[1][col];
mat[0][col] = temp[col];
}
break;
}
}
void blend_m3_m3m3(float out[][3], float dst[][3], float src[][3], const float srcweight)
{
float srot[3][3], drot[3][3];
float squat[4], dquat[4], fquat[4];
float ssize[3], dsize[3], fsize[3];
float rmat[3][3], smat[3][3];
mat3_to_rot_size(drot, dsize, dst);
mat3_to_rot_size(srot, ssize, src);
mat3_to_quat(dquat, drot);
mat3_to_quat(squat, srot);
/* do blending */
interp_qt_qtqt(fquat, dquat, squat, srcweight);
interp_v3_v3v3(fsize, dsize, ssize, srcweight);
/* compose new matrix */
quat_to_mat3(rmat,fquat);
size_to_mat3(smat,fsize);
mul_m3_m3m3(out, rmat, smat);
}
void blend_m4_m4m4(float out[][4], float dst[][4], float src[][4], const float srcweight)
{
float sloc[3], dloc[3], floc[3];
float srot[3][3], drot[3][3];
float squat[4], dquat[4], fquat[4];
float ssize[3], dsize[3], fsize[3];
mat4_to_loc_rot_size(dloc, drot, dsize, dst);
mat4_to_loc_rot_size(sloc, srot, ssize, src);
mat3_to_quat(dquat, drot);
mat3_to_quat(squat, srot);
/* do blending */
interp_v3_v3v3(floc, dloc, sloc, srcweight);
interp_qt_qtqt(fquat, dquat, squat, srcweight);
interp_v3_v3v3(fsize, dsize, ssize, srcweight);
/* compose new matrix */
loc_quat_size_to_mat4(out, floc, fquat, fsize);
}
int is_negative_m3(float mat[][3])
{
float vec[3];
cross_v3_v3v3(vec, mat[0], mat[1]);
return (dot_v3v3(vec, mat[2]) < 0.0f);
}
int is_negative_m4(float mat[][4])
{
float vec[3];
cross_v3_v3v3(vec, mat[0], mat[1]);
return (dot_v3v3(vec, mat[2]) < 0.0f);
}
/* make a 4x4 matrix out of 3 transform components */
/* matrices are made in the order: scale * rot * loc */
// TODO: need to have a version that allows for rotation order...
void loc_eul_size_to_mat4(float mat[4][4], const float loc[3], const float eul[3], const float size[3])
{
float rmat[3][3], smat[3][3], tmat[3][3];
/* initialise new matrix */
unit_m4(mat);
/* make rotation + scaling part */
eul_to_mat3(rmat,eul);
size_to_mat3(smat,size);
mul_m3_m3m3(tmat, rmat, smat);
/* copy rot/scale part to output matrix*/
copy_m4_m3(mat, tmat);
/* copy location to matrix */
mat[3][0] = loc[0];
mat[3][1] = loc[1];
mat[3][2] = loc[2];
}
/* make a 4x4 matrix out of 3 transform components */
/* matrices are made in the order: scale * rot * loc */
void loc_eulO_size_to_mat4(float mat[4][4], const float loc[3], const float eul[3], const float size[3], const short rotOrder)
{
float rmat[3][3], smat[3][3], tmat[3][3];
/* initialise new matrix */
unit_m4(mat);
/* make rotation + scaling part */
eulO_to_mat3(rmat,eul, rotOrder);
size_to_mat3(smat,size);
mul_m3_m3m3(tmat, rmat, smat);
/* copy rot/scale part to output matrix*/
copy_m4_m3(mat, tmat);
/* copy location to matrix */
mat[3][0] = loc[0];
mat[3][1] = loc[1];
mat[3][2] = loc[2];
}
/* make a 4x4 matrix out of 3 transform components */
/* matrices are made in the order: scale * rot * loc */
void loc_quat_size_to_mat4(float mat[4][4], const float loc[3], const float quat[4], const float size[3])
{
float rmat[3][3], smat[3][3], tmat[3][3];
/* initialise new matrix */
unit_m4(mat);
/* make rotation + scaling part */
quat_to_mat3(rmat,quat);
size_to_mat3(smat,size);
mul_m3_m3m3(tmat, rmat, smat);
/* copy rot/scale part to output matrix*/
