This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/render/intern/source/convertblender.c
Bastien Montagne 874b692e80 More UI message i18n fixes and improvements...
Rendering messages are now translatable.
2013-03-10 16:55:01 +00:00

5832 lines
159 KiB
C

/*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* Contributors: 2004/2005/2006 Blender Foundation, full recode
*
* ***** END GPL LICENSE BLOCK *****
*/
/** \file blender/render/intern/source/convertblender.c
* \ingroup render
*/
#include <math.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <limits.h>
#include "MEM_guardedalloc.h"
#include "BLI_math.h"
#include "BLI_blenlib.h"
#include "BLI_utildefines.h"
#include "BLI_rand.h"
#include "BLI_memarena.h"
#include "BLI_ghash.h"
#include "BLI_linklist.h"
#include "BLF_translation.h"
#include "DNA_armature_types.h"
#include "DNA_camera_types.h"
#include "DNA_material_types.h"
#include "DNA_curve_types.h"
#include "DNA_effect_types.h"
#include "DNA_group_types.h"
#include "DNA_lamp_types.h"
#include "DNA_image_types.h"
#include "DNA_lattice_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_meta_types.h"
#include "DNA_modifier_types.h"
#include "DNA_node_types.h"
#include "DNA_object_types.h"
#include "DNA_object_force.h"
#include "DNA_object_fluidsim.h"
#include "DNA_particle_types.h"
#include "DNA_scene_types.h"
#include "DNA_texture_types.h"
#include "DNA_view3d_types.h"
#include "BKE_anim.h"
#include "BKE_armature.h"
#include "BKE_action.h"
#include "BKE_curve.h"
#include "BKE_customdata.h"
#include "BKE_colortools.h"
#include "BKE_constraint.h"
#include "BKE_displist.h"
#include "BKE_deform.h"
#include "BKE_DerivedMesh.h"
#include "BKE_effect.h"
#include "BKE_global.h"
#include "BKE_group.h"
#include "BKE_key.h"
#include "BKE_ipo.h"
#include "BKE_image.h"
#include "BKE_lattice.h"
#include "BKE_library.h"
#include "BKE_material.h"
#include "BKE_main.h"
#include "BKE_mball.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_node.h"
#include "BKE_object.h"
#include "BKE_particle.h"
#include "BKE_scene.h"
#include "BKE_subsurf.h"
#include "BKE_texture.h"
#include "BKE_world.h"
#include "PIL_time.h"
#include "IMB_imbuf_types.h"
#include "envmap.h"
#include "occlusion.h"
#include "pointdensity.h"
#include "voxeldata.h"
#include "render_types.h"
#include "rendercore.h"
#include "renderdatabase.h"
#include "renderpipeline.h"
#include "shadbuf.h"
#include "shading.h"
#include "strand.h"
#include "texture.h"
#include "volume_precache.h"
#include "sss.h"
#include "strand.h"
#include "zbuf.h"
#include "sunsky.h"
#include "RE_render_ext.h"
/* 10 times larger than normal epsilon, test it on default nurbs sphere with ray_transp (for quad detection) */
/* or for checking vertex normal flips */
#define FLT_EPSILON10 1.19209290e-06F
/* could enable at some point but for now there are far too many conversions */
#ifdef __GNUC__
# pragma GCC diagnostic ignored "-Wdouble-promotion"
#endif
/* ------------------------------------------------------------------------- */
/* Stuff for stars. This sits here because it uses gl-things. Part of
* this code may move down to the converter. */
/* ------------------------------------------------------------------------- */
/* this is a bad beast, since it is misused by the 3d view drawing as well. */
static HaloRen *initstar(Render *re, ObjectRen *obr, const float vec[3], float hasize)
{
HaloRen *har;
float hoco[4];
projectverto(vec, re->winmat, hoco);
har= RE_findOrAddHalo(obr, obr->tothalo++);
/* projectvert is done in function zbufvlaggen again, because of parts */
copy_v3_v3(har->co, vec);
har->hasize= hasize;
har->zd= 0.0;
har->pool = re->pool;
return har;
}
/* there must be a 'fixed' amount of stars generated between
* near and far
* all stars must by preference lie on the far and solely
* differ in clarity/color
*/
void RE_make_stars(Render *re, Scene *scenev3d, void (*initfunc)(void),
void (*vertexfunc)(float *), void (*termfunc)(void))
{
extern unsigned char hash[512];
ObjectRen *obr= NULL;
World *wrld= NULL;
HaloRen *har;
Scene *scene;
Object *camera;
Camera *cam;
double dblrand, hlfrand;
float vec[4], fx, fy, fz;
float fac, starmindist, clipend;
float mat[4][4], stargrid, maxrand, maxjit, force, alpha;
int x, y, z, sx, sy, sz, ex, ey, ez, done = FALSE;
unsigned int totstar= 0;
if (initfunc) {
scene= scenev3d;
wrld= scene->world;
}
else {
scene= re->scene;
wrld= &(re->wrld);
}
stargrid = wrld->stardist; /* distance between stars */
maxrand = 2.0; /* amount a star can be shifted (in grid units) */
maxjit = (wrld->starcolnoise); /* amount a color is being shifted */
/* size of stars */
force = ( wrld->starsize );
/* minimal free space (starting at camera) */
starmindist= wrld->starmindist;
if (stargrid <= 0.10f) return;
if (re) re->flag |= R_HALO;
else stargrid *= 1.0f; /* then it draws fewer */
if (re) invert_m4_m4(mat, re->viewmat);
else unit_m4(mat);
/* BOUNDING BOX CALCULATION
* bbox goes from z = loc_near_var | loc_far_var,
* x = -z | +z,
* y = -z | +z
*/
camera= re ? RE_GetCamera(re) : scene->camera;
if (camera==NULL || camera->type != OB_CAMERA)
return;
cam = camera->data;
clipend = cam->clipend;
/* convert to grid coordinates */
sx = ((mat[3][0] - clipend) / stargrid) - maxrand;
sy = ((mat[3][1] - clipend) / stargrid) - maxrand;
sz = ((mat[3][2] - clipend) / stargrid) - maxrand;
ex = ((mat[3][0] + clipend) / stargrid) + maxrand;
ey = ((mat[3][1] + clipend) / stargrid) + maxrand;
ez = ((mat[3][2] + clipend) / stargrid) + maxrand;
dblrand = maxrand * stargrid;
hlfrand = 2.0 * dblrand;
if (initfunc) {
initfunc();
}
if (re) /* add render object for stars */
obr= RE_addRenderObject(re, NULL, NULL, 0, 0, 0);
for (x = sx, fx = sx * stargrid; x <= ex; x++, fx += stargrid) {
for (y = sy, fy = sy * stargrid; y <= ey; y++, fy += stargrid) {
for (z = sz, fz = sz * stargrid; z <= ez; z++, fz += stargrid) {
BLI_srand((hash[z & 0xff] << 24) + (hash[y & 0xff] << 16) + (hash[x & 0xff] << 8));
vec[0] = fx + (hlfrand * BLI_drand()) - dblrand;
vec[1] = fy + (hlfrand * BLI_drand()) - dblrand;
vec[2] = fz + (hlfrand * BLI_drand()) - dblrand;
vec[3] = 1.0;
if (vertexfunc) {
if (done & 1) vertexfunc(vec);
done++;
}
else {
if (re)
mul_m4_v3(re->viewmat, vec);
/* in vec are global coordinates
* calculate distance to camera
* and using that, define the alpha
*/
alpha = len_v3(vec);
if (alpha >= clipend) alpha = 0.0;
else if (alpha <= starmindist) alpha = 0.0;
else if (alpha <= 2.0f * starmindist) {
alpha = (alpha - starmindist) / starmindist;
}
else {
alpha -= 2.0f * starmindist;
alpha /= (clipend - 2.0f * starmindist);
alpha = 1.0f - alpha;
}
if (alpha != 0.0f) {
fac = force * BLI_drand();
har = initstar(re, obr, vec, fac);
if (har) {
har->alfa = sqrt(sqrt(alpha));
har->add= 255;
har->r = har->g = har->b = 1.0;
if (maxjit) {
har->r += ((maxjit * BLI_drand()) ) - maxjit;
har->g += ((maxjit * BLI_drand()) ) - maxjit;
har->b += ((maxjit * BLI_drand()) ) - maxjit;
}
har->hard = 32;
har->lay= -1;
har->type |= HA_ONLYSKY;
done++;
}
}
}
/* break out of the loop if generating stars takes too long */
if (re && !(totstar % 1000000)) {
if (re->test_break(re->tbh)) {
x= ex + 1;
y= ey + 1;
z= ez + 1;
}
}
totstar++;
}
/* do not call blender_test_break() here, since it is used in UI as well, confusing the callback system */
/* main cause is G.is_break of course, a global again... (ton) */
}
}
if (termfunc) termfunc();
if (obr)
re->tothalo += obr->tothalo;
}
/* ------------------------------------------------------------------------- */
/* tool functions/defines for ad hoc simplification and possible future
* cleanup */
/* ------------------------------------------------------------------------- */
#define UVTOINDEX(u,v) (startvlak + (u) * sizev + (v))
/*
*
* NOTE THAT U/V COORDINATES ARE SOMETIMES SWAPPED !!
*
* ^ ()----p4----p3----()
* | | | | |
* u | | F1 | F2 |
* | | | |
* ()----p1----p2----()
* v ->
*/
/* ------------------------------------------------------------------------- */
static void split_v_renderfaces(ObjectRen *obr, int startvlak, int UNUSED(startvert), int UNUSED(usize), int vsize, int uIndex, int UNUSED(cyclu), int cyclv)
{
int vLen = vsize-1+(!!cyclv);
int v;
for (v=0; v<vLen; v++) {
VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v);
VertRen *vert = RE_vertren_copy(obr, vlr->v2);
if (cyclv) {
vlr->v2 = vert;
if (v==vLen-1) {
VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + 0);
vlr->v1 = vert;
}
else {
VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
vlr->v1 = vert;
}
}
else {
vlr->v2 = vert;
if (v<vLen-1) {
VlakRen *vlr = RE_findOrAddVlak(obr, startvlak + vLen*uIndex + v+1);
vlr->v1 = vert;
}
if (v==0) {
vlr->v1 = RE_vertren_copy(obr, vlr->v1);
}
}
}
}
/* ------------------------------------------------------------------------- */
/* Stress, tangents and normals */
/* ------------------------------------------------------------------------- */
static void calc_edge_stress_add(float *accum, VertRen *v1, VertRen *v2)
{
float len= len_v3v3(v1->co, v2->co)/len_v3v3(v1->orco, v2->orco);
float *acc;
acc= accum + 2*v1->index;
acc[0]+= len;
acc[1]+= 1.0f;
acc= accum + 2*v2->index;
acc[0]+= len;
acc[1]+= 1.0f;
}
static void calc_edge_stress(Render *UNUSED(re), ObjectRen *obr, Mesh *me)
{
float loc[3], size[3], *accum, *acc, *accumoffs, *stress;
int a;
if (obr->totvert==0) return;
BKE_mesh_texspace_get(me, loc, NULL, size);
accum= MEM_callocN(2*sizeof(float)*obr->totvert, "temp accum for stress");
/* de-normalize orco */
for (a=0; a<obr->totvert; a++) {
VertRen *ver= RE_findOrAddVert(obr, a);
if (ver->orco) {
ver->orco[0]= ver->orco[0]*size[0] +loc[0];
ver->orco[1]= ver->orco[1]*size[1] +loc[1];
ver->orco[2]= ver->orco[2]*size[2] +loc[2];
}
}
/* add stress values */
accumoffs= accum; /* so we can use vertex index */
for (a=0; a<obr->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(obr, a);
if (vlr->v1->orco && vlr->v4) {
calc_edge_stress_add(accumoffs, vlr->v1, vlr->v2);
calc_edge_stress_add(accumoffs, vlr->v2, vlr->v3);
calc_edge_stress_add(accumoffs, vlr->v3, vlr->v1);
if (vlr->v4) {
calc_edge_stress_add(accumoffs, vlr->v3, vlr->v4);
calc_edge_stress_add(accumoffs, vlr->v4, vlr->v1);
calc_edge_stress_add(accumoffs, vlr->v2, vlr->v4);
}
}
}
for (a=0; a<obr->totvert; a++) {
VertRen *ver= RE_findOrAddVert(obr, a);
if (ver->orco) {
/* find stress value */
acc= accumoffs + 2*ver->index;
if (acc[1]!=0.0f)
acc[0]/= acc[1];
stress= RE_vertren_get_stress(obr, ver, 1);
*stress= *acc;
/* restore orcos */
ver->orco[0] = (ver->orco[0]-loc[0])/size[0];
ver->orco[1] = (ver->orco[1]-loc[1])/size[1];
ver->orco[2] = (ver->orco[2]-loc[2])/size[2];
}
}
MEM_freeN(accum);
}
/* gets tangent from tface or orco */
static void calc_tangent_vector(ObjectRen *obr, VlakRen *vlr, int do_tangent)
{
MTFace *tface= RE_vlakren_get_tface(obr, vlr, obr->actmtface, NULL, 0);
VertRen *v1=vlr->v1, *v2=vlr->v2, *v3=vlr->v3, *v4=vlr->v4;
float tang[3], *tav;
float *uv1, *uv2, *uv3, *uv4;
float uv[4][2];
if (tface) {
uv1= tface->uv[0];
uv2= tface->uv[1];
uv3= tface->uv[2];
uv4= tface->uv[3];
}
else if (v1->orco) {
uv1= uv[0]; uv2= uv[1]; uv3= uv[2]; uv4= uv[3];
map_to_sphere(&uv[0][0], &uv[0][1], v1->orco[0], v1->orco[1], v1->orco[2]);
map_to_sphere(&uv[1][0], &uv[1][1], v2->orco[0], v2->orco[1], v2->orco[2]);
map_to_sphere(&uv[2][0], &uv[2][1], v3->orco[0], v3->orco[1], v3->orco[2]);
if (v4)
map_to_sphere(&uv[3][0], &uv[3][1], v4->orco[0], v4->orco[1], v4->orco[2]);
}
else return;
tangent_from_uv(uv1, uv2, uv3, v1->co, v2->co, v3->co, vlr->n, tang);
if (do_tangent) {
tav= RE_vertren_get_tangent(obr, v1, 1);
add_v3_v3(tav, tang);
tav= RE_vertren_get_tangent(obr, v2, 1);
add_v3_v3(tav, tang);
tav= RE_vertren_get_tangent(obr, v3, 1);
add_v3_v3(tav, tang);
}
if (v4) {
tangent_from_uv(uv1, uv3, uv4, v1->co, v3->co, v4->co, vlr->n, tang);
if (do_tangent) {
tav= RE_vertren_get_tangent(obr, v1, 1);
add_v3_v3(tav, tang);
tav= RE_vertren_get_tangent(obr, v3, 1);
add_v3_v3(tav, tang);
tav= RE_vertren_get_tangent(obr, v4, 1);
add_v3_v3(tav, tang);
}
}
}
/****************************************************************
************ tangent space generation interface ****************
****************************************************************/
typedef struct {
ObjectRen *obr;
} SRenderMeshToTangent;
/* interface */
#include "mikktspace.h"
static int GetNumFaces(const SMikkTSpaceContext * pContext)
{
SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
return pMesh->obr->totvlak;
}
static int GetNumVertsOfFace(const SMikkTSpaceContext * pContext, const int face_num)
{
SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
return vlr->v4!=NULL ? 4 : 3;
}
static void GetPosition(const SMikkTSpaceContext * pContext, float fPos[], const int face_num, const int vert_index)
{
//assert(vert_index>=0 && vert_index<4);
SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
const float *co= (&vlr->v1)[vert_index]->co;
copy_v3_v3(fPos, co);
}
static void GetTextureCoordinate(const SMikkTSpaceContext * pContext, float fUV[], const int face_num, const int vert_index)
{
//assert(vert_index>=0 && vert_index<4);
SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
MTFace *tface= RE_vlakren_get_tface(pMesh->obr, vlr, pMesh->obr->actmtface, NULL, 0);
const float *coord;
if (tface != NULL) {
coord= tface->uv[vert_index];
fUV[0]= coord[0]; fUV[1]= coord[1];
}
else if ((coord= (&vlr->v1)[vert_index]->orco)) {
map_to_sphere(&fUV[0], &fUV[1], coord[0], coord[1], coord[2]);
}
else { /* else we get un-initialized value, 0.0 ok default? */
fUV[0]= fUV[1]= 0.0f;
}
}
static void GetNormal(const SMikkTSpaceContext * pContext, float fNorm[], const int face_num, const int vert_index)
{
//assert(vert_index>=0 && vert_index<4);
SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
if (vlr->flag & ME_SMOOTH) {
const float *n = (&vlr->v1)[vert_index]->n;
copy_v3_v3(fNorm, n);
}
else {
negate_v3_v3(fNorm, vlr->n);
}
}
static void SetTSpace(const SMikkTSpaceContext * pContext, const float fvTangent[], const float fSign, const int face_num, const int iVert)
{
//assert(vert_index>=0 && vert_index<4);
SRenderMeshToTangent * pMesh = (SRenderMeshToTangent *) pContext->m_pUserData;
VlakRen *vlr= RE_findOrAddVlak(pMesh->obr, face_num);
float * ftang= RE_vlakren_get_nmap_tangent(pMesh->obr, vlr, 1);
if (ftang!=NULL) {
copy_v3_v3(&ftang[iVert*4+0], fvTangent);
ftang[iVert*4+3]=fSign;
}
}
static void calc_vertexnormals(Render *UNUSED(re), ObjectRen *obr, int do_tangent, int do_nmap_tangent)
{
int a;
/* clear all vertex normals */
for (a=0; a<obr->totvert; a++) {
VertRen *ver= RE_findOrAddVert(obr, a);
ver->n[0]=ver->n[1]=ver->n[2]= 0.0f;
}
/* calculate cos of angles and point-masses, use as weight factor to
* add face normal to vertex */
for (a=0; a<obr->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(obr, a);
if (vlr->flag & ME_SMOOTH) {
float *n4= (vlr->v4)? vlr->v4->n: NULL;
float *c4= (vlr->v4)? vlr->v4->co: NULL;
accumulate_vertex_normals(vlr->v1->n, vlr->v2->n, vlr->v3->n, n4,
vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co, c4);
}
if (do_tangent) {
/* tangents still need to be calculated for flat faces too */
/* weighting removed, they are not vertexnormals */
calc_tangent_vector(obr, vlr, do_tangent);
}
}
/* do solid faces */
for (a=0; a<obr->totvlak; a++) {
VlakRen *vlr= RE_findOrAddVlak(obr, a);
if ((vlr->flag & ME_SMOOTH)==0) {
if (is_zero_v3(vlr->v1->n)) copy_v3_v3(vlr->v1->n, vlr->n);
if (is_zero_v3(vlr->v2->n)) copy_v3_v3(vlr->v2->n, vlr->n);
if (is_zero_v3(vlr->v3->n)) copy_v3_v3(vlr->v3->n, vlr->n);
if (vlr->v4 && is_zero_v3(vlr->v4->n)) copy_v3_v3(vlr->v4->n, vlr->n);
}
}
/* normalize vertex normals */
for (a=0; a<obr->totvert; a++) {
VertRen *ver= RE_findOrAddVert(obr, a);
normalize_v3(ver->n);
if (do_tangent) {
float *tav= RE_vertren_get_tangent(obr, ver, 0);
if (tav) {
/* orthonorm. */
const float tdn = dot_v3v3(tav, ver->n);
tav[0] -= ver->n[0]*tdn;
tav[1] -= ver->n[1]*tdn;
tav[2] -= ver->n[2]*tdn;
normalize_v3(tav);
}
}
}
/* normal mapping tangent with mikktspace */
if (do_nmap_tangent != FALSE) {
SRenderMeshToTangent mesh2tangent;
SMikkTSpaceContext sContext;
SMikkTSpaceInterface sInterface;
memset(&mesh2tangent, 0, sizeof(SRenderMeshToTangent));
memset(&sContext, 0, sizeof(SMikkTSpaceContext));
memset(&sInterface, 0, sizeof(SMikkTSpaceInterface));
mesh2tangent.obr = obr;
sContext.m_pUserData = &mesh2tangent;
sContext.m_pInterface = &sInterface;
sInterface.m_getNumFaces = GetNumFaces;
sInterface.m_getNumVerticesOfFace = GetNumVertsOfFace;
sInterface.m_getPosition = GetPosition;
sInterface.m_getTexCoord = GetTextureCoordinate;
sInterface.m_getNormal = GetNormal;
sInterface.m_setTSpaceBasic = SetTSpace;
genTangSpaceDefault(&sContext);
}
}
/* ------------------------------------------------------------------------- */
/* Autosmoothing: */
/* ------------------------------------------------------------------------- */
typedef struct ASvert {
int totface;
ListBase faces;
} ASvert;
typedef struct ASface {
struct ASface *next, *prev;
VlakRen *vlr[4];
VertRen *nver[4];
} ASface;
static void as_addvert(ASvert *asv, VertRen *v1, VlakRen *vlr)
{
ASface *asf;
int a;
if (v1 == NULL) return;
if (asv->faces.first==NULL) {
asf= MEM_callocN(sizeof(ASface), "asface");
BLI_addtail(&asv->faces, asf);
}
asf= asv->faces.last;
for (a=0; a<4; a++) {
if (asf->vlr[a]==NULL) {
asf->vlr[a]= vlr;
asv->totface++;
break;
}
}
/* new face struct */
if (a==4) {
asf= MEM_callocN(sizeof(ASface), "asface");
BLI_addtail(&asv->faces, asf);
asf->vlr[0]= vlr;
asv->totface++;
}
}
static int as_testvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
{
/* return 1: vertex needs a copy */
ASface *asf;
float inp;
int a;
if (vlr==0) return 0;
asf= asv->faces.first;
while (asf) {
for (a=0; a<4; a++) {
if (asf->vlr[a] && asf->vlr[a]!=vlr) {
inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
if (inp < thresh) return 1;
}
}
asf= asf->next;
}
return 0;
}
static VertRen *as_findvertex(VlakRen *vlr, VertRen *UNUSED(ver), ASvert *asv, float thresh)
{
/* return when new vertex already was made */
ASface *asf;
float inp;
int a;
asf= asv->faces.first;
while (asf) {
for (a=0; a<4; a++) {
if (asf->vlr[a] && asf->vlr[a]!=vlr) {
/* this face already made a copy for this vertex! */
if (asf->nver[a]) {
inp = fabsf(dot_v3v3(vlr->n, asf->vlr[a]->n));
if (inp >= thresh) {
return asf->nver[a];
}
}
}
}
asf= asf->next;
}
return NULL;
}
/* note; autosmooth happens in object space still, after applying autosmooth we rotate */
/* note2; actually, when original mesh and displist are equal sized, face normals are from original mesh */
static void autosmooth(Render *UNUSED(re), ObjectRen *obr, float mat[4][4], int degr)
{
ASvert *asv, *asverts;
ASface *asf;
VertRen *ver, *v1;
VlakRen *vlr;
float thresh;
int a, b, totvert;
if (obr->totvert==0) return;
asverts= MEM_callocN(sizeof(ASvert)*obr->totvert, "all smooth verts");
thresh= cosf(DEG2RADF((0.5f + (float)degr)));
/* step zero: give faces normals of original mesh, if this is provided */
/* step one: construct listbase of all vertices and pointers to faces */
for (a=0; a<obr->totvlak; a++) {
vlr= RE_findOrAddVlak(obr, a);
/* skip wire faces */
if (vlr->v2 != vlr->v3) {
as_addvert(asverts+vlr->v1->index, vlr->v1, vlr);
as_addvert(asverts+vlr->v2->index, vlr->v2, vlr);
as_addvert(asverts+vlr->v3->index, vlr->v3, vlr);
if (vlr->v4)
as_addvert(asverts+vlr->v4->index, vlr->v4, vlr);
}
}
totvert= obr->totvert;
/* we now test all vertices, when faces have a normal too much different: they get a new vertex */
for (a=0, asv=asverts; a<totvert; a++, asv++) {
if (asv && asv->totface>1) {
ver= RE_findOrAddVert(obr, a);
asf= asv->faces.first;
while (asf) {
for (b=0; b<4; b++) {
/* is there a reason to make a new vertex? */
vlr= asf->vlr[b];
if ( as_testvertex(vlr, ver, asv, thresh) ) {
/* already made a new vertex within threshold? */
v1= as_findvertex(vlr, ver, asv, thresh);
if (v1==NULL) {
/* make a new vertex */
v1= RE_vertren_copy(obr, ver);
}
asf->nver[b]= v1;
if (vlr->v1==ver) vlr->v1= v1;
if (vlr->v2==ver) vlr->v2= v1;
if (vlr->v3==ver) vlr->v3= v1;
if (vlr->v4==ver) vlr->v4= v1;
}
}
asf= asf->next;
}
}
}
/* free */
for (a=0; a<totvert; a++) {
BLI_freelistN(&asverts[a].faces);
}
MEM_freeN(asverts);
/* rotate vertices and calculate normal of faces */
for (a=0; a<obr->totvert; a++) {
ver= RE_findOrAddVert(obr, a);
mul_m4_v3(mat, ver->co);
}
for (a=0; a<obr->totvlak; a++) {
vlr= RE_findOrAddVlak(obr, a);
/* skip wire faces */
if (vlr->v2 != vlr->v3) {
if (vlr->v4)
normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
else
normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
}
}
}
/* ------------------------------------------------------------------------- */
/* Orco hash and Materials */
/* ------------------------------------------------------------------------- */
static float *get_object_orco(Render *re, Object *ob)
{
float *orco;
if (!re->orco_hash)
re->orco_hash = BLI_ghash_ptr_new("get_object_orco gh");
orco = BLI_ghash_lookup(re->orco_hash, ob);
if (!orco) {
if (ELEM(ob->type, OB_CURVE, OB_FONT)) {
orco = BKE_curve_make_orco(re->scene, ob);
}
else if (ob->type==OB_SURF) {
orco = BKE_curve_surf_make_orco(ob);
}
if (orco)
BLI_ghash_insert(re->orco_hash, ob, orco);
}
return orco;
}
static void set_object_orco(Render *re, void *ob, float *orco)
{
if (!re->orco_hash)
re->orco_hash = BLI_ghash_ptr_new("set_object_orco gh");
BLI_ghash_insert(re->orco_hash, ob, orco);
}
static void free_mesh_orco_hash(Render *re)
{
if (re->orco_hash) {
BLI_ghash_free(re->orco_hash, NULL, (GHashValFreeFP)MEM_freeN);
re->orco_hash = NULL;
}
}
static void check_material_mapto(Material *ma)
{
int a;
ma->mapto_textured = 0;
/* cache which inputs are actually textured.
* this can avoid a bit of time spent iterating through all the texture slots, map inputs and map tos
* every time a property which may or may not be textured is accessed */
for (a=0; a<MAX_MTEX; a++) {
if (ma->mtex[a] && ma->mtex[a]->tex) {
/* currently used only in volume render, so we'll check for those flags */
if (ma->mtex[a]->mapto & MAP_DENSITY) ma->mapto_textured |= MAP_DENSITY;
if (ma->mtex[a]->mapto & MAP_EMISSION) ma->mapto_textured |= MAP_EMISSION;
if (ma->mtex[a]->mapto & MAP_EMISSION_COL) ma->mapto_textured |= MAP_EMISSION_COL;
if (ma->mtex[a]->mapto & MAP_SCATTERING) ma->mapto_textured |= MAP_SCATTERING;
if (ma->mtex[a]->mapto & MAP_TRANSMISSION_COL) ma->mapto_textured |= MAP_TRANSMISSION_COL;
if (ma->mtex[a]->mapto & MAP_REFLECTION) ma->mapto_textured |= MAP_REFLECTION;
if (ma->mtex[a]->mapto & MAP_REFLECTION_COL) ma->mapto_textured |= MAP_REFLECTION_COL;
}
}
}
static void flag_render_node_material(Render *re, bNodeTree *ntree)
{
bNode *node;
for (node=ntree->nodes.first; node; node= node->next) {
if (node->id) {
if (GS(node->id->name)==ID_MA) {
Material *ma= (Material *)node->id;
if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
re->flag |= R_ZTRA;
ma->flag |= MA_IS_USED;
}
else if (node->type==NODE_GROUP)
flag_render_node_material(re, (bNodeTree *)node->id);
}
}
}
static Material *give_render_material(Render *re, Object *ob, short nr)
{
extern Material defmaterial; /* material.c */
Material *ma;
ma= give_current_material(ob, nr);
if (ma==NULL)
ma= &defmaterial;
if (re->r.mode & R_SPEED) ma->texco |= NEED_UV;
if (ma->material_type == MA_TYPE_VOLUME) {
ma->mode |= MA_TRANSP;
ma->mode &= ~MA_SHADBUF;
}
if ((ma->mode & MA_TRANSP) && (ma->mode & MA_ZTRANSP))
re->flag |= R_ZTRA;
/* for light groups and SSS */
ma->flag |= MA_IS_USED;
if (ma->nodetree && ma->use_nodes)
flag_render_node_material(re, ma->nodetree);
check_material_mapto(ma);
return ma;
}
/* ------------------------------------------------------------------------- */
/* Particles */
/* ------------------------------------------------------------------------- */
typedef struct ParticleStrandData {
struct MCol *mcol;
float *orco, *uvco, *surfnor;
float time, adapt_angle, adapt_pix, size;
int totuv, totcol;
int first, line, adapt, override_uv;
}
ParticleStrandData;
/* future thread problem... */
static void static_particle_strand(Render *re, ObjectRen *obr, Material *ma, ParticleStrandData *sd, const float vec[3], const float vec1[3])
{
static VertRen *v1= NULL, *v2= NULL;
VlakRen *vlr= NULL;
float nor[3], cross[3], crosslen, w, dx, dy, width;
static float anor[3], avec[3];
int flag, i;
static int second=0;
sub_v3_v3v3(nor, vec, vec1);
normalize_v3(nor); /* nor needed as tangent */
cross_v3_v3v3(cross, vec, nor);
/* turn cross in pixelsize */
w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
dx= re->winx*cross[0]*re->winmat[0][0];
dy= re->winy*cross[1]*re->winmat[1][1];
w= sqrt(dx*dx + dy*dy)/w;
if (w!=0.0f) {
float fac;
if (ma->strand_ease!=0.0f) {
if (ma->strand_ease<0.0f)
fac= pow(sd->time, 1.0f+ma->strand_ease);
else
fac= pow(sd->time, 1.0f/(1.0f-ma->strand_ease));
}
else fac= sd->time;
width= ((1.0f-fac)*ma->strand_sta + (fac)*ma->strand_end);
/* use actual Blender units for strand width and fall back to minimum width */
if (ma->mode & MA_STR_B_UNITS) {
crosslen= len_v3(cross);
w= 2.0f*crosslen*ma->strand_min/w;
if (width < w)
width= w;
/*cross is the radius of the strand so we want it to be half of full width */
mul_v3_fl(cross, 0.5f/crosslen);
}
else
width/=w;
mul_v3_fl(cross, width);
}
if (ma->mode & MA_TANGENT_STR)
flag= R_SMOOTH|R_TANGENT;
else
flag= R_SMOOTH;
/* only 1 pixel wide strands filled in as quads now, otherwise zbuf errors */
if (ma->strand_sta==1.0f)
flag |= R_STRAND;
/* single face line */
if (sd->line) {
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->flag= flag;
vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
copy_v3_v3(vlr->v1->co, vec);
add_v3_v3(vlr->v1->co, cross);
copy_v3_v3(vlr->v1->n, nor);
vlr->v1->orco= sd->orco;
vlr->v1->accum = -1.0f; /* accum abuse for strand texco */
copy_v3_v3(vlr->v2->co, vec);
sub_v3_v3v3(vlr->v2->co, vlr->v2->co, cross);
copy_v3_v3(vlr->v2->n, nor);
vlr->v2->orco= sd->orco;
vlr->v2->accum= vlr->v1->accum;
copy_v3_v3(vlr->v4->co, vec1);
add_v3_v3(vlr->v4->co, cross);
copy_v3_v3(vlr->v4->n, nor);
vlr->v4->orco= sd->orco;
vlr->v4->accum = 1.0f; /* accum abuse for strand texco */
copy_v3_v3(vlr->v3->co, vec1);
sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
copy_v3_v3(vlr->v3->n, nor);
vlr->v3->orco= sd->orco;
vlr->v3->accum= vlr->v4->accum;
normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
vlr->mat= ma;
vlr->ec= ME_V2V3;
if (sd->surfnor) {
float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
copy_v3_v3(snor, sd->surfnor);
}
if (sd->uvco) {
for (i=0; i<sd->totuv; i++) {
MTFace *mtf;
mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
mtf->uv[0][0]=mtf->uv[1][0]=
mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
mtf->uv[0][1]=mtf->uv[1][1]=
mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
}
if (sd->override_uv>=0) {
MTFace *mtf;
mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
mtf->uv[0][1]=mtf->uv[1][1]=0.0f;
mtf->uv[2][1]=mtf->uv[3][1]=1.0f;
}
}
if (sd->mcol) {
for (i=0; i<sd->totcol; i++) {
MCol *mc;
mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
}
}
}
/* first two vertices of a strand */
else if (sd->first) {
if (sd->adapt) {
copy_v3_v3(anor, nor);
copy_v3_v3(avec, vec);
second=1;
}
v1= RE_findOrAddVert(obr, obr->totvert++);
v2= RE_findOrAddVert(obr, obr->totvert++);
copy_v3_v3(v1->co, vec);
add_v3_v3(v1->co, cross);
copy_v3_v3(v1->n, nor);
v1->orco= sd->orco;
v1->accum = -1.0f; /* accum abuse for strand texco */
copy_v3_v3(v2->co, vec);
sub_v3_v3v3(v2->co, v2->co, cross);
copy_v3_v3(v2->n, nor);
v2->orco= sd->orco;
v2->accum= v1->accum;
}
/* more vertices & faces to strand */
else {
if (sd->adapt==0 || second) {
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->flag= flag;
vlr->v1= v1;
vlr->v2= v2;
vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
v1= vlr->v4; /* cycle */
v2= vlr->v3; /* cycle */
if (sd->adapt) {
second=0;
copy_v3_v3(anor, nor);
copy_v3_v3(avec, vec);
}
}
else if (sd->adapt) {
float dvec[3], pvec[3];
sub_v3_v3v3(dvec, avec, vec);
project_v3_v3v3(pvec, dvec, vec);
sub_v3_v3v3(dvec, dvec, pvec);
w= vec[2]*re->winmat[2][3] + re->winmat[3][3];
dx= re->winx*dvec[0]*re->winmat[0][0]/w;
dy= re->winy*dvec[1]*re->winmat[1][1]/w;
w= sqrt(dx*dx + dy*dy);
if (dot_v3v3(anor, nor)<sd->adapt_angle && w>sd->adapt_pix) {
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->flag= flag;
vlr->v1= v1;
vlr->v2= v2;
vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
v1= vlr->v4; /* cycle */
v2= vlr->v3; /* cycle */
copy_v3_v3(anor, nor);
copy_v3_v3(avec, vec);
}
else {
vlr= RE_findOrAddVlak(obr, obr->totvlak-1);
}
}
copy_v3_v3(vlr->v4->co, vec);
add_v3_v3(vlr->v4->co, cross);
copy_v3_v3(vlr->v4->n, nor);
vlr->v4->orco= sd->orco;
vlr->v4->accum= -1.0f + 2.0f * sd->time; /* accum abuse for strand texco */
copy_v3_v3(vlr->v3->co, vec);
sub_v3_v3v3(vlr->v3->co, vlr->v3->co, cross);
copy_v3_v3(vlr->v3->n, nor);
vlr->v3->orco= sd->orco;
vlr->v3->accum= vlr->v4->accum;
normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
vlr->mat= ma;
vlr->ec= ME_V2V3;
if (sd->surfnor) {
float *snor= RE_vlakren_get_surfnor(obr, vlr, 1);
copy_v3_v3(snor, sd->surfnor);
}
if (sd->uvco) {
for (i=0; i<sd->totuv; i++) {
MTFace *mtf;
mtf=RE_vlakren_get_tface(obr, vlr, i, NULL, 1);
mtf->uv[0][0]=mtf->uv[1][0]=
mtf->uv[2][0]=mtf->uv[3][0]=(sd->uvco+2*i)[0];
mtf->uv[0][1]=mtf->uv[1][1]=
mtf->uv[2][1]=mtf->uv[3][1]=(sd->uvco+2*i)[1];
}
if (sd->override_uv>=0) {
MTFace *mtf;
mtf=RE_vlakren_get_tface(obr, vlr, sd->override_uv, NULL, 0);
mtf->uv[0][0]=mtf->uv[3][0]=0.0f;
mtf->uv[1][0]=mtf->uv[2][0]=1.0f;
mtf->uv[0][1]=mtf->uv[1][1]=(vlr->v1->accum+1.0f)/2.0f;
mtf->uv[2][1]=mtf->uv[3][1]=(vlr->v3->accum+1.0f)/2.0f;
}
}
if (sd->mcol) {
for (i=0; i<sd->totcol; i++) {
MCol *mc;
mc=RE_vlakren_get_mcol(obr, vlr, i, NULL, 1);
mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
mc[0]=mc[1]=mc[2]=mc[3]=sd->mcol[i];
}
}
}
}
static void static_particle_wire(ObjectRen *obr, Material *ma, const float vec[3], const float vec1[3], int first, int line)
{
VlakRen *vlr;
static VertRen *v1;
if (line) {
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
vlr->v3= vlr->v2;
vlr->v4= NULL;
copy_v3_v3(vlr->v1->co, vec);
copy_v3_v3(vlr->v2->co, vec1);
sub_v3_v3v3(vlr->n, vec, vec1);
normalize_v3(vlr->n);
copy_v3_v3(vlr->v1->n, vlr->n);
copy_v3_v3(vlr->v2->n, vlr->n);
vlr->mat= ma;
vlr->ec= ME_V1V2;
}
else if (first) {
v1= RE_findOrAddVert(obr, obr->totvert++);
copy_v3_v3(v1->co, vec);
}
else {
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->v1= v1;
vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
vlr->v3= vlr->v2;
vlr->v4= NULL;
v1= vlr->v2; /* cycle */
copy_v3_v3(v1->co, vec);
sub_v3_v3v3(vlr->n, vec, vec1);
normalize_v3(vlr->n);
copy_v3_v3(v1->n, vlr->n);
vlr->mat= ma;
vlr->ec= ME_V1V2;
}
}
static void particle_curve(Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd,
const float loc[3], const float loc1[3], int seed, float *pa_co)
{
HaloRen *har=0;
if (ma->material_type == MA_TYPE_WIRE)
static_particle_wire(obr, ma, loc, loc1, sd->first, sd->line);
else if (ma->material_type == MA_TYPE_HALO) {
har= RE_inithalo_particle(re, obr, dm, ma, loc, loc1, sd->orco, sd->uvco, sd->size, 1.0, seed, pa_co);
if (har) har->lay= obr->ob->lay;
}
else
static_particle_strand(re, obr, ma, sd, loc, loc1);
}
static void particle_billboard(Render *re, ObjectRen *obr, Material *ma, ParticleBillboardData *bb)
{
VlakRen *vlr;
MTFace *mtf;
float xvec[3], yvec[3], zvec[3], bb_center[3];
/* Number of tiles */
int totsplit = bb->uv_split * bb->uv_split;
int tile, x, y;
/* Tile offsets */
float uvx = 0.0f, uvy = 0.0f, uvdx = 1.0f, uvdy = 1.0f, time = 0.0f;
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->v1= RE_findOrAddVert(obr, obr->totvert++);
vlr->v2= RE_findOrAddVert(obr, obr->totvert++);
vlr->v3= RE_findOrAddVert(obr, obr->totvert++);
vlr->v4= RE_findOrAddVert(obr, obr->totvert++);
psys_make_billboard(bb, xvec, yvec, zvec, bb_center);
add_v3_v3v3(vlr->v1->co, bb_center, xvec);
add_v3_v3(vlr->v1->co, yvec);
mul_m4_v3(re->viewmat, vlr->v1->co);
sub_v3_v3v3(vlr->v2->co, bb_center, xvec);
add_v3_v3(vlr->v2->co, yvec);
mul_m4_v3(re->viewmat, vlr->v2->co);
sub_v3_v3v3(vlr->v3->co, bb_center, xvec);
sub_v3_v3v3(vlr->v3->co, vlr->v3->co, yvec);
mul_m4_v3(re->viewmat, vlr->v3->co);
add_v3_v3v3(vlr->v4->co, bb_center, xvec);
sub_v3_v3(vlr->v4->co, yvec);
mul_m4_v3(re->viewmat, vlr->v4->co);
normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
copy_v3_v3(vlr->v1->n, vlr->n);
copy_v3_v3(vlr->v2->n, vlr->n);
copy_v3_v3(vlr->v3->n, vlr->n);
copy_v3_v3(vlr->v4->n, vlr->n);
vlr->mat= ma;
vlr->ec= ME_V2V3;
if (bb->uv_split > 1) {
uvdx = uvdy = 1.0f / (float)bb->uv_split;
if (ELEM(bb->anim, PART_BB_ANIM_AGE, PART_BB_ANIM_FRAME)) {
if (bb->anim == PART_BB_ANIM_FRAME)
time = ((int)(bb->time * bb->lifetime) % totsplit)/(float)totsplit;
else
time = bb->time;
}
else if (bb->anim == PART_BB_ANIM_ANGLE) {
if (bb->align == PART_BB_VIEW) {
time = (float)fmod((bb->tilt + 1.0f) / 2.0f, 1.0);
}
else {
float axis1[3] = {0.0f, 0.0f, 0.0f};
float axis2[3] = {0.0f, 0.0f, 0.0f};
axis1[(bb->align + 1) % 3] = 1.0f;
axis2[(bb->align + 2) % 3] = 1.0f;
if (bb->lock == 0) {
zvec[bb->align] = 0.0f;
normalize_v3(zvec);
}
time = saacos(dot_v3v3(zvec, axis1)) / (float)M_PI;
if (dot_v3v3(zvec, axis2) < 0.0f)
time = 1.0f - time / 2.0f;
else
time /= 2.0f;
}
}
if (bb->split_offset == PART_BB_OFF_LINEAR)
time = (float)fmod(time + (float)bb->num / (float)totsplit, 1.0f);
else if (bb->split_offset==PART_BB_OFF_RANDOM)
time = (float)fmod(time + bb->random, 1.0f);
/* Find the coordinates in tile space (integer), then convert to UV
* space (float). Note that Y is flipped. */
tile = (int)((time + FLT_EPSILON10) * totsplit);
x = tile % bb->uv_split;
y = tile / bb->uv_split;
y = (bb->uv_split - 1) - y;
uvx = uvdx * x;
uvy = uvdy * y;
}
/* normal UVs */
if (bb->uv[0] >= 0) {
mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[0], NULL, 1);
mtf->uv[0][0] = 1.0f;
mtf->uv[0][1] = 1.0f;
mtf->uv[1][0] = 0.0f;
mtf->uv[1][1] = 1.0f;
mtf->uv[2][0] = 0.0f;
mtf->uv[2][1] = 0.0f;
mtf->uv[3][0] = 1.0f;
mtf->uv[3][1] = 0.0f;
}
/* time-index UVs */
if (bb->uv[1] >= 0) {
mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[1], NULL, 1);
mtf->uv[0][0] = mtf->uv[1][0] = mtf->uv[2][0] = mtf->uv[3][0] = bb->time;
mtf->uv[0][1] = mtf->uv[1][1] = mtf->uv[2][1] = mtf->uv[3][1] = (float)bb->num/(float)bb->totnum;
}
/* split UVs */
if (bb->uv_split > 1 && bb->uv[2] >= 0) {
mtf = RE_vlakren_get_tface(obr, vlr, bb->uv[2], NULL, 1);
mtf->uv[0][0] = uvx + uvdx;
mtf->uv[0][1] = uvy + uvdy;
mtf->uv[1][0] = uvx;
mtf->uv[1][1] = uvy + uvdy;
mtf->uv[2][0] = uvx;
mtf->uv[2][1] = uvy;
mtf->uv[3][0] = uvx + uvdx;
mtf->uv[3][1] = uvy;
}
}
static void particle_normal_ren(short ren_as, ParticleSettings *part, Render *re, ObjectRen *obr, DerivedMesh *dm, Material *ma, ParticleStrandData *sd, ParticleBillboardData *bb, ParticleKey *state, int seed, float hasize, float *pa_co)
{
float loc[3], loc0[3], loc1[3], vel[3];
copy_v3_v3(loc, state->co);
if (ren_as != PART_DRAW_BB)
mul_m4_v3(re->viewmat, loc);
switch (ren_as) {
case PART_DRAW_LINE:
sd->line = 1;
sd->time = 0.0f;
sd->size = hasize;
copy_v3_v3(vel, state->vel);
mul_mat3_m4_v3(re->viewmat, vel);
normalize_v3(vel);
if (part->draw & PART_DRAW_VEL_LENGTH)
mul_v3_fl(vel, len_v3(state->vel));
madd_v3_v3v3fl(loc0, loc, vel, -part->draw_line[0]);
madd_v3_v3v3fl(loc1, loc, vel, part->draw_line[1]);
particle_curve(re, obr, dm, ma, sd, loc0, loc1, seed, pa_co);
break;
case PART_DRAW_BB:
copy_v3_v3(bb->vec, loc);
copy_v3_v3(bb->vel, state->vel);
particle_billboard(re, obr, ma, bb);
break;
default:
{
HaloRen *har=0;
har = RE_inithalo_particle(re, obr, dm, ma, loc, NULL, sd->orco, sd->uvco, hasize, 0.0, seed, pa_co);
if (har) har->lay= obr->ob->lay;
break;
}
}
}
static void get_particle_uvco_mcol(short from, DerivedMesh *dm, float *fuv, int num, ParticleStrandData *sd)
{
int i;
/* get uvco */
if (sd->uvco && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
for (i=0; i<sd->totuv; i++) {
if (num != DMCACHE_NOTFOUND) {
MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
MTFace *mtface = (MTFace*)CustomData_get_layer_n(&dm->faceData, CD_MTFACE, i);
mtface += num;
psys_interpolate_uvs(mtface, mface->v4, fuv, sd->uvco + 2 * i);
}
else {
sd->uvco[2*i] = 0.0f;
sd->uvco[2*i + 1] = 0.0f;
}
}
}
/* get mcol */
if (sd->mcol && ELEM(from, PART_FROM_FACE, PART_FROM_VOLUME)) {
for (i=0; i<sd->totcol; i++) {
if (num != DMCACHE_NOTFOUND) {
MFace *mface = dm->getTessFaceData(dm, num, CD_MFACE);
MCol *mc = (MCol*)CustomData_get_layer_n(&dm->faceData, CD_MCOL, i);
mc += num * 4;
psys_interpolate_mcol(mc, mface->v4, fuv, sd->mcol + i);
}
else
memset(&sd->mcol[i], 0, sizeof(MCol));
}
}
}
static int render_new_particle_system(Render *re, ObjectRen *obr, ParticleSystem *psys, int timeoffset)
{
Object *ob= obr->ob;
// Object *tob=0;
Material *ma=0;
ParticleSystemModifierData *psmd;
ParticleSystem *tpsys=0;
ParticleSettings *part, *tpart=0;
ParticleData *pars, *pa=0, *tpa=0;
ParticleKey *states=0;
ParticleKey state;
ParticleCacheKey *cache=0;
ParticleBillboardData bb;
ParticleSimulationData sim = {0};
ParticleStrandData sd;
StrandBuffer *strandbuf=0;
StrandVert *svert=0;
StrandBound *sbound= 0;
StrandRen *strand=0;
RNG *rng= 0;
float loc[3], loc1[3], loc0[3], mat[4][4], nmat[3][3], co[3], nor[3], duplimat[4][4];
float strandlen=0.0f, curlen=0.0f;
float hasize, pa_size, r_tilt, r_length;
float pa_time, pa_birthtime, pa_dietime;
float random, simplify[2], pa_co[3];
const float cfra= BKE_scene_frame_get(re->scene);