copy_m4_m3(mat, tmat);
/* copy location to matrix */
mat[3][0] = loc[0];
mat[3][1] = loc[1];
mat[3][2] = loc[2];
}
void loc_axisangle_size_to_mat4(float mat[4][4], const float loc[3], const float axis[3], const float angle, const float size[3])
{
float q[4];
axis_angle_to_quat(q, axis, angle);
loc_quat_size_to_mat4(mat, loc, q, size);
}
/*********************************** Other ***********************************/
void print_m3(const char *str, float m[][3])
{
printf("%s\n", str);
printf("%f %f %f\n",m[0][0],m[1][0],m[2][0]);
printf("%f %f %f\n",m[0][1],m[1][1],m[2][1]);
printf("%f %f %f\n",m[0][2],m[1][2],m[2][2]);
printf("\n");
}
void print_m4(const char *str, float m[][4])
{
printf("%s\n", str);
printf("%f %f %f %f\n",m[0][0],m[1][0],m[2][0],m[3][0]);
printf("%f %f %f %f\n",m[0][1],m[1][1],m[2][1],m[3][1]);
printf("%f %f %f %f\n",m[0][2],m[1][2],m[2][2],m[3][2]);
printf("%f %f %f %f\n",m[0][3],m[1][3],m[2][3],m[3][3]);
printf("\n");
}
/*********************************** SVD ************************************
* from TNT matrix library
* Compute the Single Value Decomposition of an arbitrary matrix A
* That is compute the 3 matrices U,W,V with U column orthogonal (m,n)
* ,W a diagonal matrix and V an orthogonal square matrix s.t.
* A = U.W.Vt. From this decomposition it is trivial to compute the
* (pseudo-inverse) of A as Ainv = V.Winv.tranpose(U).
*/
void svd_m4(float U[4][4], float s[4], float V[4][4], float A_[4][4])
{
float A[4][4];
float work1[4], work2[4];
int m = 4;
int n = 4;
int maxiter = 200;
int nu = minf(m,n);
float *work = work1;
float *e = work2;
float eps;
int i=0, j=0, k=0, p, pp, iter;
// Reduce A to bidiagonal form, storing the diagonal elements
// in s and the super-diagonal elements in e.
int nct = minf(m-1,n);
int nrt = maxf(0,minf(n-2,m));
copy_m4_m4(A, A_);
zero_m4(U);
zero_v4(s);
for (k = 0; k < maxf(nct,nrt); k++) {
if (k < nct) {
// Compute the transformation for the k-th column and
// place the k-th diagonal in s[k].
// Compute 2-norm of k-th column without under/overflow.
s[k] = 0;
for (i = k; i < m; i++) {
s[k] = hypotf(s[k],A[i][k]);
}
if (s[k] != 0.0f) {
float invsk;
if (A[k][k] < 0.0f) {
s[k] = -s[k];
}
invsk = 1.0f/s[k];
for (i = k; i < m; i++) {
A[i][k] *= invsk;
}
A[k][k] += 1.0f;
}
s[k] = -s[k];
}
for (j = k+1; j < n; j++) {
if ((k < nct) && (s[k] != 0.0f)) {
// Apply the transformation.
float t = 0;
for (i = k; i < m; i++) {
t += A[i][k]*A[i][j];
}
t = -t/A[k][k];
for (i = k; i < m; i++) {
A[i][j] += t*A[i][k];
}
}
// Place the k-th row of A into e for the
// subsequent calculation of the row transformation.
e[j] = A[k][j];
}
if (k < nct) {
// Place the transformation in U for subsequent back
// multiplication.
for (i = k; i < m; i++)
U[i][k] = A[i][k];
}
if (k < nrt) {
// Compute the k-th row transformation and place the
// k-th super-diagonal in e[k].
// Compute 2-norm without under/overflow.
e[k] = 0;
for (i = k+1; i < n; i++) {
e[k] = hypotf(e[k],e[i]);
}
if (e[k] != 0.0f) {
float invek;
if (e[k+1] < 0.0f) {
e[k] = -e[k];
}
invek = 1.0f/e[k];
for (i = k+1; i < n; i++) {
e[i] *= invek;
}
e[k+1] += 1.0f;
}
e[k] = -e[k];
if ((k+1 < m) & (e[k] != 0.0f)) {
float invek1;
// Apply the transformation.
for (i = k+1; i < m; i++) {
work[i] = 0.0f;
}
for (j = k+1; j < n; j++) {
for (i = k+1; i < m; i++) {
work[i] += e[j]*A[i][j];
}
}
invek1 = 1.0f/e[k+1];
for (j = k+1; j < n; j++) {
float t = -e[j]*invek1;
for (i = k+1; i < m; i++) {
A[i][j] += t*work[i];
}
}
}
// Place the transformation in V for subsequent
// back multiplication.
for (i = k+1; i < n; i++)
V[i][k] = e[i];
}
}
// Set up the final bidiagonal matrix or order p.
p = minf(n,m+1);
if (nct < n) {
s[nct] = A[nct][nct];
}
if (m < p) {
s[p-1] = 0.0f;
}
if (nrt+1 < p) {
e[nrt] = A[nrt][p-1];
}
e[p-1] = 0.0f;
// If required, generate U.
for (j = nct; j < nu; j++) {
for (i = 0; i < m; i++) {
U[i][j] = 0.0f;
}
U[j][j] = 1.0f;
}
for (k = nct-1; k >= 0; k--) {
if (s[k] != 0.0f) {
for (j = k+1; j < nu; j++) {
float t = 0;
for (i = k; i < m; i++) {
t += U[i][k]*U[i][j];
}
t = -t/U[k][k];
for (i = k; i < m; i++) {
U[i][j] += t*U[i][k];
}
}
for (i = k; i < m; i++ ) {
U[i][k] = -U[i][k];
}
U[k][k] = 1.0f + U[k][k];
for (i = 0; i < k-1; i++) {
U[i][k] = 0.0f;
}
} else {
for (i = 0; i < m; i++) {
U[i][k] = 0.0f;
}
U[k][k] = 1.0f;
}
}
// If required, generate V.
for (k = n-1; k >= 0; k--) {
if ((k < nrt) & (e[k] != 0.0f)) {
for (j = k+1; j < nu; j++) {
float t = 0;
for (i = k+1; i < n; i++) {
t += V[i][k]*V[i][j];
}
t = -t/V[k+1][k];
for (i = k+1; i < n; i++) {
V[i][j] += t*V[i][k];
}
}
}
for (i = 0; i < n; i++) {
V[i][k] = 0.0f;
}
V[k][k] = 1.0f;
}
// Main iteration loop for the singular values.
pp = p-1;
iter = 0;
eps = powf(2.0f,-52.0f);
while (p > 0) {
int kase=0;
// Test for maximum iterations to avoid infinite loop
if(maxiter == 0)
break;
maxiter--;
// This section of the program inspects for
// negligible elements in the s and e arrays. On
// completion the variables kase and k are set as follows.
// kase = 1 if s(p) and e[k-1] are negligible and k<p
// kase = 2 if s(k) is negligible and k<p
// kase = 3 if e[k-1] is negligible, k<p, and
// s(k), ..., s(p) are not negligible (qr step).
// kase = 4 if e(p-1) is negligible (convergence).
for (k = p-2; k >= -1; k--) {
if (k == -1) {
break;
}
if (fabsf(e[k]) <= eps*(fabsf(s[k]) + fabsf(s[k+1]))) {
e[k] = 0.0f;
break;
}
}
if (k == p-2) {
kase = 4;
} else {
int ks;
for (ks = p-1; ks >= k; ks--) {
float t;
if (ks == k) {
break;
}
t = (ks != p ? fabsf(e[ks]) : 0.f) +
(ks != k+1 ? fabsf(e[ks-1]) : 0.0f);
if (fabsf(s[ks]) <= eps*t) {
s[ks] = 0.0f;
break;
}
}
if (ks == k) {
kase = 3;
} else if (ks == p-1) {
kase = 1;
} else {
kase = 2;
k = ks;
}
}
k++;
// Perform the task indicated by kase.
switch (kase) {
// Deflate negligible s(p).
case 1: {
float f = e[p-2];
e[p-2] = 0.0f;
for (j = p-2; j >= k; j--) {
float t = hypotf(s[j],f);
float invt = 1.0f/t;
float cs = s[j]*invt;
float sn = f*invt;
s[j] = t;
if (j != k) {
f = -sn*e[j-1];
e[j-1] = cs*e[j-1];
}
for (i = 0; i < n; i++) {
t = cs*V[i][j] + sn*V[i][p-1];
V[i][p-1] = -sn*V[i][j] + cs*V[i][p-1];
V[i][j] = t;
}
}
}
break;
// Split at negligible s(k).