int i, a, k, max_k=0, totpart, do_simplify = FALSE, do_surfacecache = FALSE, use_duplimat = FALSE;
int totchild=0;
int seed, path_nbr=0, orco1=0, num;
int totface;
char **uv_name=0;
const int *index_mf_to_mpoly = NULL;
const int *index_mp_to_orig = NULL;
/* 1. check that everything is ok & updated */
if (psys==NULL)
return 0;
part=psys->part;
pars=psys->particles;
if (part==NULL || pars==NULL || !psys_check_enabled(ob, psys))
return 0;
if (part->ren_as==PART_DRAW_OB || part->ren_as==PART_DRAW_GR || part->ren_as==PART_DRAW_NOT)
return 1;
/* 2. start initializing things */
/* last possibility to bail out! */
psmd = psys_get_modifier(ob, psys);
if (!(psmd->modifier.mode & eModifierMode_Render))
return 0;
sim.scene= re->scene;
sim.ob= ob;
sim.psys= psys;
sim.psmd= psmd;
if (part->phystype==PART_PHYS_KEYED)
psys_count_keyed_targets(&sim);
totchild=psys->totchild;
/* can happen for disconnected/global hair */
if (part->type==PART_HAIR && !psys->childcache)
totchild= 0;
if (G.is_rendering == FALSE) { /* preview render */
totchild = (int)((float)totchild * (float)part->disp / 100.0f);
}
psys->flag |= PSYS_DRAWING;
rng= BLI_rng_new(psys->seed);
totpart=psys->totpart;
memset(&sd, 0, sizeof(ParticleStrandData));
sd.override_uv = -1;
/* 2.1 setup material stff */
ma= give_render_material(re, ob, part->omat);
#if 0 /* XXX old animation system */
if (ma->ipo) {
calc_ipo(ma->ipo, cfra);
execute_ipo((ID *)ma, ma->ipo);
}
#endif /* XXX old animation system */
hasize = ma->hasize;
seed = ma->seed1;
re->flag |= R_HALO;
RE_set_customdata_names(obr, &psmd->dm->faceData);
sd.totuv = CustomData_number_of_layers(&psmd->dm->faceData, CD_MTFACE);
sd.totcol = CustomData_number_of_layers(&psmd->dm->faceData, CD_MCOL);
if (ma->texco & TEXCO_UV && sd.totuv) {
sd.uvco = MEM_callocN(sd.totuv * 2 * sizeof(float), "particle_uvs");
if (ma->strand_uvname[0]) {
sd.override_uv = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, ma->strand_uvname);
sd.override_uv -= CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
}
}
else
sd.uvco = NULL;
if (sd.totcol)
sd.mcol = MEM_callocN(sd.totcol * sizeof(MCol), "particle_mcols");
/* 2.2 setup billboards */
if (part->ren_as == PART_DRAW_BB) {
int first_uv = CustomData_get_layer_index(&psmd->dm->faceData, CD_MTFACE);
bb.uv[0] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[0]);
if (bb.uv[0] < 0)
bb.uv[0] = CustomData_get_active_layer_index(&psmd->dm->faceData, CD_MTFACE);
bb.uv[1] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[1]);
bb.uv[2] = CustomData_get_named_layer_index(&psmd->dm->faceData, CD_MTFACE, psys->bb_uvname[2]);
if (first_uv >= 0) {
bb.uv[0] -= first_uv;
bb.uv[1] -= first_uv;
bb.uv[2] -= first_uv;
}
bb.align = part->bb_align;
bb.anim = part->bb_anim;
bb.lock = part->draw & PART_DRAW_BB_LOCK;
bb.ob = (part->bb_ob ? part->bb_ob : RE_GetCamera(re));
bb.split_offset = part->bb_split_offset;
bb.totnum = totpart+totchild;
bb.uv_split = part->bb_uv_split;
}
/* 2.5 setup matrices */
mult_m4_m4m4(mat, re->viewmat, ob->obmat);
invert_m4_m4(ob->imat, mat); /* need to be that way, for imat texture */
copy_m3_m4(nmat, ob->imat);
transpose_m3(nmat);
if (psys->flag & PSYS_USE_IMAT) {
/* psys->imat is the original emitter's inverse matrix, ob->obmat is the duplicated object's matrix */
mult_m4_m4m4(duplimat, ob->obmat, psys->imat);
use_duplimat = TRUE;
}
/* 2.6 setup strand rendering */
if (part->ren_as == PART_DRAW_PATH && psys->pathcache) {
path_nbr=(int)pow(2.0, (double) part->ren_step);
if (path_nbr) {
if (!ELEM(ma->material_type, MA_TYPE_HALO, MA_TYPE_WIRE)) {
sd.orco = MEM_mallocN(3*sizeof(float)*(totpart+totchild), "particle orcos");
set_object_orco(re, psys, sd.orco);
}
}
if (part->draw & PART_DRAW_REN_ADAPT) {
sd.adapt = 1;
sd.adapt_pix = (float)part->adapt_pix;
sd.adapt_angle = cosf(DEG2RADF((float)part->adapt_angle));
}
if (part->draw & PART_DRAW_REN_STRAND) {
strandbuf= RE_addStrandBuffer(obr, (totpart+totchild)*(path_nbr+1));
strandbuf->ma= ma;
strandbuf->lay= ob->lay;
copy_m4_m4(strandbuf->winmat, re->winmat);
strandbuf->winx= re->winx;
strandbuf->winy= re->winy;
strandbuf->maxdepth= 2;
strandbuf->adaptcos= cosf(DEG2RADF((float)part->adapt_angle));
strandbuf->overrideuv= sd.override_uv;
strandbuf->minwidth= ma->strand_min;
if (ma->strand_widthfade == 0.0f)
strandbuf->widthfade= -1.0f;
else if (ma->strand_widthfade >= 1.0f)
strandbuf->widthfade= 2.0f - ma->strand_widthfade;
else
strandbuf->widthfade= 1.0f/MAX2(ma->strand_widthfade, 1e-5f);
if (part->flag & PART_HAIR_BSPLINE)
strandbuf->flag |= R_STRAND_BSPLINE;
if (ma->mode & MA_STR_B_UNITS)
strandbuf->flag |= R_STRAND_B_UNITS;
svert= strandbuf->vert;
if (re->r.mode & R_SPEED)
do_surfacecache = TRUE;
else if ((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && (re->wrld.ao_gather_method == WO_AOGATHER_APPROX))
if (ma->amb != 0.0f)
do_surfacecache = TRUE;
totface= psmd->dm->getNumTessFaces(psmd->dm);
index_mf_to_mpoly = psmd->dm->getTessFaceDataArray(psmd->dm, CD_ORIGINDEX);
index_mp_to_orig = psmd->dm->getPolyDataArray(psmd->dm, CD_ORIGINDEX);
if (index_mf_to_mpoly == NULL) {
index_mp_to_orig = NULL;
}
for (a=0; a<totface; a++)
strandbuf->totbound = max_ii(strandbuf->totbound, (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a): a);
strandbuf->totbound++;
strandbuf->bound= MEM_callocN(sizeof(StrandBound)*strandbuf->totbound, "StrandBound");
sbound= strandbuf->bound;
sbound->start= sbound->end= 0;
}
}
if (sd.orco == 0) {
sd.orco = MEM_mallocN(3 * sizeof(float), "particle orco");
orco1 = 1;
}
if (path_nbr == 0)
psys->lattice = psys_get_lattice(&sim);
/* 3. start creating renderable things */
for (a=0, pa=pars; a<totpart+totchild; a++, pa++, seed++) {
random = BLI_rng_get_float(rng);
/* setup per particle individual stuff */
if (a<totpart) {
if (pa->flag & PARS_UNEXIST) continue;
pa_time=(cfra-pa->time)/pa->lifetime;
pa_birthtime = pa->time;
pa_dietime = pa->dietime;
hasize = ma->hasize;
/* XXX 'tpsys' is alwyas NULL, this code won't run! */
/* get orco */
if (tpsys && part->phystype == PART_PHYS_NO) {
tpa = tpsys->particles + pa->num;
psys_particle_on_emitter(psmd, tpart->from, tpa->num, pa->num_dmcache, tpa->fuv, tpa->foffset, co, nor, 0, 0, sd.orco, 0);
}
else
psys_particle_on_emitter(psmd, part->from, pa->num, pa->num_dmcache, pa->fuv, pa->foffset, co, nor, 0, 0, sd.orco, 0);
/* get uvco & mcol */
num= pa->num_dmcache;
if (num == DMCACHE_NOTFOUND)
if (pa->num < psmd->dm->getNumTessFaces(psmd->dm))
num= pa->num;
get_particle_uvco_mcol(part->from, psmd->dm, pa->fuv, num, &sd);
pa_size = pa->size;
r_tilt = 2.0f*(PSYS_FRAND(a) - 0.5f);
r_length = PSYS_FRAND(a+1);
if (path_nbr) {
cache = psys->pathcache[a];
max_k = (int)cache->steps;
}
if (totchild && (part->draw&PART_DRAW_PARENT)==0) continue;
}
else {
ChildParticle *cpa= psys->child+a-totpart;
if (path_nbr) {
cache = psys->childcache[a-totpart];
if (cache->steps < 0)
continue;
max_k = (int)cache->steps;
}
pa_time = psys_get_child_time(psys, cpa, cfra, &pa_birthtime, &pa_dietime);
pa_size = psys_get_child_size(psys, cpa, cfra, &pa_time);
r_tilt = 2.0f*(PSYS_FRAND(a + 21) - 0.5f);
r_length = PSYS_FRAND(a + 22);
num = cpa->num;
/* get orco */
if (part->childtype == PART_CHILD_FACES) {
psys_particle_on_emitter(psmd,
PART_FROM_FACE, cpa->num, DMCACHE_ISCHILD,
cpa->fuv, cpa->foffset, co, nor, 0, 0, sd.orco, 0);
}
else {
ParticleData *par = psys->particles + cpa->parent;
psys_particle_on_emitter(psmd, part->from,
par->num, DMCACHE_ISCHILD, par->fuv,
par->foffset, co, nor, 0, 0, sd.orco, 0);
}
/* get uvco & mcol */
if (part->childtype==PART_CHILD_FACES) {
get_particle_uvco_mcol(PART_FROM_FACE, psmd->dm, cpa->fuv, cpa->num, &sd);
}
else {
ParticleData *parent = psys->particles + cpa->parent;
num = parent->num_dmcache;
if (num == DMCACHE_NOTFOUND)
if (parent->num < psmd->dm->getNumTessFaces(psmd->dm))
num = parent->num;
get_particle_uvco_mcol(part->from, psmd->dm, parent->fuv, num, &sd);
}
do_simplify = psys_render_simplify_params(psys, cpa, simplify);
if (strandbuf) {
int orignum = (index_mf_to_mpoly) ? DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, cpa->num) : cpa->num;
if (orignum > sbound - strandbuf->bound) {
sbound= strandbuf->bound + orignum;
sbound->start= sbound->end= obr->totstrand;
}
}
}
/* TEXCO_PARTICLE */
pa_co[0] = pa_time;
pa_co[1] = 0.f;
pa_co[2] = 0.f;
/* surface normal shading setup */
if (ma->mode_l & MA_STR_SURFDIFF) {
mul_m3_v3(nmat, nor);
sd.surfnor= nor;
}
else
sd.surfnor= NULL;
/* strand render setup */
if (strandbuf) {
strand= RE_findOrAddStrand(obr, obr->totstrand++);
strand->buffer= strandbuf;
strand->vert= svert;
copy_v3_v3(strand->orco, sd.orco);
if (do_simplify) {
float *ssimplify= RE_strandren_get_simplify(obr, strand, 1);
ssimplify[0]= simplify[0];
ssimplify[1]= simplify[1];
}
if (sd.surfnor) {
float *snor= RE_strandren_get_surfnor(obr, strand, 1);
copy_v3_v3(snor, sd.surfnor);
}
if (do_surfacecache && num >= 0) {
int *facenum= RE_strandren_get_face(obr, strand, 1);
*facenum= num;
}
if (sd.uvco) {
for (i=0; i<sd.totuv; i++) {
if (i != sd.override_uv) {
float *uv= RE_strandren_get_uv(obr, strand, i, NULL, 1);
uv[0]= sd.uvco[2*i];
uv[1]= sd.uvco[2*i+1];
}
}
}
if (sd.mcol) {
for (i=0; i<sd.totcol; i++) {
MCol *mc= RE_strandren_get_mcol(obr, strand, i, NULL, 1);
*mc = sd.mcol[i];
}
}
sbound->end++;
}
/* strandco computation setup */
if (path_nbr) {
strandlen= 0.0f;
curlen= 0.0f;
for (k=1; k<=path_nbr; k++)
if (k<=max_k)
strandlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
}
if (path_nbr) {
/* render strands */
for (k=0; k<=path_nbr; k++) {
float time;
if (k<=max_k) {
copy_v3_v3(state.co, (cache+k)->co);
copy_v3_v3(state.vel, (cache+k)->vel);
}
else
continue;
if (k > 0)
curlen += len_v3v3((cache+k-1)->co, (cache+k)->co);
time= curlen/strandlen;
copy_v3_v3(loc, state.co);
mul_m4_v3(re->viewmat, loc);
if (strandbuf) {
copy_v3_v3(svert->co, loc);
svert->strandco= -1.0f + 2.0f*time;
svert++;
strand->totvert++;
}
else {
sd.size = hasize;
if (k==1) {
sd.first = 1;
sd.time = 0.0f;
sub_v3_v3v3(loc0, loc1, loc);
add_v3_v3v3(loc0, loc1, loc0);
particle_curve(re, obr, psmd->dm, ma, &sd, loc1, loc0, seed, pa_co);
}
sd.first = 0;
sd.time = time;
if (k)
particle_curve(re, obr, psmd->dm, ma, &sd, loc, loc1, seed, pa_co);
copy_v3_v3(loc1, loc);
}
}
}
else {
/* render normal particles */
if (part->trail_count > 1) {
float length = part->path_end * (1.0f - part->randlength * r_length);
int trail_count = part->trail_count * (1.0f - part->randlength * r_length);
float ct = (part->draw & PART_ABS_PATH_TIME) ? cfra : pa_time;
float dt = length / (trail_count ? (float)trail_count : 1.0f);
/* make sure we have pointcache in memory before getting particle on path */
psys_make_temp_pointcache(ob, psys);
for (i=0; i < trail_count; i++, ct -= dt) {
if (part->draw & PART_ABS_PATH_TIME) {
if (ct < pa_birthtime || ct > pa_dietime)
continue;
}
else if (ct < 0.0f || ct > 1.0f)
continue;
state.time = (part->draw & PART_ABS_PATH_TIME) ? -ct : ct;
psys_get_particle_on_path(&sim, a, &state, 1);
if (psys->parent)
mul_m4_v3(psys->parent->obmat, state.co);
if (use_duplimat)
mul_m4_v4(duplimat, state.co);
if (part->ren_as == PART_DRAW_BB) {
bb.random = random;
bb.offset[0] = part->bb_offset[0];
bb.offset[1] = part->bb_offset[1];
bb.size[0] = part->bb_size[0] * pa_size;
if (part->bb_align==PART_BB_VEL) {
float pa_vel = len_v3(state.vel);
float head = part->bb_vel_head*pa_vel;
float tail = part->bb_vel_tail*pa_vel;
bb.size[1] = part->bb_size[1]*pa_size + head + tail;
/* use offset to adjust the particle center. this is relative to size, so need to divide! */
if (bb.size[1] > 0.0f)
bb.offset[1] += (head-tail) / bb.size[1];
}
else
bb.size[1] = part->bb_size[1] * pa_size;
bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
bb.time = ct;
bb.num = a;
}
pa_co[0] = (part->draw & PART_ABS_PATH_TIME) ? (ct-pa_birthtime)/(pa_dietime-pa_birthtime) : ct;
pa_co[1] = (float)i/(float)(trail_count-1);
particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
}
}
else {
state.time=cfra;
if (psys_get_particle_state(&sim, a, &state, 0)==0)
continue;
if (psys->parent)
mul_m4_v3(psys->parent->obmat, state.co);
if (use_duplimat)
mul_m4_v3(duplimat, state.co);
if (part->ren_as == PART_DRAW_BB) {
bb.random = random;
bb.offset[0] = part->bb_offset[0];
bb.offset[1] = part->bb_offset[1];
bb.size[0] = part->bb_size[0] * pa_size;
if (part->bb_align==PART_BB_VEL) {
float pa_vel = len_v3(state.vel);
float head = part->bb_vel_head*pa_vel;
float tail = part->bb_vel_tail*pa_vel;
bb.size[1] = part->bb_size[1]*pa_size + head + tail;
/* use offset to adjust the particle center. this is relative to size, so need to divide! */
if (bb.size[1] > 0.0f)
bb.offset[1] += (head-tail) / bb.size[1];
}
else
bb.size[1] = part->bb_size[1] * pa_size;
bb.tilt = part->bb_tilt * (1.0f - part->bb_rand_tilt * r_tilt);
bb.time = pa_time;
bb.num = a;
bb.lifetime = pa_dietime-pa_birthtime;
}
particle_normal_ren(part->ren_as, part, re, obr, psmd->dm, ma, &sd, &bb, &state, seed, hasize, pa_co);
}
}
if (orco1==0)
sd.orco+=3;
if (re->test_break(re->tbh))
break;
}
if (do_surfacecache)
strandbuf->surface= cache_strand_surface(re, obr, psmd->dm, mat, timeoffset);
/* 4. clean up */
#if 0 /* XXX old animation system */
if (ma) do_mat_ipo(re->scene, ma);
#endif /* XXX old animation system */
if (orco1)
MEM_freeN(sd.orco);
if (sd.uvco)
MEM_freeN(sd.uvco);
if (sd.mcol)
MEM_freeN(sd.mcol);
if (uv_name)
MEM_freeN(uv_name);
if (states)
MEM_freeN(states);
BLI_rng_free(rng);
psys->flag &= ~PSYS_DRAWING;
if (psys->lattice) {
end_latt_deform(psys->lattice);
psys->lattice= NULL;
}
if (path_nbr && (ma->mode_l & MA_TANGENT_STR)==0)
calc_vertexnormals(re, obr, 0, 0);
return 1;
}
/* ------------------------------------------------------------------------- */
/* Halo's */
/* ------------------------------------------------------------------------- */
static void make_render_halos(Render *re, ObjectRen *obr, Mesh *UNUSED(me), int totvert, MVert *mvert, Material *ma, float *orco)
{
Object *ob= obr->ob;
HaloRen *har;
float xn, yn, zn, nor[3], view[3];
float vec[3], hasize, mat[4][4], imat[3][3];
int a, ok, seed= ma->seed1;
mult_m4_m4m4(mat, re->viewmat, ob->obmat);
copy_m3_m4(imat, ob->imat);
re->flag |= R_HALO;
for (a=0; a<totvert; a++, mvert++) {
ok= 1;
if (ok) {
hasize= ma->hasize;
copy_v3_v3(vec, mvert->co);
mul_m4_v3(mat, vec);
if (ma->mode & MA_HALOPUNO) {
xn= mvert->no[0];
yn= mvert->no[1];
zn= mvert->no[2];
/* transpose ! */
nor[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
nor[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
nor[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
normalize_v3(nor);
copy_v3_v3(view, vec);
normalize_v3(view);
zn = dot_v3v3(nor, view);
if (zn>=0.0f) hasize= 0.0f;
else hasize*= zn*zn*zn*zn;
}
if (orco) har= RE_inithalo(re, obr, ma, vec, NULL, orco, hasize, 0.0, seed);
else har= RE_inithalo(re, obr, ma, vec, NULL, mvert->co, hasize, 0.0, seed);
if (har) har->lay= ob->lay;
}
if (orco) orco+= 3;
seed++;
}
}
static int verghalo(const void *a1, const void *a2)
{
const HaloRen *har1= *(const HaloRen**)a1;
const HaloRen *har2= *(const HaloRen**)a2;
if (har1->zs < har2->zs) return 1;
else if (har1->zs > har2->zs) return -1;
return 0;
}
static void sort_halos(Render *re, int totsort)
{
ObjectRen *obr;
HaloRen *har= NULL, **haso;
int a;
if (re->tothalo==0) return;
re->sortedhalos= MEM_callocN(sizeof(HaloRen*)*re->tothalo, "sorthalos");
haso= re->sortedhalos;
for (obr=re->objecttable.first; obr; obr=obr->next) {
for (a=0; a<obr->tothalo; a++) {
if ((a & 255)==0) har= obr->bloha[a>>8];
else har++;
*(haso++)= har;
}
}
qsort(re->sortedhalos, totsort, sizeof(HaloRen*), verghalo);
}
/* ------------------------------------------------------------------------- */
/* Displacement Mapping */
/* ------------------------------------------------------------------------- */
static short test_for_displace(Render *re, Object *ob)
{
/* return 1 when this object uses displacement textures. */
Material *ma;
int i;
for (i=1; i<=ob->totcol; i++) {
ma=give_render_material(re, ob, i);
/* ma->mapto is ORed total of all mapto channels */
if (ma && (ma->mapto & MAP_DISPLACE)) return 1;
}
return 0;
}
static void displace_render_vert(Render *re, ObjectRen *obr, ShadeInput *shi, VertRen *vr, int vindex, float *scale, float mat[4][4], float imat[3][3])
{
MTFace *tface;
short texco= shi->mat->texco;
float sample=0, displace[3];
char *name;
int i;
/* shi->co is current render coord, just make sure at least some vector is here */
copy_v3_v3(shi->co, vr->co);
/* vertex normal is used for textures type 'col' and 'var' */
copy_v3_v3(shi->vn, vr->n);
if (mat)
mul_m4_v3(mat, shi->co);
if (imat) {
shi->vn[0] = dot_v3v3(imat[0], vr->n);
shi->vn[1] = dot_v3v3(imat[1], vr->n);
shi->vn[2] = dot_v3v3(imat[2], vr->n);
}
if (texco & TEXCO_UV) {
shi->totuv= 0;
shi->actuv= obr->actmtface;
for (i=0; (tface=RE_vlakren_get_tface(obr, shi->vlr, i, &name, 0)); i++) {
ShadeInputUV *suv= &shi->uv[i];
/* shi.uv needs scale correction from tface uv */
suv->uv[0]= 2*tface->uv[vindex][0]-1.0f;
suv->uv[1]= 2*tface->uv[vindex][1]-1.0f;
suv->uv[2]= 0.0f;
suv->name= name;
shi->totuv++;
}
}
/* set all rendercoords, 'texco' is an ORed value for all textures needed */
if ((texco & TEXCO_ORCO) && (vr->orco)) {
copy_v3_v3(shi->lo, vr->orco);
}
if (texco & TEXCO_GLOB) {
copy_v3_v3(shi->gl, shi->co);
mul_m4_v3(re->viewinv, shi->gl);
}
if (texco & TEXCO_NORM) {
copy_v3_v3(shi->orn, shi->vn);
}
if (texco & TEXCO_REFL) {
/* not (yet?) */
}
if (texco & TEXCO_STRESS) {
float *s= RE_vertren_get_stress(obr, vr, 0);
if (s) {
shi->stress= *s;
if (shi->stress<1.0f) shi->stress-= 1.0f;
else shi->stress= (shi->stress-1.0f)/shi->stress;
}
else
shi->stress= 0.0f;
}
shi->displace[0]= shi->displace[1]= shi->displace[2]= 0.0;
do_material_tex(shi, re);
//printf("no=%f, %f, %f\nbefore co=%f, %f, %f\n", vr->n[0], vr->n[1], vr->n[2],
//vr->co[0], vr->co[1], vr->co[2]);
displace[0]= shi->displace[0] * scale[0];
displace[1]= shi->displace[1] * scale[1];
displace[2]= shi->displace[2] * scale[2];
if (mat)
mul_m3_v3(imat, displace);
/* 0.5 could become button once? */
vr->co[0] += displace[0];
vr->co[1] += displace[1];
vr->co[2] += displace[2];
//printf("after co=%f, %f, %f\n", vr->co[0], vr->co[1], vr->co[2]);
/* we just don't do this vertex again, bad luck for other face using same vertex with
* different material... */
vr->flag |= 1;
/* Pass sample back so displace_face can decide which way to split the quad */
sample = shi->displace[0]*shi->displace[0];
sample += shi->displace[1]*shi->displace[1];
sample += shi->displace[2]*shi->displace[2];
vr->accum=sample;
/* Should be sqrt(sample), but I'm only looking for "bigger". Save the cycles. */
return;
}
static void displace_render_face(Render *re, ObjectRen *obr, VlakRen *vlr, float *scale, float mat[4][4], float imat[3][3])
{
ShadeInput shi;
/* Warning, This is not that nice, and possibly a bit slow,
* however some variables were not initialized properly in, unless using shade_input_initialize(...), we need to do a memset */
memset(&shi, 0, sizeof(ShadeInput));
/* end warning! - Campbell */
/* set up shadeinput struct for multitex() */
/* memset above means we don't need this */
/*shi.osatex= 0;*/ /* signal not to use dx[] and dy[] texture AA vectors */
shi.obr= obr;
shi.vlr= vlr; /* current render face */
shi.mat= vlr->mat; /* current input material */
shi.thread= 0;
/* TODO, assign these, displacement with new bumpmap is skipped without - campbell */
#if 0
/* order is not known ? */
shi.v1= vlr->v1;
shi.v2= vlr->v2;
shi.v3= vlr->v3;
#endif
/* Displace the verts, flag is set when done */
if (!vlr->v1->flag)
displace_render_vert(re, obr, &shi, vlr->v1, 0, scale, mat, imat);
if (!vlr->v2->flag)
displace_render_vert(re, obr, &shi, vlr->v2, 1, scale, mat, imat);
if (!vlr->v3->flag)
displace_render_vert(re, obr, &shi, vlr->v3, 2, scale, mat, imat);
if (vlr->v4) {
if (!vlr->v4->flag)
displace_render_vert(re, obr, &shi, vlr->v4, 3, scale, mat, imat);
/* closest in displace value. This will help smooth edges. */
if (fabsf(vlr->v1->accum - vlr->v3->accum) > fabsf(vlr->v2->accum - vlr->v4->accum)) vlr->flag |= R_DIVIDE_24;
else vlr->flag &= ~R_DIVIDE_24;
}
/* Recalculate the face normal - if flipped before, flip now */
if (vlr->v4) {
normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
}
else {
normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
}
}
static void do_displacement(Render *re, ObjectRen *obr, float mat[4][4], float imat[3][3])
{
VertRen *vr;
VlakRen *vlr;
// float min[3]={1e30, 1e30, 1e30}, max[3]={-1e30, -1e30, -1e30};
float scale[3]={1.0f, 1.0f, 1.0f}, temp[3];//, xn
int i; //, texflag=0;
Object *obt;
/* Object Size with parenting */
obt=obr->ob;
while (obt) {
mul_v3_v3v3(temp, obt->size, obt->dscale);
scale[0]*=temp[0]; scale[1]*=temp[1]; scale[2]*=temp[2];
obt=obt->parent;
}
/* Clear all flags */
for (i=0; i<obr->totvert; i++) {
vr= RE_findOrAddVert(obr, i);
vr->flag= 0;
}
for (i=0; i<obr->totvlak; i++) {
vlr=RE_findOrAddVlak(obr, i);
displace_render_face(re, obr, vlr, scale, mat, imat);
}
/* Recalc vertex normals */
calc_vertexnormals(re, obr, 0, 0);
}
/* ------------------------------------------------------------------------- */
/* Metaball */
/* ------------------------------------------------------------------------- */
static void init_render_mball(Render *re, ObjectRen *obr)
{
Object *ob= obr->ob;
DispList *dl;
VertRen *ver;
VlakRen *vlr, *vlr1;
Material *ma;
float *data, *nors, *orco=NULL, mat[4][4], imat[3][3], xn, yn, zn;
int a, need_orco, vlakindex, *index, negative_scale;
ListBase dispbase= {NULL, NULL};
if (ob!=BKE_mball_basis_find(re->scene, ob))
return;
mult_m4_m4m4(mat, re->viewmat, ob->obmat);
invert_m4_m4(ob->imat, mat);
copy_m3_m4(imat, ob->imat);
negative_scale = is_negative_m4(mat);
ma= give_render_material(re, ob, 1);
need_orco= 0;
if (ma->texco & TEXCO_ORCO) {
need_orco= 1;
}
BKE_displist_make_mball_forRender(re->scene, ob, &dispbase);
dl= dispbase.first;
if (dl==0) return;
data= dl->verts;
nors= dl->nors;
if (need_orco) {
orco= get_object_orco(re, ob);
if (!orco) {
/* orco hasn't been found in cache - create new one and add to cache */
orco= BKE_mball_make_orco(ob, &dispbase);
set_object_orco(re, ob, orco);
}
}
for (a=0; a<dl->nr; a++, data+=3, nors+=3) {
ver= RE_findOrAddVert(obr, obr->totvert++);
copy_v3_v3(ver->co, data);
mul_m4_v3(mat, ver->co);
/* render normals are inverted */
xn= -nors[0];
yn= -nors[1];
zn= -nors[2];
/* transpose ! */
ver->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
ver->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
ver->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
normalize_v3(ver->n);
//if (ob->transflag & OB_NEG_SCALE) negate_v3(ver->n);
if (need_orco) {
ver->orco= orco;
orco+=3;
}
}
index= dl->index;
for (a=0; a<dl->parts; a++, index+=4) {
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->v1= RE_findOrAddVert(obr, index[0]);
vlr->v2= RE_findOrAddVert(obr, index[1]);
vlr->v3= RE_findOrAddVert(obr, index[2]);
vlr->v4= 0;
if (negative_scale)
normal_tri_v3(vlr->n, vlr->v1->co, vlr->v2->co, vlr->v3->co);
else
normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
vlr->mat= ma;
vlr->flag= ME_SMOOTH;
vlr->ec= 0;
/* mball -too bad- always has triangles, because quads can be non-planar */
if (index[3] && index[3]!=index[2]) {
vlr1= RE_findOrAddVlak(obr, obr->totvlak++);
vlakindex= vlr1->index;
*vlr1= *vlr;
vlr1->index= vlakindex;
vlr1->v2= vlr1->v3;
vlr1->v3= RE_findOrAddVert(obr, index[3]);
if (negative_scale)
normal_tri_v3(vlr1->n, vlr1->v1->co, vlr1->v2->co, vlr1->v3->co);
else
normal_tri_v3(vlr1->n, vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
}
}
/* enforce display lists remade */
BKE_displist_free(&dispbase);
}
/* ------------------------------------------------------------------------- */
/* Surfaces and Curves */
/* ------------------------------------------------------------------------- */
/* returns amount of vertices added for orco */
static int dl_surf_to_renderdata(ObjectRen *obr, DispList *dl, Material **matar, float *orco, float mat[4][4])
{
VertRen *v1, *v2, *v3, *v4, *ver;
VlakRen *vlr, *vlr1, *vlr2, *vlr3;
float *data, n1[3];
int u, v, orcoret= 0;
int p1, p2, p3, p4, a;
int sizeu, nsizeu, sizev, nsizev;
int startvert, startvlak;
startvert= obr->totvert;
nsizeu = sizeu = dl->parts; nsizev = sizev = dl->nr;
data= dl->verts;
for (u = 0; u < sizeu; u++) {
v1 = RE_findOrAddVert(obr, obr->totvert++); /* save this for possible V wrapping */
copy_v3_v3(v1->co, data); data += 3;
if (orco) {
v1->orco= orco; orco+= 3; orcoret++;
}
mul_m4_v3(mat, v1->co);
for (v = 1; v < sizev; v++) {
ver= RE_findOrAddVert(obr, obr->totvert++);
copy_v3_v3(ver->co, data); data += 3;
if (orco) {
ver->orco= orco; orco+= 3; orcoret++;
}
mul_m4_v3(mat, ver->co);
}
/* if V-cyclic, add extra vertices at end of the row */
if (dl->flag & DL_CYCL_U) {
ver= RE_findOrAddVert(obr, obr->totvert++);
copy_v3_v3(ver->co, v1->co);
if (orco) {
ver->orco= orco; orco+=3; orcoret++; //orcobase + 3*(u*sizev + 0);
}
}
}
/* Done before next loop to get corner vert */
if (dl->flag & DL_CYCL_U) nsizev++;
if (dl->flag & DL_CYCL_V) nsizeu++;
/* if U cyclic, add extra row at end of column */
if (dl->flag & DL_CYCL_V) {
for (v = 0; v < nsizev; v++) {
v1= RE_findOrAddVert(obr, startvert + v);
ver= RE_findOrAddVert(obr, obr->totvert++);
copy_v3_v3(ver->co, v1->co);
if (orco) {
ver->orco= orco; orco+=3; orcoret++; //ver->orco= orcobase + 3*(0*sizev + v);
}
}
}
sizeu = nsizeu;
sizev = nsizev;
startvlak= obr->totvlak;
for (u = 0; u < sizeu - 1; u++) {
p1 = startvert + u * sizev; /* walk through face list */
p2 = p1 + 1;
p3 = p2 + sizev;
p4 = p3 - 1;
for (v = 0; v < sizev - 1; v++) {
v1= RE_findOrAddVert(obr, p1);
v2= RE_findOrAddVert(obr, p2);
v3= RE_findOrAddVert(obr, p3);
v4= RE_findOrAddVert(obr, p4);
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->v1= v1; vlr->v2= v2; vlr->v3= v3; vlr->v4= v4;
normal_quad_v3(n1, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
copy_v3_v3(vlr->n, n1);
vlr->mat= matar[ dl->col];
vlr->ec= ME_V1V2+ME_V2V3;
vlr->flag= dl->rt;
add_v3_v3(v1->n, n1);
add_v3_v3(v2->n, n1);
add_v3_v3(v3->n, n1);
add_v3_v3(v4->n, n1);
p1++; p2++; p3++; p4++;
}
}
/* fix normals for U resp. V cyclic faces */
sizeu--; sizev--; /* dec size for face array */
if (dl->flag & DL_CYCL_V) {
for (v = 0; v < sizev; v++) {
/* optimize! :*/
vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, v));
vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, v));
add_v3_v3(vlr1->v1->n, vlr->n);
add_v3_v3(vlr1->v2->n, vlr->n);
add_v3_v3(vlr->v3->n, vlr1->n);
add_v3_v3(vlr->v4->n, vlr1->n);
}
}
if (dl->flag & DL_CYCL_U) {
for (u = 0; u < sizeu; u++) {
/* optimize! :*/
vlr= RE_findOrAddVlak(obr, UVTOINDEX(u, 0));
vlr1= RE_findOrAddVlak(obr, UVTOINDEX(u, sizev-1));
add_v3_v3(vlr1->v2->n, vlr->n);
add_v3_v3(vlr1->v3->n, vlr->n);
add_v3_v3(vlr->v1->n, vlr1->n);
add_v3_v3(vlr->v4->n, vlr1->n);
}
}
/* last vertex is an extra case:
*
* ^ ()----()----()----()
* | | | || |
* u | |(0,n)||(0,0)|
* | | || |
* ()====()====[]====()
* | | || |
* | |(m,n)||(m,0)|
* | | || |
* ()----()----()----()
* v ->
*
* vertex [] is no longer shared, therefore distribute
* normals of the surrounding faces to all of the duplicates of []
*/
if ((dl->flag & DL_CYCL_V) && (dl->flag & DL_CYCL_U)) {
vlr= RE_findOrAddVlak(obr, UVTOINDEX(sizeu - 1, sizev - 1)); /* (m, n) */
vlr1= RE_findOrAddVlak(obr, UVTOINDEX(0, 0)); /* (0, 0) */
add_v3_v3v3(n1, vlr->n, vlr1->n);
vlr2= RE_findOrAddVlak(obr, UVTOINDEX(0, sizev-1)); /* (0, n) */
add_v3_v3(n1, vlr2->n);
vlr3= RE_findOrAddVlak(obr, UVTOINDEX(sizeu-1, 0)); /* (m, 0) */
add_v3_v3(n1, vlr3->n);
copy_v3_v3(vlr->v3->n, n1);
copy_v3_v3(vlr1->v1->n, n1);
copy_v3_v3(vlr2->v2->n, n1);
copy_v3_v3(vlr3->v4->n, n1);
}
for (a = startvert; a < obr->totvert; a++) {
ver= RE_findOrAddVert(obr, a);
normalize_v3(ver->n);
}
return orcoret;
}
static void init_render_dm(DerivedMesh *dm, Render *re, ObjectRen *obr,
int timeoffset, float *orco, float mat[4][4])
{
Object *ob= obr->ob;
int a, end, totvert, vertofs;
short mat_iter;
VertRen *ver;
VlakRen *vlr;
MVert *mvert = NULL;
MFace *mface;
Material *ma;
/* Curve *cu= ELEM(ob->type, OB_FONT, OB_CURVE) ? ob->data : NULL; */
mvert= dm->getVertArray(dm);
totvert= dm->getNumVerts(dm);
for (a=0; a<totvert; a++, mvert++) {
ver= RE_findOrAddVert(obr, obr->totvert++);
copy_v3_v3(ver->co, mvert->co);
mul_m4_v3(mat, ver->co);
if (orco) {
ver->orco= orco;
orco+=3;
}
}
if (!timeoffset) {
/* store customdata names, because DerivedMesh is freed */
RE_set_customdata_names(obr, &dm->faceData);
/* still to do for keys: the correct local texture coordinate */
/* faces in order of color blocks */
vertofs= obr->totvert - totvert;
for (mat_iter= 0; (mat_iter < ob->totcol || (mat_iter==0 && ob->totcol==0)); mat_iter++) {
ma= give_render_material(re, ob, mat_iter+1);
end= dm->getNumTessFaces(dm);
mface= dm->getTessFaceArray(dm);
for (a=0; a<end; a++, mface++) {
int v1, v2, v3, v4, flag;
if (mface->mat_nr == mat_iter) {
float len;
v1= mface->v1;
v2= mface->v2;
v3= mface->v3;
v4= mface->v4;
flag= mface->flag & ME_SMOOTH;
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
if (v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
else vlr->v4= 0;
/* render normals are inverted in render */
if (vlr->v4)
len= normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
else
len= normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
vlr->mat= ma;
vlr->flag= flag;
vlr->ec= 0; /* mesh edges rendered separately */
if (len==0) obr->totvlak--;
else {
CustomDataLayer *layer;
MTFace *mtface, *mtf;
MCol *mcol, *mc;
int index, mtfn= 0, mcn= 0;
char *name;
for (index=0; index<dm->faceData.totlayer; index++) {
layer= &dm->faceData.layers[index];
name= layer->name;
if (layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
mtface= (MTFace*)layer->data;
*mtf= mtface[a];
}
else if (layer->type == CD_MCOL && mcn < MAX_MCOL) {
mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
mcol= (MCol*)layer->data;
memcpy(mc, &mcol[a*4], sizeof(MCol)*4);
}
}
}
}
}
}
/* Normals */
calc_vertexnormals(re, obr, 0, 0);
}
}
static void init_render_surf(Render *re, ObjectRen *obr, int timeoffset)
{
Object *ob= obr->ob;
Nurb *nu=0;
Curve *cu;
ListBase displist= {NULL, NULL};
DispList *dl;
Material **matar;
float *orco=NULL, mat[4][4];
int a, totmat, need_orco=0;
DerivedMesh *dm= NULL;
cu= ob->data;
nu= cu->nurb.first;
if (nu==0) return;
mult_m4_m4m4(mat, re->viewmat, ob->obmat);
invert_m4_m4(ob->imat, mat);
/* material array */
totmat= ob->totcol+1;
matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
for (a=0; a<totmat; a++) {
matar[a]= give_render_material(re, ob, a+1);
if (matar[a] && matar[a]->texco & TEXCO_ORCO)
need_orco= 1;
}
if (ob->parent && (ob->parent->type==OB_LATTICE)) need_orco= 1;
BKE_displist_make_surf(re->scene, ob, &displist, &dm, 1, 0);
if (dm) {
if (need_orco) {
orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
if (orco) {
set_object_orco(re, ob, orco);
}
}
init_render_dm(dm, re, obr, timeoffset, orco, mat);
dm->release(dm);
}
else {
if (need_orco) {
orco= get_object_orco(re, ob);
}
/* walk along displaylist and create rendervertices/-faces */
for (dl=displist.first; dl; dl=dl->next) {
/* watch out: u ^= y, v ^= x !! */
if (dl->type==DL_SURF)
orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
}
}
BKE_displist_free(&displist);
MEM_freeN(matar);
}
static void init_render_curve(Render *re, ObjectRen *obr, int timeoffset)
{
Object *ob= obr->ob;
Curve *cu;
VertRen *ver;
VlakRen *vlr;
DispList *dl;
DerivedMesh *dm = NULL;
ListBase disp={NULL, NULL};
Material **matar;
float *data, *fp, *orco=NULL;
float n[3], mat[4][4], nmat[4][4];
int nr, startvert, a, b;
int need_orco=0, totmat;
cu= ob->data;
if (ob->type==OB_FONT && cu->str==NULL) return;
else if (ob->type==OB_CURVE && cu->nurb.first==NULL) return;