case 2: {
float f = e[k-1];
e[k-1] = 0.0f;
for (j = k; j < p; j++) {
float t = hypotf(s[j],f);
float invt = 1.0f/t;
float cs = s[j]*invt;
float sn = f*invt;
s[j] = t;
f = -sn*e[j];
e[j] = cs*e[j];
for (i = 0; i < m; i++) {
t = cs*U[i][j] + sn*U[i][k-1];
U[i][k-1] = -sn*U[i][j] + cs*U[i][k-1];
U[i][j] = t;
}
}
}
break;
// Perform one qr step.
case 3: {
// Calculate the shift.
float scale = maxf(maxf(maxf(maxf(
fabsf(s[p-1]),fabsf(s[p-2])),fabsf(e[p-2])),
fabsf(s[k])),fabsf(e[k]));
float invscale = 1.0f/scale;
float sp = s[p-1]*invscale;
float spm1 = s[p-2]*invscale;
float epm1 = e[p-2]*invscale;
float sk = s[k]*invscale;
float ek = e[k]*invscale;
float b = ((spm1 + sp)*(spm1 - sp) + epm1*epm1)*0.5f;
float c = (sp*epm1)*(sp*epm1);
float shift = 0.0f;
float f, g;
if ((b != 0.0f) || (c != 0.0f)) {
shift = sqrtf(b*b + c);
if (b < 0.0f) {
shift = -shift;
}
shift = c/(b + shift);
}
f = (sk + sp)*(sk - sp) + shift;
g = sk*ek;
// Chase zeros.
for (j = k; j < p-1; j++) {
float t = hypotf(f,g);
/* division by zero checks added to avoid NaN (brecht) */
float cs = (t == 0.0f)? 0.0f: f/t;
float sn = (t == 0.0f)? 0.0f: g/t;
if (j != k) {
e[j-1] = t;
}
f = cs*s[j] + sn*e[j];
e[j] = cs*e[j] - sn*s[j];
g = sn*s[j+1];
s[j+1] = cs*s[j+1];
for (i = 0; i < n; i++) {
t = cs*V[i][j] + sn*V[i][j+1];
V[i][j+1] = -sn*V[i][j] + cs*V[i][j+1];
V[i][j] = t;
}
t = hypotf(f,g);
/* division by zero checks added to avoid NaN (brecht) */
cs = (t == 0.0f)? 0.0f: f/t;
sn = (t == 0.0f)? 0.0f: g/t;
s[j] = t;
f = cs*e[j] + sn*s[j+1];
s[j+1] = -sn*e[j] + cs*s[j+1];
g = sn*e[j+1];
e[j+1] = cs*e[j+1];
if (j < m-1) {
for (i = 0; i < m; i++) {
t = cs*U[i][j] + sn*U[i][j+1];
U[i][j+1] = -sn*U[i][j] + cs*U[i][j+1];
U[i][j] = t;
}
}
}
e[p-2] = f;
iter = iter + 1;
}
break;
// Convergence.
case 4: {
// Make the singular values positive.
if (s[k] <= 0.0f) {
s[k] = (s[k] < 0.0f ? -s[k] : 0.0f);
for (i = 0; i <= pp; i++)
V[i][k] = -V[i][k];
}
// Order the singular values.
while (k < pp) {
float t;
if (s[k] >= s[k+1]) {
break;
}
t = s[k];
s[k] = s[k+1];
s[k+1] = t;
if (k < n-1) {
for (i = 0; i < n; i++) {
t = V[i][k+1]; V[i][k+1] = V[i][k]; V[i][k] = t;
}
}
if (k < m-1) {
for (i = 0; i < m; i++) {
t = U[i][k+1]; U[i][k+1] = U[i][k]; U[i][k] = t;
}
}
k++;
}
iter = 0;
p--;
}
break;
}
}
}
void pseudoinverse_m4_m4(float Ainv[4][4], float A[4][4], float epsilon)
{
/* compute moon-penrose pseudo inverse of matrix, singular values
below epsilon are ignored for stability (truncated SVD) */
float V[4][4], W[4], Wm[4][4], U[4][4];
int i;
transpose_m4(A);
svd_m4(V, W, U, A);
transpose_m4(U);
transpose_m4(V);
zero_m4(Wm);
for(i=0; i<4; i++)
Wm[i][i]= (W[i] < epsilon)? 0.0f: 1.0f/W[i];
transpose_m4(V);
mul_serie_m4(Ainv, U, Wm, V, NULL, NULL, NULL, NULL, NULL);
}