BKE_displist_make_curveTypes_forRender(re->scene, ob, &disp, &dm, 0);
dl= disp.first;
if (dl==NULL) return;
mult_m4_m4m4(mat, re->viewmat, ob->obmat);
invert_m4_m4(ob->imat, mat);
/* local object -> world space transform for normals */
copy_m4_m4(nmat, mat);
transpose_m4(nmat);
invert_m4(nmat);
/* material array */
totmat= ob->totcol+1;
matar= MEM_callocN(sizeof(Material*)*totmat, "init_render_surf matar");
for (a=0; a<totmat; a++) {
matar[a]= give_render_material(re, ob, a+1);
if (matar[a] && matar[a]->texco & TEXCO_ORCO)
need_orco= 1;
}
if (dm) {
if (need_orco) {
orco= BKE_displist_make_orco(re->scene, ob, dm, 1);
if (orco) {
set_object_orco(re, ob, orco);
}
}
init_render_dm(dm, re, obr, timeoffset, orco, mat);
dm->release(dm);
}
else {
if (need_orco) {
orco = get_object_orco(re, ob);
}
while (dl) {
if (dl->col > ob->totcol) {
/* pass */
}
else if (dl->type==DL_INDEX3) {
int *index;
startvert= obr->totvert;
data= dl->verts;
for (a=0; a<dl->nr; a++, data+=3) {
ver= RE_findOrAddVert(obr, obr->totvert++);
copy_v3_v3(ver->co, data);
mul_m4_v3(mat, ver->co);
if (orco) {
ver->orco = orco;
orco += 3;
}
}
if (timeoffset==0) {
float tmp[3];
const int startvlak= obr->totvlak;
zero_v3(n);
index= dl->index;
for (a=0; a<dl->parts; a++, index+=3) {
int v1 = index[0], v2 = index[1], v3 = index[2];
float *co1 = &dl->verts[v1 * 3],
*co2 = &dl->verts[v2 * 3],
*co3 = &dl->verts[v3 * 3];
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->v1= RE_findOrAddVert(obr, startvert + v1);
vlr->v2= RE_findOrAddVert(obr, startvert + v2);
vlr->v3= RE_findOrAddVert(obr, startvert + v3);
vlr->v4= NULL;
/* to prevent float accuracy issues, we calculate normal in local object space (not world) */
if (area_tri_v3(co3, co2, co1)>FLT_EPSILON10) {
normal_tri_v3(tmp, co3, co2, co1);
add_v3_v3(n, tmp);
}
vlr->mat= matar[ dl->col ];
vlr->flag= 0;
vlr->ec= 0;
}
/* transform normal to world space */
mul_m4_v3(nmat, n);
normalize_v3(n);
/* vertex normals */
for (a= startvlak; a<obr->totvlak; a++) {
vlr= RE_findOrAddVlak(obr, a);
copy_v3_v3(vlr->n, n);
add_v3_v3(vlr->v1->n, vlr->n);
add_v3_v3(vlr->v3->n, vlr->n);
add_v3_v3(vlr->v2->n, vlr->n);
}
for (a=startvert; a<obr->totvert; a++) {
ver= RE_findOrAddVert(obr, a);
normalize_v3(ver->n);
}
}
}
else if (dl->type==DL_SURF) {
/* cyclic U means an extruded full circular curve, we skip bevel splitting then */
if (dl->flag & DL_CYCL_U) {
orco+= 3*dl_surf_to_renderdata(obr, dl, matar, orco, mat);
}
else {
int p1, p2, p3, p4;
fp= dl->verts;
startvert= obr->totvert;
nr= dl->nr*dl->parts;
while (nr--) {
ver= RE_findOrAddVert(obr, obr->totvert++);
copy_v3_v3(ver->co, fp);
mul_m4_v3(mat, ver->co);
fp+= 3;
if (orco) {
ver->orco = orco;
orco += 3;
}
}
if (dl->bevelSplitFlag || timeoffset==0) {
const int startvlak= obr->totvlak;
for (a=0; a<dl->parts; a++) {
if (BKE_displist_surfindex_get(dl, a, &b, &p1, &p2, &p3, &p4)==0)
break;
p1+= startvert;
p2+= startvert;
p3+= startvert;
p4+= startvert;
for (; b<dl->nr; b++) {
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
/* important 1 offset in order is kept [#24913] */
vlr->v1= RE_findOrAddVert(obr, p2);
vlr->v2= RE_findOrAddVert(obr, p1);
vlr->v3= RE_findOrAddVert(obr, p3);
vlr->v4= RE_findOrAddVert(obr, p4);
vlr->ec= ME_V2V3+ME_V3V4;
if (a==0) vlr->ec+= ME_V1V2;
vlr->flag= dl->rt;
normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
vlr->mat= matar[ dl->col ];
p4= p3;
p3++;
p2= p1;
p1++;
}
}
if (dl->bevelSplitFlag) {
for (a=0; a<dl->parts-1+!!(dl->flag&DL_CYCL_V); a++)
if (dl->bevelSplitFlag[a>>5]&(1<<(a&0x1F)))
split_v_renderfaces(obr, startvlak, startvert, dl->parts, dl->nr, a, dl->flag&DL_CYCL_V, dl->flag&DL_CYCL_U);
}
/* vertex normals */
for (a= startvlak; a<obr->totvlak; a++) {
vlr= RE_findOrAddVlak(obr, a);
add_v3_v3(vlr->v1->n, vlr->n);
add_v3_v3(vlr->v3->n, vlr->n);
add_v3_v3(vlr->v2->n, vlr->n);
add_v3_v3(vlr->v4->n, vlr->n);
}
for (a=startvert; a<obr->totvert; a++) {
ver= RE_findOrAddVert(obr, a);
normalize_v3(ver->n);
}
}
}
}
dl= dl->next;
}
}
BKE_displist_free(&disp);
MEM_freeN(matar);
}
/* ------------------------------------------------------------------------- */
/* Mesh */
/* ------------------------------------------------------------------------- */
struct edgesort {
unsigned int v1, v2;
int f;
unsigned int i1, i2;
};
/* edges have to be added with lowest index first for sorting */
static void to_edgesort(struct edgesort *ed,
unsigned int i1, unsigned int i2,
unsigned int v1, unsigned int v2, int f)
{
if (v1 > v2) {
SWAP(unsigned int, v1, v2);
SWAP(unsigned int, i1, i2);
}
ed->v1= v1;
ed->v2= v2;
ed->i1= i1;
ed->i2= i2;
ed->f = f;
}
static int vergedgesort(const void *v1, const void *v2)
{
const struct edgesort *x1=v1, *x2=v2;
if ( x1->v1 > x2->v1) return 1;
else if ( x1->v1 < x2->v1) return -1;
else if ( x1->v2 > x2->v2) return 1;
else if ( x1->v2 < x2->v2) return -1;
return 0;
}
static struct edgesort *make_mesh_edge_lookup(DerivedMesh *dm, int *totedgesort)
{
MFace *mf, *mface;
MTFace *tface=NULL;
struct edgesort *edsort, *ed;
unsigned int *mcol=NULL;
int a, totedge=0, totface;
mface= dm->getTessFaceArray(dm);
totface= dm->getNumTessFaces(dm);
tface= dm->getTessFaceDataArray(dm, CD_MTFACE);
mcol= dm->getTessFaceDataArray(dm, CD_MCOL);
if (mcol==NULL && tface==NULL) return NULL;
/* make sorted table with edges and face indices in it */
for (a= totface, mf= mface; a>0; a--, mf++) {
if (mf->v4) totedge+=4;
else if (mf->v3) totedge+=3;
}
if (totedge==0)
return NULL;
ed= edsort= MEM_callocN(totedge*sizeof(struct edgesort), "edgesort");
for (a=0, mf=mface; a<totface; a++, mf++) {
to_edgesort(ed++, 0, 1, mf->v1, mf->v2, a);
to_edgesort(ed++, 1, 2, mf->v2, mf->v3, a);
if (mf->v4) {
to_edgesort(ed++, 2, 3, mf->v3, mf->v4, a);
to_edgesort(ed++, 3, 0, mf->v4, mf->v1, a);
}
else if (mf->v3)
to_edgesort(ed++, 2, 3, mf->v3, mf->v1, a);
}
qsort(edsort, totedge, sizeof(struct edgesort), vergedgesort);
*totedgesort= totedge;
return edsort;
}
static void use_mesh_edge_lookup(ObjectRen *obr, DerivedMesh *dm, MEdge *medge, VlakRen *vlr, struct edgesort *edgetable, int totedge)
{
struct edgesort ed, *edp;
CustomDataLayer *layer;
MTFace *mtface, *mtf;
MCol *mcol, *mc;
int index, mtfn, mcn;
char *name;
if (medge->v1 < medge->v2) {
ed.v1= medge->v1;
ed.v2= medge->v2;
}
else {
ed.v1= medge->v2;
ed.v2= medge->v1;
}
edp= bsearch(&ed, edgetable, totedge, sizeof(struct edgesort), vergedgesort);
/* since edges have different index ordering, we have to duplicate mcol and tface */
if (edp) {
mtfn= mcn= 0;
for (index=0; index<dm->faceData.totlayer; index++) {
layer= &dm->faceData.layers[index];
name= layer->name;
if (layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
mtface= &((MTFace*)layer->data)[edp->f];
mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
*mtf= *mtface;
memcpy(mtf->uv[0], mtface->uv[edp->i1], sizeof(float)*2);
memcpy(mtf->uv[1], mtface->uv[edp->i2], sizeof(float)*2);
memcpy(mtf->uv[2], mtface->uv[1], sizeof(float)*2);
memcpy(mtf->uv[3], mtface->uv[1], sizeof(float)*2);
}
else if (layer->type == CD_MCOL && mcn < MAX_MCOL) {
mcol= &((MCol*)layer->data)[edp->f*4];
mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
mc[0]= mcol[edp->i1];
mc[1]= mc[2]= mc[3]= mcol[edp->i2];
}
}
}
}
static void free_camera_inside_volumes(Render *re)
{
BLI_freelistN(&re->render_volumes_inside);
}
static void init_camera_inside_volumes(Render *re)
{
ObjectInstanceRen *obi;
VolumeOb *vo;
/* coordinates are all in camera space, so camera coordinate is zero. we also
* add an offset for the clip start, however note that with clip start it's
* actually impossible to do a single 'inside' test, since there will not be
* a single point where all camera rays start from, though for small clip start
* they will be close together. */
float co[3] = {0.f, 0.f, -re->clipsta};
for (vo= re->volumes.first; vo; vo= vo->next) {
for (obi= re->instancetable.first; obi; obi= obi->next) {
if (obi->obr == vo->obr) {
if (point_inside_volume_objectinstance(re, obi, co)) {
MatInside *mi;
mi = MEM_mallocN(sizeof(MatInside), "camera inside material");
mi->ma = vo->ma;
mi->obi = obi;
BLI_addtail(&(re->render_volumes_inside), mi);
}
}
}
}
#if 0 /* debug */
{
MatInside *m;
for (m = re->render_volumes_inside.first; m; m = m->next) {
printf("matinside: ma: %s\n", m->ma->id.name + 2);
}
}
#endif
}
static void add_volume(Render *re, ObjectRen *obr, Material *ma)
{
struct VolumeOb *vo;
vo = MEM_mallocN(sizeof(VolumeOb), "volume object");
vo->ma = ma;
vo->obr = obr;
BLI_addtail(&re->volumes, vo);
}
static void init_render_mesh(Render *re, ObjectRen *obr, int timeoffset)
{
Object *ob= obr->ob;
Mesh *me;
MVert *mvert = NULL;
MFace *mface;
VlakRen *vlr; //, *vlr1;
VertRen *ver;
Material *ma;
DerivedMesh *dm;
CustomDataMask mask;
float xn, yn, zn, imat[3][3], mat[4][4]; //nor[3],
float *orco=0;
int need_orco=0, need_stress=0, need_nmap_tangent=0, need_tangent=0, need_origindex=0;
int a, a1, ok, vertofs;
int end, do_autosmooth = FALSE, totvert = 0;
int use_original_normals = FALSE;
int recalc_normals = 0; /* false by default */
int negative_scale;
me= ob->data;
mult_m4_m4m4(mat, re->viewmat, ob->obmat);
invert_m4_m4(ob->imat, mat);
copy_m3_m4(imat, ob->imat);
negative_scale= is_negative_m4(mat);
if (me->totvert==0)
return;
need_orco= 0;
for (a=1; a<=ob->totcol; a++) {
ma= give_render_material(re, ob, a);
if (ma) {
if (ma->texco & (TEXCO_ORCO|TEXCO_STRESS))
need_orco= 1;
if (ma->texco & TEXCO_STRESS)
need_stress= 1;
/* normalmaps, test if tangents needed, separated from shading */
if (ma->mode_l & MA_TANGENT_V) {
need_tangent= 1;
if (me->mtpoly==NULL)
need_orco= 1;
}
if (ma->mode_l & MA_NORMAP_TANG) {
if (me->mtpoly==NULL) {
need_orco= 1;
need_tangent= 1;
}
need_nmap_tangent= 1;
}
}
}
if (re->flag & R_NEED_TANGENT) {
/* exception for tangent space baking */
if (me->mtpoly==NULL) {
need_orco= 1;
need_tangent= 1;
}
need_nmap_tangent= 1;
}
/* origindex currently only used when baking to vertex colors */
if (re->flag & R_BAKING && re->r.bake_flag & R_BAKE_VCOL)
need_origindex= 1;
/* check autosmooth and displacement, we then have to skip only-verts optimize */
do_autosmooth |= (me->flag & ME_AUTOSMOOTH);
if (do_autosmooth)
timeoffset= 0;
if (test_for_displace(re, ob ) )
timeoffset= 0;
mask= CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL;
if (!timeoffset)
if (need_orco)
mask |= CD_MASK_ORCO;
dm= mesh_create_derived_render(re->scene, ob, mask);
if (dm==NULL) return; /* in case duplicated object fails? */
if (mask & CD_MASK_ORCO) {
orco= dm->getVertDataArray(dm, CD_ORCO);
if (orco) {
orco= MEM_dupallocN(orco);
set_object_orco(re, ob, orco);
}
}
mvert= dm->getVertArray(dm);
totvert= dm->getNumVerts(dm);
/* attempt to autsmooth on original mesh, only without subsurf */
if (do_autosmooth && me->totvert==totvert && me->totface==dm->getNumTessFaces(dm))
use_original_normals= TRUE;
ma= give_render_material(re, ob, 1);
if (ma->material_type == MA_TYPE_HALO) {
make_render_halos(re, obr, me, totvert, mvert, ma, orco);
}
else {
const int *index_vert_orig = NULL;
const int *index_mf_to_mpoly = NULL;
const int *index_mp_to_orig = NULL;
if (need_origindex) {
index_vert_orig = dm->getVertDataArray(dm, CD_ORIGINDEX);
/* double lookup for faces -> polys */
index_mf_to_mpoly = dm->getTessFaceDataArray(dm, CD_ORIGINDEX);
index_mp_to_orig = dm->getPolyDataArray(dm, CD_ORIGINDEX);
}
for (a=0; a<totvert; a++, mvert++) {
ver= RE_findOrAddVert(obr, obr->totvert++);
copy_v3_v3(ver->co, mvert->co);
if (do_autosmooth == FALSE) { /* autosmooth on original unrotated data to prevent differences between frames */
normal_short_to_float_v3(ver->n, mvert->no);
mul_m4_v3(mat, ver->co);
mul_transposed_m3_v3(imat, ver->n);
normalize_v3(ver->n);
negate_v3(ver->n);
}
if (orco) {
ver->orco= orco;
orco+=3;
}
if (need_origindex) {
int *origindex;
origindex = RE_vertren_get_origindex(obr, ver, 1);
/* Use orig index array if it's available (e.g. in the presence
* of modifiers). */
if (index_vert_orig)
*origindex = index_vert_orig[a];
else
*origindex = a;
}
}
if (!timeoffset) {
/* store customdata names, because DerivedMesh is freed */
RE_set_customdata_names(obr, &dm->faceData);
/* add tangent layer if we need one */
if (need_nmap_tangent!=0 && CustomData_get_layer_index(&dm->faceData, CD_TANGENT) == -1)
DM_add_tangent_layer(dm);
/* still to do for keys: the correct local texture coordinate */
/* faces in order of color blocks */
vertofs= obr->totvert - totvert;
for (a1=0; (a1<ob->totcol || (a1==0 && ob->totcol==0)); a1++) {
ma= give_render_material(re, ob, a1+1);
/* test for 100% transparent */
ok= 1;
if (ma->alpha==0.0f && ma->spectra==0.0f && ma->filter==0.0f && (ma->mode & MA_TRANSP) && (ma->mode & MA_RAYMIRROR)==0) {
ok= 0;
/* texture on transparency? */
for (a=0; a<MAX_MTEX; a++) {
if (ma->mtex[a] && ma->mtex[a]->tex) {
if (ma->mtex[a]->mapto & MAP_ALPHA) ok= 1;
}
}
}
/* if wire material, and we got edges, don't do the faces */
if (ma->material_type == MA_TYPE_WIRE) {
end= dm->getNumEdges(dm);
if (end) ok= 0;
}
if (ok) {
end= dm->getNumTessFaces(dm);
mface= dm->getTessFaceArray(dm);
for (a=0; a<end; a++, mface++) {
int v1, v2, v3, v4, flag;
if ( mface->mat_nr==a1 ) {
float len;
int reverse_verts = (negative_scale != 0 && do_autosmooth == FALSE);
int rev_tab[] = {reverse_verts==0 ? 0 : 2, 1, reverse_verts==0 ? 2 : 0, 3};
v1= reverse_verts==0 ? mface->v1 : mface->v3;
v2= mface->v2;
v3= reverse_verts==0 ? mface->v3 : mface->v1;
v4= mface->v4;
flag= mface->flag & ME_SMOOTH;
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->v1= RE_findOrAddVert(obr, vertofs+v1);
vlr->v2= RE_findOrAddVert(obr, vertofs+v2);
vlr->v3= RE_findOrAddVert(obr, vertofs+v3);
if (v4) vlr->v4= RE_findOrAddVert(obr, vertofs+v4);
else vlr->v4= 0;
/* render normals are inverted in render */
if (use_original_normals) {
MFace *mf= me->mface+a;
MVert *mv= me->mvert;
if (vlr->v4)
len= normal_quad_v3(vlr->n, mv[mf->v4].co, mv[mf->v3].co, mv[mf->v2].co, mv[mf->v1].co);
else
len= normal_tri_v3(vlr->n, mv[mf->v3].co, mv[mf->v2].co, mv[mf->v1].co);
}
else {
if (vlr->v4)
len= normal_quad_v3(vlr->n, vlr->v4->co, vlr->v3->co, vlr->v2->co, vlr->v1->co);
else
len= normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
}
vlr->mat= ma;
vlr->flag= flag;
vlr->ec= 0; /* mesh edges rendered separately */
if (len==0) obr->totvlak--;
else {
CustomDataLayer *layer;
MTFace *mtface, *mtf;
MCol *mcol, *mc;
int index, mtfn= 0, mcn= 0, mtng=0, vindex;
char *name;
int nr_verts = v4!=0 ? 4 : 3;
for (index=0; index<dm->faceData.totlayer; index++) {
layer= &dm->faceData.layers[index];
name= layer->name;
if (layer->type == CD_MTFACE && mtfn < MAX_MTFACE) {
int t;
mtf= RE_vlakren_get_tface(obr, vlr, mtfn++, &name, 1);
mtface= (MTFace*)layer->data;
*mtf = mtface[a]; /* copy face info */
for (vindex=0; vindex<nr_verts; vindex++)
for (t=0; t<2; t++)
mtf->uv[vindex][t]=mtface[a].uv[rev_tab[vindex]][t];
}
else if (layer->type == CD_MCOL && mcn < MAX_MCOL) {
mc= RE_vlakren_get_mcol(obr, vlr, mcn++, &name, 1);
mcol= (MCol*)layer->data;
for (vindex=0; vindex<nr_verts; vindex++)
mc[vindex]=mcol[a*4+rev_tab[vindex]];
}
else if (layer->type == CD_TANGENT && mtng < 1) {
if (need_nmap_tangent != 0) {
const float * tangent = (const float *) layer->data;
float * ftang = RE_vlakren_get_nmap_tangent(obr, vlr, 1);
for (vindex=0; vindex<nr_verts; vindex++) {
copy_v4_v4(ftang+vindex*4, tangent+a*16+rev_tab[vindex]*4);
mul_mat3_m4_v3(mat, ftang+vindex*4);
normalize_v3(ftang+vindex*4);
}
}
}
}
if (need_origindex) {
/* Find original index of mpoly for this tessface. Options:
* - Modified mesh; two-step look up from tessface -> modified mpoly -> original mpoly
* - OR Tesselated mesh; look up from tessface -> mpoly
* - OR Failsafe; tessface == mpoly. Could probably assert(false) in this case? */
int *origindex;
origindex = RE_vlakren_get_origindex(obr, vlr, 1);
if (index_mf_to_mpoly && index_mp_to_orig)
*origindex = DM_origindex_mface_mpoly(index_mf_to_mpoly, index_mp_to_orig, a);
else if (index_mf_to_mpoly)
*origindex = index_mf_to_mpoly[a];
else
*origindex = a;
}
}
}
}
}
}
/* exception... we do edges for wire mode. potential conflict when faces exist... */
end= dm->getNumEdges(dm);
mvert= dm->getVertArray(dm);
ma= give_render_material(re, ob, 1);
if (end && (ma->material_type == MA_TYPE_WIRE)) {
MEdge *medge;
struct edgesort *edgetable;
int totedge= 0;
recalc_normals= 1;
medge= dm->getEdgeArray(dm);
/* we want edges to have UV and vcol too... */
edgetable= make_mesh_edge_lookup(dm, &totedge);
for (a1=0; a1<end; a1++, medge++) {
if (medge->flag&ME_EDGERENDER) {
MVert *v0 = &mvert[medge->v1];
MVert *v1 = &mvert[medge->v2];
vlr= RE_findOrAddVlak(obr, obr->totvlak++);
vlr->v1= RE_findOrAddVert(obr, vertofs+medge->v1);
vlr->v2= RE_findOrAddVert(obr, vertofs+medge->v2);
vlr->v3= vlr->v2;
vlr->v4= NULL;
if (edgetable)
use_mesh_edge_lookup(obr, dm, medge, vlr, edgetable, totedge);
xn= -(v0->no[0]+v1->no[0]);
yn= -(v0->no[1]+v1->no[1]);
zn= -(v0->no[2]+v1->no[2]);
/* transpose ! */
vlr->n[0]= imat[0][0]*xn+imat[0][1]*yn+imat[0][2]*zn;
vlr->n[1]= imat[1][0]*xn+imat[1][1]*yn+imat[1][2]*zn;
vlr->n[2]= imat[2][0]*xn+imat[2][1]*yn+imat[2][2]*zn;
normalize_v3(vlr->n);
vlr->mat= ma;
vlr->flag= 0;
vlr->ec= ME_V1V2;
}
}
if (edgetable)
MEM_freeN(edgetable);
}
}
}
if (!timeoffset) {
if (need_stress)
calc_edge_stress(re, obr, me);
if (test_for_displace(re, ob ) ) {
recalc_normals= 1;
calc_vertexnormals(re, obr, 0, 0);
if (do_autosmooth)
do_displacement(re, obr, mat, imat);
else
do_displacement(re, obr, NULL, NULL);
}
if (do_autosmooth) {
recalc_normals= 1;
autosmooth(re, obr, mat, me->smoothresh);
}
if (recalc_normals!=0 || need_tangent!=0)
calc_vertexnormals(re, obr, need_tangent, need_nmap_tangent);
}
dm->release(dm);
}
/* ------------------------------------------------------------------------- */
/* Lamps and Shadowbuffers */
/* ------------------------------------------------------------------------- */
static void initshadowbuf(Render *re, LampRen *lar, float mat[4][4])
{
struct ShadBuf *shb;
float viewinv[4][4];
/* if (la->spsi<16) return; */
/* memory alloc */
shb= (struct ShadBuf *)MEM_callocN(sizeof(struct ShadBuf), "initshadbuf");
lar->shb= shb;
if (shb==NULL) return;
VECCOPY(shb->co, lar->co); /* int copy */
/* percentage render: keep track of min and max */
shb->size= (lar->bufsize*re->r.size)/100;
if (shb->size<512) shb->size= 512;
else if (shb->size > lar->bufsize) shb->size= lar->bufsize;
shb->size &= ~15; /* make sure its multiples of 16 */
shb->samp= lar->samp;
shb->soft= lar->soft;
shb->shadhalostep= lar->shadhalostep;
normalize_m4(mat);
invert_m4_m4(shb->winmat, mat); /* winmat is temp */
/* matrix: combination of inverse view and lampmat */
/* calculate again: the ortho-render has no correct viewinv */
invert_m4_m4(viewinv, re->viewmat);
mult_m4_m4m4(shb->viewmat, shb->winmat, viewinv);
/* projection */
shb->d= lar->clipsta;
shb->clipend= lar->clipend;
/* bias is percentage, made 2x larger because of correction for angle of incidence */
/* when a ray is closer to parallel of a face, bias value is increased during render */
shb->bias= (0.02f*lar->bias)*0x7FFFFFFF;
/* halfway method (average of first and 2nd z) reduces bias issues */
if (ELEM(lar->buftype, LA_SHADBUF_HALFWAY, LA_SHADBUF_DEEP))
shb->bias= 0.1f*shb->bias;
shb->compressthresh= lar->compressthresh;
}
static void area_lamp_vectors(LampRen *lar)
{
float xsize= 0.5f*lar->area_size, ysize= 0.5f*lar->area_sizey, multifac;
/* make it smaller, so area light can be multisampled */
multifac= 1.0f/sqrtf((float)lar->ray_totsamp);
xsize *= multifac;
ysize *= multifac;
/* corner vectors */
lar->area[0][0]= lar->co[0] - xsize*lar->mat[0][0] - ysize*lar->mat[1][0];
lar->area[0][1]= lar->co[1] - xsize*lar->mat[0][1] - ysize*lar->mat[1][1];
lar->area[0][2]= lar->co[2] - xsize*lar->mat[0][2] - ysize*lar->mat[1][2];
/* corner vectors */
lar->area[1][0]= lar->co[0] - xsize*lar->mat[0][0] + ysize*lar->mat[1][0];
lar->area[1][1]= lar->co[1] - xsize*lar->mat[0][1] + ysize*lar->mat[1][1];
lar->area[1][2]= lar->co[2] - xsize*lar->mat[0][2] + ysize*lar->mat[1][2];
/* corner vectors */
lar->area[2][0]= lar->co[0] + xsize*lar->mat[0][0] + ysize*lar->mat[1][0];
lar->area[2][1]= lar->co[1] + xsize*lar->mat[0][1] + ysize*lar->mat[1][1];
lar->area[2][2]= lar->co[2] + xsize*lar->mat[0][2] + ysize*lar->mat[1][2];
/* corner vectors */
lar->area[3][0]= lar->co[0] + xsize*lar->mat[0][0] - ysize*lar->mat[1][0];
lar->area[3][1]= lar->co[1] + xsize*lar->mat[0][1] - ysize*lar->mat[1][1];
lar->area[3][2]= lar->co[2] + xsize*lar->mat[0][2] - ysize*lar->mat[1][2];
/* only for correction button size, matrix size works on energy */
lar->areasize= lar->dist*lar->dist/(4.0f*xsize*ysize);
}
/* If lar takes more lamp data, the decoupling will be better. */
static GroupObject *add_render_lamp(Render *re, Object *ob)
{
Lamp *la= ob->data;
LampRen *lar;
GroupObject *go;
float mat[4][4], angle, xn, yn;
float vec[3];
int c;
/* previewrender sets this to zero... prevent accidents */
if (la==NULL) return NULL;
/* prevent only shadow from rendering light */
if (la->mode & LA_ONLYSHADOW)
if ((re->r.mode & R_SHADOW)==0)
return NULL;
re->totlamp++;
/* groups is used to unify support for lightgroups, this is the global lightgroup */
go= MEM_callocN(sizeof(GroupObject), "groupobject");
BLI_addtail(&re->lights, go);
go->ob= ob;
/* lamprens are in own list, for freeing */
lar= (LampRen *)MEM_callocN(sizeof(LampRen), "lampren");
BLI_addtail(&re->lampren, lar);
go->lampren= lar;
mult_m4_m4m4(mat, re->viewmat, ob->obmat);
invert_m4_m4(ob->imat, mat);
copy_m3_m4(lar->mat, mat);
copy_m3_m4(lar->imat, ob->imat);
lar->bufsize = la->bufsize;
lar->samp = la->samp;
lar->buffers= la->buffers;
if (lar->buffers==0) lar->buffers= 1;
lar->buftype= la->buftype;
lar->filtertype= la->filtertype;
lar->soft = la->soft;
lar->shadhalostep = la->shadhalostep;
lar->clipsta = la->clipsta;
lar->clipend = la->clipend;
lar->bias = la->bias;
lar->compressthresh = la->compressthresh;
lar->type= la->type;
lar->mode= la->mode;
lar->energy= la->energy;
if (la->mode & LA_NEG) lar->energy= -lar->energy;
lar->vec[0]= -mat[2][0];
lar->vec[1]= -mat[2][1];
lar->vec[2]= -mat[2][2];
normalize_v3(lar->vec);
lar->co[0]= mat[3][0];
lar->co[1]= mat[3][1];
lar->co[2]= mat[3][2];
lar->dist= la->dist;
lar->haint= la->haint;
lar->distkw= lar->dist*lar->dist;
lar->r= lar->energy*la->r;
lar->g= lar->energy*la->g;
lar->b= lar->energy*la->b;
lar->shdwr= la->shdwr;
lar->shdwg= la->shdwg;
lar->shdwb= la->shdwb;
lar->k= la->k;
/* area */
lar->ray_samp= la->ray_samp;
lar->ray_sampy= la->ray_sampy;
lar->ray_sampz= la->ray_sampz;
lar->area_size= la->area_size;
lar->area_sizey= la->area_sizey;
lar->area_sizez= la->area_sizez;
lar->area_shape= la->area_shape;
/* Annoying, lamp UI does this, but the UI might not have been used? - add here too.
* make sure this matches buttons_shading.c's logic */
if (ELEM4(la->type, LA_AREA, LA_SPOT, LA_SUN, LA_LOCAL) && (la->mode & LA_SHAD_RAY))
if (ELEM3(la->type, LA_SPOT, LA_SUN, LA_LOCAL))
if (la->ray_samp_method == LA_SAMP_CONSTANT) la->ray_samp_method = LA_SAMP_HALTON;
lar->ray_samp_method= la->ray_samp_method;
lar->ray_samp_type= la->ray_samp_type;
lar->adapt_thresh= la->adapt_thresh;
lar->sunsky = NULL;
if ( ELEM(lar->type, LA_SPOT, LA_LOCAL)) {
lar->ray_totsamp= lar->ray_samp*lar->ray_samp;
lar->area_shape = LA_AREA_SQUARE;
lar->area_sizey= lar->area_size;
}
else if (lar->type==LA_AREA) {
switch (lar->area_shape) {
case LA_AREA_SQUARE:
lar->ray_totsamp= lar->ray_samp*lar->ray_samp;
lar->ray_sampy= lar->ray_samp;
lar->area_sizey= lar->area_size;
break;
case LA_AREA_RECT:
lar->ray_totsamp= lar->ray_samp*lar->ray_sampy;
break;
case LA_AREA_CUBE:
lar->ray_totsamp= lar->ray_samp*lar->ray_samp*lar->ray_samp;
lar->ray_sampy= lar->ray_samp;
lar->ray_sampz= lar->ray_samp;
lar->area_sizey= lar->area_size;
lar->area_sizez= lar->area_size;
break;
case LA_AREA_BOX:
lar->ray_totsamp= lar->ray_samp*lar->ray_sampy*lar->ray_sampz;
break;
}
area_lamp_vectors(lar);
init_jitter_plane(lar); /* subsamples */
}
else if (lar->type==LA_SUN) {
lar->ray_totsamp= lar->ray_samp*lar->ray_samp;
lar->area_shape = LA_AREA_SQUARE;
lar->area_sizey= lar->area_size;
if ((la->sun_effect_type & LA_SUN_EFFECT_SKY) ||
(la->sun_effect_type & LA_SUN_EFFECT_AP))
{
lar->sunsky = (struct SunSky*)MEM_callocN(sizeof(struct SunSky), "sunskyren");
lar->sunsky->effect_type = la->sun_effect_type;
copy_v3_v3(vec, ob->obmat[2]);
normalize_v3(vec);
InitSunSky(lar->sunsky, la->atm_turbidity, vec, la->horizon_brightness,
la->spread, la->sun_brightness, la->sun_size, la->backscattered_light,
la->skyblendfac, la->skyblendtype, la->sky_exposure, la->sky_colorspace);
InitAtmosphere(lar->sunsky, la->sun_intensity, 1.0, 1.0, la->atm_inscattering_factor, la->atm_extinction_factor,
la->atm_distance_factor);
}
}
else lar->ray_totsamp= 0;
lar->spotsi= la->spotsize;
if (lar->mode & LA_HALO) {
if (lar->spotsi>170.0f) lar->spotsi= 170.0f;
}
lar->spotsi= cosf( (float)M_PI*lar->spotsi/360.0f );
lar->spotbl= (1.0f-lar->spotsi)*la->spotblend;
memcpy(lar->mtex, la->mtex, MAX_MTEX*sizeof(void *));
lar->lay = ob->lay & 0xFFFFFF; /* higher 8 bits are localview layers */
lar->falloff_type = la->falloff_type;
lar->ld1= la->att1;
lar->ld2= la->att2;
lar->curfalloff = curvemapping_copy(la->curfalloff);
if (lar->curfalloff) {
/* so threads don't conflict on init */
curvemapping_initialize(lar->curfalloff);
}
if (lar->type==LA_SPOT) {
normalize_v3(lar->imat[0]);
normalize_v3(lar->imat[1]);
normalize_v3(lar->imat[2]);
xn= saacos(lar->spotsi);
xn= sin(xn)/cos(xn);
lar->spottexfac= 1.0f/(xn);
if (lar->mode & LA_ONLYSHADOW) {
if ((lar->mode & (LA_SHAD_BUF|LA_SHAD_RAY))==0) lar->mode -= LA_ONLYSHADOW;
}
}
/* set flag for spothalo en initvars */
if (la->type==LA_SPOT && (la->mode & LA_HALO) && (la->buftype != LA_SHADBUF_DEEP)) {
if (la->haint>0.0f) {
re->flag |= R_LAMPHALO;
/* camera position (0, 0, 0) rotate around lamp */
lar->sh_invcampos[0]= -lar->co[0];
lar->sh_invcampos[1]= -lar->co[1];
lar->sh_invcampos[2]= -lar->co[2];
mul_m3_v3(lar->imat, lar->sh_invcampos);
/* z factor, for a normalized volume */
angle= saacos(lar->spotsi);
xn= lar->spotsi;
yn= sin(angle);
lar->sh_zfac= yn/xn;
/* pre-scale */
lar->sh_invcampos[2]*= lar->sh_zfac;
/* halfway shadow buffer doesn't work for volumetric effects */
if (lar->buftype == LA_SHADBUF_HALFWAY)
lar->buftype = LA_SHADBUF_REGULAR;
}
}
else if (la->type==LA_HEMI) {
lar->mode &= ~(LA_SHAD_RAY|LA_SHAD_BUF);
}
for (c=0; c<MAX_MTEX; c++) {
if (la->mtex[c] && la->mtex[c]->tex) {
if (la->mtex[c]->mapto & LAMAP_COL)
lar->mode |= LA_TEXTURE;
if (la->mtex[c]->mapto & LAMAP_SHAD)
lar->mode |= LA_SHAD_TEX;
if (G.is_rendering) {
if (re->osa) {
if (la->mtex[c]->tex->type==TEX_IMAGE) lar->mode |= LA_OSATEX;
}
}
}
}
/* old code checked for internal render (aka not yafray) */
{
/* to make sure we can check ray shadow easily in the render code */
if (lar->mode & LA_SHAD_RAY) {
if ( (re->r.mode & R_RAYTRACE)==0)
lar->mode &= ~LA_SHAD_RAY;
}
if (re->r.mode & R_SHADOW) {
if (la->type==LA_AREA && (lar->mode & LA_SHAD_RAY) && (lar->ray_samp_method == LA_SAMP_CONSTANT)) {
init_jitter_plane(lar);
}
else if (la->type==LA_SPOT && (lar->mode & LA_SHAD_BUF) ) {
/* Per lamp, one shadow buffer is made. */
lar->bufflag= la->bufflag;
copy_m4_m4(mat, ob->obmat);
initshadowbuf(re, lar, mat); /* mat is altered */
}
/* this is the way used all over to check for shadow */
if (lar->shb || (lar->mode & LA_SHAD_RAY)) {
LampShadowSample *ls;
LampShadowSubSample *lss;
int a, b;
memset(re->shadowsamplenr, 0, sizeof(re->shadowsamplenr));
lar->shadsamp= MEM_mallocN(re->r.threads*sizeof(LampShadowSample), "lamp shadow sample");
ls= lar->shadsamp;
/* shadfacs actually mean light, let's put them to 1 to prevent unitialized accidents */
for (a=0; a<re->r.threads; a++, ls++) {
lss= ls->s;
for (b=0; b<re->r.osa; b++, lss++) {
lss->samplenr= -1; /* used to detect whether we store or read */
lss->shadfac[0]= 1.0f;
lss->shadfac[1]= 1.0f;
lss->shadfac[2]= 1.0f;
lss->shadfac[3]= 1.0f;
}
}
}
}
}
return go;
}
/* layflag: allows material group to ignore layerflag */
static void add_lightgroup(Render *re, Group *group, int exclusive)
{
GroupObject *go, *gol;
group->id.flag &= ~LIB_DOIT;
/* it's a bit too many loops in loops... but will survive */
/* note that 'exclusive' will remove it from the global list */
for (go= group->gobject.first; go; go= go->next) {
go->lampren= NULL;
if (go->ob->restrictflag & OB_RESTRICT_RENDER)
continue;
if (go->ob->lay & re->lay) {
if (go->ob && go->ob->type==OB_LAMP) {
for (gol= re->lights.first; gol; gol= gol->next) {
if (gol->ob==go->ob) {
go->lampren= gol->lampren;
break;
}
}
if (go->lampren==NULL)
gol= add_render_lamp(re, go->ob);
if (gol && exclusive) {
BLI_remlink(&re->lights, gol);
MEM_freeN(gol);
}
}
}
}
}
static void set_material_lightgroups(Render *re)
{
Group *group;
Material *ma;
/* not for preview render */
if (re->scene->r.scemode & R_PREVIEWBUTS)
return;
for (group= re->main->group.first; group; group=group->id.next)
group->id.flag |= LIB_DOIT;
/* it's a bit too many loops in loops... but will survive */
/* hola! materials not in use...? */
for (ma= re->main->mat.first; ma; ma=ma->id.next) {
if (ma->group && (ma->group->id.flag & LIB_DOIT))
add_lightgroup(re, ma->group, ma->mode & MA_GROUP_NOLAY);
}
}
static void set_renderlayer_lightgroups(Render *re, Scene *sce)
{
SceneRenderLayer *srl;
for (srl= sce->r.layers.first; srl; srl= srl->next) {
if (srl->light_override)
add_lightgroup(re, srl->light_override, 0);
}
}
/* ------------------------------------------------------------------------- */
/* World */
/* ------------------------------------------------------------------------- */
void init_render_world(Render *re)
{
int a;
if (re->scene && re->scene->world) {
re->wrld= *(re->scene->world);
copy_v3_v3(re->grvec, re->viewmat[2]);
normalize_v3(re->grvec);
copy_m3_m4(re->imat, re->viewinv);
for (a=0; a<MAX_MTEX; a++)
if (re->wrld.mtex[a] && re->wrld.mtex[a]->tex) re->wrld.skytype |= WO_SKYTEX;
/* AO samples should be OSA minimum */
if (re->osa)
while (re->wrld.aosamp*re->wrld.aosamp < re->osa)
re->wrld.aosamp++;
if (!(re->r.mode & R_RAYTRACE) && (re->wrld.ao_gather_method == WO_AOGATHER_RAYTRACE))
re->wrld.mode &= ~(WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT);
}
else {
memset(&re->wrld, 0, sizeof(World));
re->wrld.exp= 0.0f;
re->wrld.range= 1.0f;
/* for mist pass */
re->wrld.miststa= re->clipsta;
re->wrld.mistdist= re->clipend-re->clipsta;
re->wrld.misi= 1.0f;
}
re->wrld.linfac= 1.0f + powf((2.0f*re->wrld.exp + 0.5f), -10);
re->wrld.logfac= logf((re->wrld.linfac-1.0f)/re->wrld.linfac) / re->wrld.range;
}
/* ------------------------------------------------------------------------- */
/* Object Finalization */
/* ------------------------------------------------------------------------- */
/* prevent phong interpolation for giving ray shadow errors (terminator problem) */
static void set_phong_threshold(ObjectRen *obr)
{
// VertRen *ver;
VlakRen *vlr;
float thresh= 0.0, dot;
int tot=0, i;
/* Added check for 'pointy' situations, only dotproducts of 0.9 and larger
* are taken into account. This threshold is meant to work on smooth geometry, not
* for extreme cases (ton) */
for (i=0; i<obr->totvlak; i++) {
vlr= RE_findOrAddVlak(obr, i);
if (vlr->flag & R_SMOOTH) {
dot= dot_v3v3(vlr->n, vlr->v1->n);
dot= ABS(dot);
if (dot>0.9f) {
thresh+= dot; tot++;
}
dot= dot_v3v3(vlr->n, vlr->v2->n);
dot= ABS(dot);
if (dot>0.9f) {
thresh+= dot; tot++;
}
dot= dot_v3v3(vlr->n, vlr->v3->n);
dot= ABS(dot);
if (dot>0.9f) {
thresh+= dot; tot++;
}
if (vlr->v4) {
dot= dot_v3v3(vlr->n, vlr->v4->n);
dot= ABS(dot);
if (dot>0.9f) {
thresh+= dot; tot++;
}
}
}
}
if (tot) {
thresh/= (float)tot;
obr->ob->smoothresh= cosf(0.5f*(float)M_PI-saacos(thresh));
}
}
/* per face check if all samples should be taken.
* if raytrace or multisample, do always for raytraced material, or when material full_osa set */
static void set_fullsample_trace_flag(Render *re, ObjectRen *obr)
{
VlakRen *vlr;
int a, trace, mode, osa;
osa= re->osa;
trace= re->r.mode & R_RAYTRACE;
for (a=obr->totvlak-1; a>=0; a--) {
vlr= RE_findOrAddVlak(obr, a);
mode= vlr->mat->mode;
if (trace && (mode & MA_TRACEBLE))
vlr->flag |= R_TRACEBLE;
if (osa) {
if (mode & MA_FULL_OSA) {
vlr->flag |= R_FULL_OSA;
}
else if (trace) {
if (mode & MA_SHLESS) {
/* pass */
}
else if (vlr->mat->material_type == MA_TYPE_VOLUME) {
/* pass */
}
else if ((mode & MA_RAYMIRROR) || ((mode & MA_TRANSP) && (mode & MA_RAYTRANSP))) {
/* for blurry reflect/refract, better to take more samples
* inside the raytrace than as OSA samples */
if ((vlr->mat->gloss_mir == 1.0f) && (vlr->mat->gloss_tra == 1.0f))
vlr->flag |= R_FULL_OSA;
}
}
}
}
}
/* split quads for predictable baking
* dir 1 == (0, 1, 2) (0, 2, 3), 2 == (1, 3, 0) (1, 2, 3)
*/
static void split_quads(ObjectRen *obr, int dir)
{
VlakRen *vlr, *vlr1;
int a;
for (a=obr->totvlak-1; a>=0; a--) {
vlr= RE_findOrAddVlak(obr, a);
/* test if rendering as a quad or triangle, skip wire */
if (vlr->v4 && (vlr->flag & R_STRAND)==0 && (vlr->mat->material_type != MA_TYPE_WIRE)) {
if (vlr->v4) {
vlr1= RE_vlakren_copy(obr, vlr);
vlr1->flag |= R_FACE_SPLIT;
if ( dir==2 ) vlr->flag |= R_DIVIDE_24;
else vlr->flag &= ~R_DIVIDE_24;
/* new vertex pointers */
if (vlr->flag & R_DIVIDE_24) {
vlr1->v1= vlr->v2;
vlr1->v2= vlr->v3;
vlr1->v3= vlr->v4;
vlr->v3 = vlr->v4;
vlr1->flag |= R_DIVIDE_24;
}
else {
vlr1->v1= vlr->v1;
vlr1->v2= vlr->v3;
vlr1->v3= vlr->v4;
vlr1->flag &= ~R_DIVIDE_24;
}
vlr->v4 = vlr1->v4 = NULL;
/* new normals */
normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
normal_tri_v3(vlr1->n, vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
}
/* clear the flag when not divided */
else vlr->flag &= ~R_DIVIDE_24;
}
}
}
static void check_non_flat_quads(ObjectRen *obr)
{
VlakRen *vlr, *vlr1;
VertRen *v1, *v2, *v3, *v4;
float nor[3], xn, flen;
int a;
for (a=obr->totvlak-1; a>=0; a--) {
vlr= RE_findOrAddVlak(obr, a);
/* test if rendering as a quad or triangle, skip wire */
if (vlr->v4 && (vlr->flag & R_STRAND)==0 && (vlr->mat->material_type != MA_TYPE_WIRE)) {
/* check if quad is actually triangle */
v1= vlr->v1;
v2= vlr->v2;
v3= vlr->v3;
v4= vlr->v4;
sub_v3_v3v3(nor, v1->co, v2->co);
if ( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
vlr->v1= v2;
vlr->v2= v3;
vlr->v3= v4;
vlr->v4= NULL;
}
else {
sub_v3_v3v3(nor, v2->co, v3->co);
if ( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
vlr->v2= v3;
vlr->v3= v4;
vlr->v4= NULL;
}
else {
sub_v3_v3v3(nor, v3->co, v4->co);
if ( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
vlr->v4= NULL;
}
else {
sub_v3_v3v3(nor, v4->co, v1->co);
if ( ABS(nor[0])<FLT_EPSILON10 && ABS(nor[1])<FLT_EPSILON10 && ABS(nor[2])<FLT_EPSILON10 ) {
vlr->v4= NULL;
}
}
}
}
if (vlr->v4) {
/* Face is divided along edge with the least gradient */
/* Flagged with R_DIVIDE_24 if divide is from vert 2 to 4 */
/* 4---3 4---3 */
/* |\ 1| or |1 /| */
/* |0\ | |/ 0| */
/* 1---2 1---2 0 = orig face, 1 = new face */
/* render normals are inverted in render! we calculate normal of single tria here */
flen= normal_tri_v3(nor, vlr->v4->co, vlr->v3->co, vlr->v1->co);
if (flen==0.0f) normal_tri_v3(nor, vlr->v4->co, vlr->v2->co, vlr->v1->co);
xn = dot_v3v3(nor, vlr->n);
if (ABS(xn) < 0.999995f ) { /* checked on noisy fractal grid */
float d1, d2;
vlr1= RE_vlakren_copy(obr, vlr);
vlr1->flag |= R_FACE_SPLIT;
/* split direction based on vnorms */
normal_tri_v3(nor, vlr->v1->co, vlr->v2->co, vlr->v3->co);
d1 = dot_v3v3(nor, vlr->v1->n);
normal_tri_v3(nor, vlr->v2->co, vlr->v3->co, vlr->v4->co);
d2 = dot_v3v3(nor, vlr->v2->n);
if (fabsf(d1) < fabsf(d2) ) vlr->flag |= R_DIVIDE_24;
else vlr->flag &= ~R_DIVIDE_24;
/* new vertex pointers */
if (vlr->flag & R_DIVIDE_24) {
vlr1->v1= vlr->v2;
vlr1->v2= vlr->v3;
vlr1->v3= vlr->v4;
vlr->v3 = vlr->v4;
vlr1->flag |= R_DIVIDE_24;
}
else {
vlr1->v1= vlr->v1;
vlr1->v2= vlr->v3;
vlr1->v3= vlr->v4;
vlr1->flag &= ~R_DIVIDE_24;
}
vlr->v4 = vlr1->v4 = NULL;
/* new normals */
normal_tri_v3(vlr->n, vlr->v3->co, vlr->v2->co, vlr->v1->co);
normal_tri_v3(vlr1->n, vlr1->v3->co, vlr1->v2->co, vlr1->v1->co);
}
/* clear the flag when not divided */
else vlr->flag &= ~R_DIVIDE_24;
}
}
}
}
static void finalize_render_object(Render *re, ObjectRen *obr, int timeoffset)
{
Object *ob= obr->ob;
VertRen *ver= NULL;
StrandRen *strand= NULL;
StrandBound *sbound= NULL;
float min[3], max[3], smin[3], smax[3];
int a, b;
if (obr->totvert || obr->totvlak || obr->tothalo || obr->totstrand) {
/* the exception below is because displace code now is in init_render_mesh call,
* I will look at means to have autosmooth enabled for all object types
* and have it as general postprocess, like displace */
if (ob->type!=OB_MESH && test_for_displace(re, ob))
do_displacement(re, obr, NULL, NULL);
if (!timeoffset) {
/* phong normal interpolation can cause error in tracing
* (terminator problem) */
ob->smoothresh= 0.0;
if ((re->r.mode & R_RAYTRACE) && (re->r.mode & R_SHADOW))
set_phong_threshold(obr);
if (re->flag & R_BAKING && re->r.bake_quad_split != 0) {
/* Baking lets us define a quad split order */
split_quads(obr, re->r.bake_quad_split);
}
else if (BKE_object_is_animated(re->scene, ob))
split_quads(obr, 1);
else {
if ((re->r.mode & R_SIMPLIFY && re->r.simplify_flag & R_SIMPLE_NO_TRIANGULATE) == 0)
check_non_flat_quads(obr);
}
set_fullsample_trace_flag(re, obr);
/* compute bounding boxes for clipping */
INIT_MINMAX(min, max);
for (a=0; a<obr->totvert; a++) {
if ((a & 255)==0) ver= obr->vertnodes[a>>8].vert;
else ver++;
minmax_v3v3_v3(min, max, ver->co);
}
if (obr->strandbuf) {
float width;
/* compute average bounding box of strandpoint itself (width) */
if (obr->strandbuf->flag & R_STRAND_B_UNITS)
obr->strandbuf->maxwidth = max_ff(obr->strandbuf->ma->strand_sta, obr->strandbuf->ma->strand_end);
else
obr->strandbuf->maxwidth= 0.0f;
width= obr->strandbuf->maxwidth;
sbound= obr->strandbuf->bound;
for (b=0; b<obr->strandbuf->totbound; b++, sbound++) {
INIT_MINMAX(smin, smax);
for (a=sbound->start; a<sbound->end; a++) {
strand= RE_findOrAddStrand(obr, a);
strand_minmax(strand, smin, smax, width);
}
copy_v3_v3(sbound->boundbox[0], smin);
copy_v3_v3(sbound->boundbox[1], smax);
minmax_v3v3_v3(min, max, smin);
minmax_v3v3_v3(min, max, smax);
}
}
copy_v3_v3(obr->boundbox[0], min);
copy_v3_v3(obr->boundbox[1], max);
}
}
}
/* ------------------------------------------------------------------------- */
/* Database */
/* ------------------------------------------------------------------------- */
static int render_object_type(short type)
{
return OB_TYPE_SUPPORT_MATERIAL(type);
}
static void find_dupli_instances(Render *re, ObjectRen *obr)
{
ObjectInstanceRen *obi;
float imat[4][4], obmat[4][4], obimat[4][4], nmat[3][3];
int first = 1;
mult_m4_m4m4(obmat, re->viewmat, obr->obmat);
invert_m4_m4(imat, obmat);
/* for objects instanced by dupliverts/faces/particles, we go over the
* list of instances to find ones that instance obr, and setup their
* matrices and obr pointer */
for (obi=re->instancetable.last; obi; obi=obi->prev) {
if (!obi->obr && obi->ob == obr->ob && obi->psysindex == obr->psysindex) {
obi->obr= obr;
/* compute difference between object matrix and
* object matrix with dupli transform, in viewspace */
copy_m4_m4(obimat, obi->mat);
mult_m4_m4m4(obi->mat, obimat, imat);
copy_m3_m4(nmat, obi->mat);
invert_m3_m3(obi->nmat, nmat);
transpose_m3(obi->nmat);
if (!first) {
re->totvert += obr->totvert;
re->totvlak += obr->totvlak;
re->tothalo += obr->tothalo;
re->totstrand += obr->totstrand;
}
else
first= 0;
}
}
}
static void assign_dupligroup_dupli(Render *re, ObjectInstanceRen *obi, ObjectRen *obr)
{
float imat[4][4], obmat[4][4], obimat[4][4], nmat[3][3];
mult_m4_m4m4(obmat, re->viewmat, obr->obmat);
invert_m4_m4(imat, obmat);
obi->obr= obr;
/* compute difference between object matrix and
* object matrix with dupli transform, in viewspace */
copy_m4_m4(obimat, obi->mat);
mult_m4_m4m4(obi->mat, obimat, imat);
copy_m3_m4(nmat, obi->mat);
invert_m3_m3(obi->nmat, nmat);
transpose_m3(obi->nmat);
re->totvert += obr->totvert;
re->totvlak += obr->totvlak;
re->tothalo += obr->tothalo;
re->totstrand += obr->totstrand;
}
static ObjectRen *find_dupligroup_dupli(Render *re, Object *ob, int psysindex)
{
ObjectRen *obr;
/* if the object is itself instanced, we don't want to create an instance
* for it */
if (ob->transflag & OB_RENDER_DUPLI)
return NULL;
/* try to find an object that was already created so we can reuse it
* and save memory */
for (obr=re->objecttable.first; obr; obr=obr->next)
if (obr->ob == ob && obr->psysindex == psysindex && (obr->flag & R_INSTANCEABLE))
return obr;
return NULL;
}
static void set_dupli_tex_mat(Render *re, ObjectInstanceRen *obi, DupliObject *dob)
{
/* For duplis we need to have a matrix that transform the coordinate back
* to it's original position, without the dupli transforms. We also check
* the matrix is actually needed, to save memory on lots of dupliverts for
* example */
static Object *lastob= NULL;
static int needtexmat= 0;
/* init */
if (!re) {
lastob= NULL;
needtexmat= 0;
return;
}
/* check if we actually need it */
if (lastob != dob->ob) {
Material ***material;
short a, *totmaterial;
lastob= dob->ob;
needtexmat= 0;
totmaterial= give_totcolp(dob->ob);
material= give_matarar(dob->ob);
if (totmaterial && material)
for (a= 0; a<*totmaterial; a++)
if ((*material)[a] && (*material)[a]->texco & TEXCO_OBJECT)
needtexmat= 1;
}
if (needtexmat) {
float imat[4][4];
obi->duplitexmat= BLI_memarena_alloc(re->memArena, sizeof(float)*4*4);
invert_m4_m4(imat, dob->mat);
mul_serie_m4(obi->duplitexmat, re->viewmat, dob->omat, imat, re->viewinv, 0, 0, 0, 0);
}
}
static void init_render_object_data(Render *re, ObjectRen *obr, int timeoffset)
{
Object *ob= obr->ob;
ParticleSystem *psys;
int i;
if (obr->psysindex) {
if ((!obr->prev || obr->prev->ob != ob || (obr->prev->flag & R_INSTANCEABLE)==0) && ob->type==OB_MESH) {
/* the emitter mesh wasn't rendered so the modifier stack wasn't
* evaluated with render settings */
DerivedMesh *dm;
dm = mesh_create_derived_render(re->scene, ob, CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL);
dm->release(dm);
}
for (psys=ob->particlesystem.first, i=0; i<obr->psysindex-1; i++)
psys= psys->next;
render_new_particle_system(re, obr, psys, timeoffset);
}
else {
if (ELEM(ob->type, OB_FONT, OB_CURVE))
init_render_curve(re, obr, timeoffset);
else if (ob->type==OB_SURF)
init_render_surf(re, obr, timeoffset);
else if (ob->type==OB_MESH)
init_render_mesh(re, obr, timeoffset);
else if (ob->type==OB_MBALL)
init_render_mball(re, obr);
}
finalize_render_object(re, obr, timeoffset);
re->totvert += obr->totvert;
re->totvlak += obr->totvlak;
re->tothalo += obr->tothalo;
re->totstrand += obr->totstrand;
}
static void add_render_object(Render *re, Object *ob, Object *par, DupliObject *dob, int timeoffset)
{
ObjectRen *obr;
ObjectInstanceRen *obi;
ParticleSystem *psys;
int show_emitter, allow_render= 1, index, psysindex, i;
index= (dob)? dob->persistent_id[0]: 0;
/* the emitter has to be processed first (render levels of modifiers) */
/* so here we only check if the emitter should be rendered */
if (ob->particlesystem.first) {
show_emitter= 0;
for (psys=ob->particlesystem.first; psys; psys=psys->next) {
show_emitter += psys->part->draw & PART_DRAW_EMITTER;
psys_render_set(ob, psys, re->viewmat, re->winmat, re->winx, re->winy, timeoffset);
}
/* if no psys has "show emitter" selected don't render emitter */
if (show_emitter == 0)
allow_render= 0;
}
/* one render object for the data itself */
if (allow_render) {
obr= RE_addRenderObject(re, ob, par, index, 0, ob->lay);
if ((dob && !dob->animated) || (ob->transflag & OB_RENDER_DUPLI)) {
obr->flag |= R_INSTANCEABLE;
copy_m4_m4(obr->obmat, ob->obmat);
}
init_render_object_data(re, obr, timeoffset);
/* only add instance for objects that have not been used for dupli */
if (!(ob->transflag & OB_RENDER_DUPLI)) {
obi= RE_addRenderInstance(re, obr, ob, par, index, 0, NULL, ob->lay);
if (dob) set_dupli_tex_mat(re, obi, dob);
}
else
find_dupli_instances(re, obr);
for (i=1; i<=ob->totcol; i++) {
Material* ma = give_render_material(re, ob, i);
if (ma && ma->material_type == MA_TYPE_VOLUME)
add_volume(re, obr, ma);
}
}
/* and one render object per particle system */
if (ob->particlesystem.first) {
psysindex= 1;
for (psys=ob->particlesystem.first; psys; psys=psys->next, psysindex++) {
obr= RE_addRenderObject(re, ob, par, index, psysindex, ob->lay);
if ((dob && !dob->animated) || (ob->transflag & OB_RENDER_DUPLI)) {
obr->flag |= R_INSTANCEABLE;
copy_m4_m4(obr->obmat, ob->obmat);
}
if (dob)
psys->flag |= PSYS_USE_IMAT;
init_render_object_data(re, obr, timeoffset);
psys_render_restore(ob, psys);
psys->flag &= ~PSYS_USE_IMAT;
/* only add instance for objects that have not been used for dupli */
if (!(ob->transflag & OB_RENDER_DUPLI)) {
obi= RE_addRenderInstance(re, obr, ob, par, index, psysindex, NULL, ob->lay);
if (dob) set_dupli_tex_mat(re, obi, dob);
}
else
find_dupli_instances(re, obr);
}
}
}
/* par = pointer to duplicator parent, needed for object lookup table */
/* index = when duplicater copies same object (particle), the counter */
static void init_render_object(Render *re, Object *ob, Object *par, DupliObject *dob, int timeoffset)
{
static double lasttime= 0.0;
double time;
float mat[4][4];
if (ob->type==OB_LAMP)
add_render_lamp(re, ob);
else if (render_object_type(ob->type))
add_render_object(re, ob, par, dob, timeoffset);
else {
mult_m4_m4m4(mat, re->viewmat, ob->obmat);
invert_m4_m4(ob->imat, mat);
}
time= PIL_check_seconds_timer();
if (time - lasttime > 1.0) {
lasttime= time;
/* clumsy copying still */
re->i.totvert= re->totvert;
re->i.totface= re->totvlak;
re->i.totstrand= re->totstrand;
re->i.tothalo= re->tothalo;
re->i.totlamp= re->totlamp;
re->stats_draw(re->sdh, &re->i);
}
ob->flag |= OB_DONE;
}
void RE_Database_Free(Render *re)
{
LampRen *lar;
/* statistics for debugging render memory usage */
if ((G.debug & G_DEBUG) && (G.is_rendering)) {
if ((re->r.scemode & R_PREVIEWBUTS)==0) {
BKE_image_print_memlist();
MEM_printmemlist_stats();
}
}
/* FREE */
for (lar= re->lampren.first; lar; lar= lar->next) {
freeshadowbuf(lar);
if (lar->jitter) MEM_freeN(lar->jitter);
if (lar->shadsamp) MEM_freeN(lar->shadsamp);
if (lar->sunsky) MEM_freeN(lar->sunsky);
curvemapping_free(lar->curfalloff);
}
free_volume_precache(re);
BLI_freelistN(&re->lampren);
BLI_freelistN(&re->lights);
free_renderdata_tables(re);
/* free orco */
free_mesh_orco_hash(re);
end_render_materials(re->main);
end_render_textures(re);
free_pointdensities(re);
free_camera_inside_volumes(re);
if (re->wrld.aosphere) {
MEM_freeN(re->wrld.aosphere);
re->wrld.aosphere= NULL;
re->scene->world->aosphere= NULL;
}
if (re->wrld.aotables) {
MEM_freeN(re->wrld.aotables);
re->wrld.aotables= NULL;
re->scene->world->aotables= NULL;
}
if (re->r.mode & R_RAYTRACE)
free_render_qmcsampler(re);
if (re->r.mode & R_RAYTRACE) freeraytree(re);
free_sss(re);
free_occ(re);
free_strand_surface(re);
re->totvlak=re->totvert=re->totstrand=re->totlamp=re->tothalo= 0;
re->i.convertdone = FALSE;
re->bakebuf= NULL;
if (re->scene)
if (re->scene->r.scemode & R_FREE_IMAGE)
if ((re->r.scemode & R_PREVIEWBUTS)==0)
BKE_image_free_all_textures();
if (re->memArena) {
BLI_memarena_free(re->memArena);
re->memArena = NULL;
}
}
static int allow_render_object(Render *re, Object *ob, int nolamps, int onlyselected, Object *actob)
{
/* override not showing object when duplis are used with particles */
if (ob->transflag & OB_DUPLIPARTS) {
/* pass */ /* let particle system(s) handle showing vs. not showing */
}
else if ((ob->transflag & OB_DUPLI) && !(ob->transflag & OB_DUPLIFRAMES)) {
return 0;
}
/* don't add non-basic meta objects, ends up having renderobjects with no geometry */
if (ob->type == OB_MBALL && ob!=BKE_mball_basis_find(re->scene, ob))
return 0;
if (nolamps && (ob->type==OB_LAMP))
return 0;
if (onlyselected && (ob!=actob && !(ob->flag & SELECT)))
return 0;
return 1;
}
static int allow_render_dupli_instance(Render *UNUSED(re), DupliObject *dob, Object *obd)
{
ParticleSystem *psys;
Material *ma;
short a, *totmaterial;
/* don't allow objects with halos. we need to have
* all halo's to sort them globally in advance */
totmaterial= give_totcolp(obd);
if (totmaterial) {
for (a= 0; a<*totmaterial; a++) {
ma= give_current_material(obd, a + 1);
if (ma && (ma->material_type == MA_TYPE_HALO))
return 0;
}
}
for (psys=obd->particlesystem.first; psys; psys=psys->next)
if (!ELEM5(psys->part->ren_as, PART_DRAW_BB, PART_DRAW_LINE, PART_DRAW_PATH, PART_DRAW_OB, PART_DRAW_GR))
return 0;
/* don't allow lamp, animated duplis, or radio render */
return (render_object_type(obd->type) &&
(!(dob->type == OB_DUPLIGROUP) || !dob->animated));
}
static void dupli_render_particle_set(Render *re, Object *ob, int timeoffset, int level, int enable)
{
/* ugly function, but we need to set particle systems to their render
* settings before calling object_duplilist, to get render level duplis */
Group *group;
GroupObject *go;
ParticleSystem *psys;
DerivedMesh *dm;
if (level >= MAX_DUPLI_RECUR)
return;
if (ob->transflag & OB_DUPLIPARTS) {
for (psys=ob->particlesystem.first; psys; psys=psys->next) {
if (ELEM(psys->part->ren_as, PART_DRAW_OB, PART_DRAW_GR)) {
if (enable)
psys_render_set(ob, psys, re->viewmat, re->winmat, re->winx, re->winy, timeoffset);
else
psys_render_restore(ob, psys);
}
}
if (enable) {
/* this is to make sure we get render level duplis in groups:
* the derivedmesh must be created before init_render_mesh,
* since object_duplilist does dupliparticles before that */
dm = mesh_create_derived_render(re->scene, ob, CD_MASK_BAREMESH|CD_MASK_MTFACE|CD_MASK_MCOL);
dm->release(dm);
for (psys=ob->particlesystem.first; psys; psys=psys->next)
psys_get_modifier(ob, psys)->flag &= ~eParticleSystemFlag_psys_updated;
}
}
if (ob->dup_group==NULL) return;
group= ob->dup_group;
for (go= group->gobject.first; go; go= go->next)
dupli_render_particle_set(re, go->ob, timeoffset, level+1, enable);
}
static int get_vector_renderlayers(Scene *sce)
{
SceneRenderLayer *srl;
unsigned int lay= 0;
for (srl= sce->r.layers.first; srl; srl= srl->next)
if (srl->passflag & SCE_PASS_VECTOR)
lay |= srl->lay;
return lay;
}
static void add_group_render_dupli_obs(Render *re, Group *group, int nolamps, int onlyselected, Object *actob, int timeoffset, int level)
{
GroupObject *go;
Object *ob;
/* simple preventing of too deep nested groups */
if (level>MAX_DUPLI_RECUR) return;
/* recursively go into dupligroups to find objects with OB_RENDER_DUPLI
* that were not created yet */
for (go= group->gobject.first; go; go= go->next) {
ob= go->ob;
if (ob->flag & OB_DONE) {
if (ob->transflag & OB_RENDER_DUPLI) {
if (allow_render_object(re, ob, nolamps, onlyselected, actob)) {
init_render_object(re, ob, NULL, 0, timeoffset);
ob->transflag &= ~OB_RENDER_DUPLI;
if (ob->dup_group)
add_group_render_dupli_obs(re, ob->dup_group, nolamps, onlyselected, actob, timeoffset, level+1);
}
}
}
}
}
static void database_init_objects(Render *re, unsigned int renderlay, int nolamps, int onlyselected, Object *actob, int timeoffset)
{
Base *base;
Object *ob;
Group *group;
ObjectInstanceRen *obi;
Scene *sce_iter;
float mat[4][4];
int lay, vectorlay;
/* for duplis we need the Object texture mapping to work as if
* untransformed, set_dupli_tex_mat sets the matrix to allow that
* NULL is just for init */
set_dupli_tex_mat(NULL, NULL, NULL);
/* loop over all objects rather then using SETLOOPER because we may
* reference an mtex-mapped object which isn't rendered or is an
* empty in a dupli group. We could scan all render material/lamp/world
* mtex's for mapto objects but its easier just to set the
* 'imat' / 'imat_ren' on all and unlikely to be a performance hit
* See bug: [#28744] - campbell */
for (ob= re->main->object.first; ob; ob= ob->id.next) {
/* imat objects has to be done here, since displace can have texture using Object map-input */
mult_m4_m4m4(mat, re->viewmat, ob->obmat);
invert_m4_m4(ob->imat_ren, mat);
copy_m4_m4(ob->imat, ob->imat_ren);
/* each object should only be rendered once */
ob->flag &= ~OB_DONE;
ob->transflag &= ~OB_RENDER_DUPLI;
}
for (SETLOOPER(re->scene, sce_iter, base)) {
ob= base->object;
/* in the prev/next pass for making speed vectors, avoid creating
* objects that are not on a renderlayer with a vector pass, can
* save a lot of time in complex scenes */
vectorlay= get_vector_renderlayers(re->scene);
lay= (timeoffset)? renderlay & vectorlay: renderlay;
/* if the object has been restricted from rendering in the outliner, ignore it */
if (ob->restrictflag & OB_RESTRICT_RENDER) continue;
/* OB_DONE means the object itself got duplicated, so was already converted */
if (ob->flag & OB_DONE) {
/* OB_RENDER_DUPLI means instances for it were already created, now
* it still needs to create the ObjectRen containing the data */
if (ob->transflag & OB_RENDER_DUPLI) {
if (allow_render_object(re, ob, nolamps, onlyselected, actob)) {
init_render_object(re, ob, NULL, 0, timeoffset);
ob->transflag &= ~OB_RENDER_DUPLI;
}
}
}
else if ((base->lay & lay) || (ob->type==OB_LAMP && (base->lay & re->lay)) ) {
if ((ob->transflag & OB_DUPLI) && (ob->type!=OB_MBALL)) {
DupliObject *dob;
ListBase *lb;
/* create list of duplis generated by this object, particle
* system need to have render settings set for dupli particles */
dupli_render_particle_set(re, ob, timeoffset, 0, 1);
lb= object_duplilist(re->scene, ob, TRUE);
dupli_render_particle_set(re, ob, timeoffset, 0, 0);
for (dob= lb->first; dob; dob= dob->next) {
Object *obd= dob->ob;
copy_m4_m4(obd->obmat, dob->mat);
/* group duplis need to set ob matrices correct, for deform. so no_draw is part handled */
if (!(obd->transflag & OB_RENDER_DUPLI) && dob->no_draw)
continue;
if (obd->restrictflag & OB_RESTRICT_RENDER)
continue;
if (obd->type==OB_MBALL)
continue;
if (!allow_render_object(re, obd, nolamps, onlyselected, actob))
continue;
if (allow_render_dupli_instance(re, dob, obd)) {
ParticleSystem *psys;
ObjectRen *obr = NULL;
int psysindex;
float mat[4][4];
obi=NULL;
/* instances instead of the actual object are added in two cases, either
* this is a duplivert/face/particle, or it is a non-animated object in
* a dupligroup that has already been created before */
if (dob->type != OB_DUPLIGROUP || (obr=find_dupligroup_dupli(re, obd, 0))) {
mult_m4_m4m4(mat, re->viewmat, dob->mat);
/* ob = particle system, use that layer */
obi= RE_addRenderInstance(re, NULL, obd, ob, dob->persistent_id[0], 0, mat, ob->lay);
/* fill in instance variables for texturing */
set_dupli_tex_mat(re, obi, dob);
if (dob->type != OB_DUPLIGROUP) {
copy_v3_v3(obi->dupliorco, dob->orco);
obi->dupliuv[0]= dob->uv[0];
obi->dupliuv[1]= dob->uv[1];
}
else {
/* for the second case, setup instance to point to the already
* created object, and possibly setup instances if this object
* itself was duplicated. for the first case find_dupli_instances
* will be called later. */
assign_dupligroup_dupli(re, obi, obr);
if (obd->transflag & OB_RENDER_DUPLI)
find_dupli_instances(re, obr);
}
}
/* same logic for particles, each particle system has it's own object, so
* need to go over them separately */
psysindex= 1;
for (psys=obd->particlesystem.first; psys; psys=psys->next) {
if (dob->type != OB_DUPLIGROUP || (obr=find_dupligroup_dupli(re, obd, psysindex))) {
if (obi == NULL)
mult_m4_m4m4(mat, re->viewmat, dob->mat);
obi= RE_addRenderInstance(re, NULL, obd, ob, dob->persistent_id[0], psysindex++, mat, obd->lay);
set_dupli_tex_mat(re, obi, dob);
if (dob->type != OB_DUPLIGROUP) {
copy_v3_v3(obi->dupliorco, dob->orco);
obi->dupliuv[0]= dob->uv[0];
obi->dupliuv[1]= dob->uv[1];
}
else {
assign_dupligroup_dupli(re, obi, obr);
if (obd->transflag & OB_RENDER_DUPLI)
find_dupli_instances(re, obr);
}
}
}
if (obi==NULL)
/* can't instance, just create the object */
init_render_object(re, obd, ob, dob, timeoffset);
if (dob->type != OB_DUPLIGROUP) {
obd->flag |= OB_DONE;
obd->transflag |= OB_RENDER_DUPLI;
}
}
else
init_render_object(re, obd, ob, dob, timeoffset);
if (re->test_break(re->tbh)) break;
}
free_object_duplilist(lb);
if (allow_render_object(re, ob, nolamps, onlyselected, actob))
init_render_object(re, ob, NULL, 0, timeoffset);
}
else if (allow_render_object(re, ob, nolamps, onlyselected, actob))
init_render_object(re, ob, NULL, 0, timeoffset);
}
if (re->test_break(re->tbh)) break;
}
/* objects in groups with OB_RENDER_DUPLI set still need to be created,
* since they may not be part of the scene */
for (group= re->main->group.first; group; group=group->id.next)
add_group_render_dupli_obs(re, group, nolamps, onlyselected, actob, timeoffset, 0);
if (!re->test_break(re->tbh))
RE_makeRenderInstances(re);
}
/* used to be 'rotate scene' */
void RE_Database_FromScene(Render *re, Main *bmain, Scene *scene, unsigned int lay, int use_camera_view)
{
Scene *sce;
float mat[4][4];
float amb[3];
Object *camera= RE_GetCamera(re);
re->main= bmain;
re->scene= scene;
re->lay= lay;
/* per second, per object, stats print this */
re->i.infostr= "Preparing Scene data";
re->i.cfra= scene->r.cfra;
BLI_strncpy(re->i.scene_name, scene->id.name + 2, sizeof(re->i.scene_name));
/* XXX add test if dbase was filled already? */
re->memArena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "render db arena");
re->totvlak=re->totvert=re->totstrand=re->totlamp=re->tothalo= 0;
re->lights.first= re->lights.last= NULL;
re->lampren.first= re->lampren.last= NULL;
slurph_opt= 0;
re->i.partsdone = FALSE; /* signal now in use for previewrender */
/* in localview, lamps are using normal layers, objects only local bits */
if (re->lay & 0xFF000000)
lay &= 0xFF000000;
/* applies changes fully */
if ((re->r.scemode & (R_NO_FRAME_UPDATE|R_PREVIEWBUTS))==0)
BKE_scene_update_for_newframe(re->main, re->scene, lay);
/* if no camera, viewmat should have been set! */
if (use_camera_view && camera) {
/* called before but need to call again in case of lens animation from the
* above call to BKE_scene_update_for_newframe, fixes bug. [#22702].
* following calls don't depend on 'RE_SetCamera' */
RE_SetCamera(re, camera);
normalize_m4_m4(mat, camera->obmat);
invert_m4(mat);
RE_SetView(re, mat);
camera->recalc= OB_RECALC_OB; /* force correct matrix for scaled cameras */
}
init_render_world(re); /* do first, because of ambient. also requires re->osa set correct */
if (re->r.mode & R_RAYTRACE) {
init_render_qmcsampler(re);
if (re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT))
if (re->wrld.ao_samp_method == WO_AOSAMP_CONSTANT)
init_ao_sphere(&re->wrld);
}
/* still bad... doing all */
init_render_textures(re);
copy_v3_v3(amb, &re->wrld.ambr);
init_render_materials(re->main, re->r.mode, amb);
set_node_shader_lamp_loop(shade_material_loop);
/* MAKE RENDER DATA */
database_init_objects(re, lay, 0, 0, 0, 0);
if (!re->test_break(re->tbh)) {
int tothalo;
set_material_lightgroups(re);
for (sce= re->scene; sce; sce= sce->set)
set_renderlayer_lightgroups(re, sce);
slurph_opt= 1;
/* for now some clumsy copying still */
re->i.totvert= re->totvert;
re->i.totface= re->totvlak;
re->i.totstrand= re->totstrand;
re->i.tothalo= re->tothalo;
re->i.totlamp= re->totlamp;
re->stats_draw(re->sdh, &re->i);
/* don't sort stars */
tothalo= re->tothalo;
if (!re->test_break(re->tbh)) {
if (re->wrld.mode & WO_STARS) {
re->i.infostr = IFACE_("Creating Starfield");
re->stats_draw(re->sdh, &re->i);
RE_make_stars(re, NULL, NULL, NULL, NULL);
}
}
sort_halos(re, tothalo);
init_camera_inside_volumes(re);
re->i.infostr = IFACE_("Creating Shadowbuffers");
re->stats_draw(re->sdh, &re->i);
/* SHADOW BUFFER */
threaded_makeshadowbufs(re);
/* old code checked for internal render (aka not yafray) */
{
/* raytree */
if (!re->test_break(re->tbh)) {
if (re->r.mode & R_RAYTRACE) {
makeraytree(re);
}
}
/* ENVIRONMENT MAPS */
if (!re->test_break(re->tbh))
make_envmaps(re);
/* point density texture */
if (!re->test_break(re->tbh))
make_pointdensities(re);
/* voxel data texture */
if (!re->test_break(re->tbh))
make_voxeldata(re);
}
if (!re->test_break(re->tbh))
project_renderdata(re, projectverto, re->r.mode & R_PANORAMA, 0, 1);
/* Occlusion */
if ((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && !re->test_break(re->tbh))
if (re->wrld.ao_gather_method == WO_AOGATHER_APPROX)
if (re->r.mode & R_SHADOW)
make_occ_tree(re);
/* SSS */
if ((re->r.mode & R_SSS) && !re->test_break(re->tbh))
make_sss_tree(re);
if (!re->test_break(re->tbh))
if (re->r.mode & R_RAYTRACE)
volume_precache(re);
}
if (re->test_break(re->tbh))
RE_Database_Free(re);
else
re->i.convertdone = TRUE;
re->i.infostr = NULL;
re->stats_draw(re->sdh, &re->i);
}
/* exported call to recalculate hoco for vertices, when winmat changed */
void RE_DataBase_ApplyWindow(Render *re)
{
project_renderdata(re, projectverto, 0, 0, 0);
}
void RE_DataBase_GetView(Render *re, float mat[4][4])
{
copy_m4_m4(mat, re->viewmat);
}
/* ------------------------------------------------------------------------- */
/* Speed Vectors */
/* ------------------------------------------------------------------------- */
static void database_fromscene_vectors(Render *re, Scene *scene, unsigned int lay, int timeoffset)
{
Object *camera= RE_GetCamera(re);
float mat[4][4];
re->scene= scene;
re->lay= lay;
/* XXX add test if dbase was filled already? */
re->memArena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "vector render db arena");
re->totvlak=re->totvert=re->totstrand=re->totlamp=re->tothalo= 0;
re->i.totface=re->i.totvert=re->i.totstrand=re->i.totlamp=re->i.tothalo= 0;
re->lights.first= re->lights.last= NULL;
slurph_opt= 0;
/* in localview, lamps are using normal layers, objects only local bits */
if (re->lay & 0xFF000000)
lay &= 0xFF000000;
/* applies changes fully */
scene->r.cfra += timeoffset;
BKE_scene_update_for_newframe(re->main, re->scene, lay);
/* if no camera, viewmat should have been set! */
if (camera) {
normalize_m4_m4(mat, camera->obmat);
invert_m4(mat);
RE_SetView(re, mat);
}
/* MAKE RENDER DATA */
database_init_objects(re, lay, 0, 0, 0, timeoffset);
if (!re->test_break(re->tbh))
project_renderdata(re, projectverto, re->r.mode & R_PANORAMA, 0, 1);
/* do this in end, particles for example need cfra */
scene->r.cfra -= timeoffset;
}
/* choose to use static, to prevent giving too many args to this call */
static void speedvector_project(Render *re, float zco[2], const float co[3], const float ho[4])
{
static float pixelphix=0.0f, pixelphiy=0.0f, zmulx=0.0f, zmuly=0.0f;
static int pano= 0;
float div;
/* initialize */
if (re) {
pano= re->r.mode & R_PANORAMA;
/* precalculate amount of radians 1 pixel rotates */
if (pano) {
/* size of 1 pixel mapped to viewplane coords */
float psize;
psize = BLI_rctf_size_x(&re->viewplane) / (float)re->winx;
/* x angle of a pixel */
pixelphix = atan(psize / re->clipsta);
psize = BLI_rctf_size_y(&re->viewplane) / (float)re->winy;
/* y angle of a pixel */
pixelphiy = atan(psize / re->clipsta);
}
zmulx= re->winx/2;
zmuly= re->winy/2;
return;
}
/* now map hocos to screenspace, uses very primitive clip still */
if (ho[3]<0.1f) div= 10.0f;
else div= 1.0f/ho[3];
/* use cylinder projection */
if (pano) {
float vec[3], ang;
/* angle between (0, 0, -1) and (co) */
copy_v3_v3(vec, co);
ang= saacos(-vec[2]/sqrtf(vec[0]*vec[0] + vec[2]*vec[2]));
if (vec[0]<0.0f) ang= -ang;
zco[0]= ang/pixelphix + zmulx;
ang= 0.5f*(float)M_PI - saacos(vec[1] / len_v3(vec));
zco[1]= ang/pixelphiy + zmuly;
}
else {
zco[0]= zmulx*(1.0f+ho[0]*div);
zco[1]= zmuly*(1.0f+ho[1]*div);
}
}
static void calculate_speedvector(const float vectors[2], int step, float winsq, float winroot, const float co[3], const float ho[4], float speed[4])
{
float zco[2], len;
speedvector_project(NULL, zco, co, ho);
zco[0]= vectors[0] - zco[0];
zco[1]= vectors[1] - zco[1];
/* enable nice masks for hardly moving stuff or float inaccuracy */
if (zco[0]<0.1f && zco[0]>-0.1f && zco[1]<0.1f && zco[1]>-0.1f ) {
zco[0]= 0.0f;
zco[1]= 0.0f;
}
/* maximize speed for image width, otherwise it never looks good */
len= zco[0]*zco[0] + zco[1]*zco[1];
if (len > winsq) {
len= winroot/sqrtf(len);
zco[0]*= len;
zco[1]*= len;
}
/* note; in main vecblur loop speedvec is negated again */
if (step) {
speed[2]= -zco[0];
speed[3]= -zco[1];
}
else {
speed[0]= zco[0];
speed[1]= zco[1];
}
}
static float *calculate_strandsurface_speedvectors(Render *re, ObjectInstanceRen *obi, StrandSurface *mesh)
{
if (mesh->co && mesh->prevco && mesh->nextco) {
float winsq= (float)re->winx*(float)re->winy; /* int's can wrap on large images */
float winroot= sqrt(winsq);
float (*winspeed)[4];
float ho[4], prevho[4], nextho[4], winmat[4][4], vec[2];
int a;
if (obi->flag & R_TRANSFORMED)
mult_m4_m4m4(winmat, re->winmat, obi->mat);
else
copy_m4_m4(winmat, re->winmat);
winspeed= MEM_callocN(sizeof(float)*4*mesh->totvert, "StrandSurfWin");
for (a=0; a<mesh->totvert; a++) {
projectvert(mesh->co[a], winmat, ho);
projectvert(mesh->prevco[a], winmat, prevho);
speedvector_project(NULL, vec, mesh->prevco[a], prevho);
calculate_speedvector(vec, 0, winsq, winroot, mesh->co[a], ho, winspeed[a]);
projectvert(mesh->nextco[a], winmat, nextho);
speedvector_project(NULL, vec, mesh->nextco[a], nextho);
calculate_speedvector(vec, 1, winsq, winroot, mesh->co[a], ho, winspeed[a]);
}
return (float *)winspeed;
}
return NULL;
}
static void calculate_speedvectors(Render *re, ObjectInstanceRen *obi, float *vectors, int step)
{
ObjectRen *obr= obi->obr;
VertRen *ver= NULL;
StrandRen *strand= NULL;
StrandBuffer *strandbuf;
StrandSurface *mesh= NULL;
float *speed, (*winspeed)[4]=NULL, ho[4], winmat[4][4];
float *co1, *co2, *co3, *co4, w[4];
float winsq= (float)re->winx*(float)re->winy, winroot= sqrt(winsq); /* int's can wrap on large images */
int a, *face, *index;
if (obi->flag & R_TRANSFORMED)
mult_m4_m4m4(winmat, re->winmat, obi->mat);
else
copy_m4_m4(winmat, re->winmat);
if (obr->vertnodes) {
for (a=0; a<obr->totvert; a++, vectors+=2) {
if ((a & 255)==0) ver= obr->vertnodes[a>>8].vert;
else ver++;
speed= RE_vertren_get_winspeed(obi, ver, 1);
projectvert(ver->co, winmat, ho);
calculate_speedvector(vectors, step, winsq, winroot, ver->co, ho, speed);
}
}
if (obr->strandnodes) {
strandbuf= obr->strandbuf;
mesh= (strandbuf)? strandbuf->surface: NULL;
/* compute speed vectors at surface vertices */
if (mesh)
winspeed= (float(*)[4])calculate_strandsurface_speedvectors(re, obi, mesh);
if (winspeed) {
for (a=0; a<obr->totstrand; a++, vectors+=2) {
if ((a & 255)==0) strand= obr->strandnodes[a>>8].strand;
else strand++;
index= RE_strandren_get_face(obr, strand, 0);
if (index && *index < mesh->totface) {
speed= RE_strandren_get_winspeed(obi, strand, 1);
/* interpolate speed vectors from strand surface */
face= mesh->face[*index];
co1= mesh->co[face[0]];
co2= mesh->co[face[1]];
co3= mesh->co[face[2]];
co4= (face[3])? mesh->co[face[3]]: NULL;
interp_weights_face_v3(w, co1, co2, co3, co4, strand->vert->co);
zero_v4(speed);
madd_v4_v4fl(speed, winspeed[face[0]], w[0]);
madd_v4_v4fl(speed, winspeed[face[1]], w[1]);
madd_v4_v4fl(speed, winspeed[face[2]], w[2]);
if (face[3])
madd_v4_v4fl(speed, winspeed[face[3]], w[3]);
}
}
MEM_freeN(winspeed);
}
}
}
static int load_fluidsimspeedvectors(Render *re, ObjectInstanceRen *obi, float *vectors, int step)
{
ObjectRen *obr= obi->obr;
Object *fsob= obr->ob;
VertRen *ver= NULL;
float *speed, div, zco[2], avgvel[4] = {0.0, 0.0, 0.0, 0.0};
float zmulx= re->winx/2, zmuly= re->winy/2, len;
float winsq= (float)re->winx*(float)re->winy, winroot= sqrt(winsq); /* int's can wrap on large images */
int a, j;
float hoco[4], ho[4], fsvec[4], camco[4];
float mat[4][4], winmat[4][4];
float imat[4][4];
FluidsimModifierData *fluidmd = (FluidsimModifierData *)modifiers_findByType(fsob, eModifierType_Fluidsim);
FluidsimSettings *fss;
FluidVertexVelocity *velarray = NULL;
/* only one step needed */
if (step) return 1;
if (fluidmd)
fss = fluidmd->fss;
else
return 0;
copy_m4_m4(mat, re->viewmat);
invert_m4_m4(imat, mat);
/* set first vertex OK */
if (!fss->meshVelocities) return 0;
if ( obr->totvert != fss->totvert) {
//fprintf(stderr, "load_fluidsimspeedvectors - modified fluidsim mesh, not using speed vectors (%d,%d)...\n", obr->totvert, fsob->fluidsimSettings->meshSurface->totvert); // DEBUG
return 0;
}
velarray = fss->meshVelocities;
if (obi->flag & R_TRANSFORMED)
mult_m4_m4m4(winmat, re->winmat, obi->mat);
else
copy_m4_m4(winmat, re->winmat);
/* (bad) HACK calculate average velocity */
/* better solution would be fixing getVelocityAt() in intern/elbeem/intern/solver_util.cpp
* so that also small drops/little water volumes return a velocity != 0.
* But I had no luck in fixing that function - DG */
for (a=0; a<obr->totvert; a++) {
for (j=0;j<3;j++) avgvel[j] += velarray[a].vel[j];
}
for (j=0;j<3;j++) avgvel[j] /= (float)(obr->totvert);
for (a=0; a<obr->totvert; a++, vectors+=2) {
if ((a & 255)==0)
ver= obr->vertnodes[a>>8].vert;
else
ver++;
/* get fluid velocity */
fsvec[3] = 0.0f;
//fsvec[0] = fsvec[1] = fsvec[2] = fsvec[3] = 0.0; fsvec[2] = 2.0f; // NT fixed test
for (j=0;j<3;j++) fsvec[j] = velarray[a].vel[j];
/* (bad) HACK insert average velocity if none is there (see previous comment) */
if ((fsvec[0] == 0.0f) && (fsvec[1] == 0.0f) && (fsvec[2] == 0.0f)) {
fsvec[0] = avgvel[0];
fsvec[1] = avgvel[1];
fsvec[2] = avgvel[2];
}
/* transform (=rotate) to cam space */
camco[0] = dot_v3v3(imat[0], fsvec);
camco[1] = dot_v3v3(imat[1], fsvec);
camco[2] = dot_v3v3(imat[2], fsvec);
/* get homogeneous coordinates */
projectvert(camco, winmat, hoco);
projectvert(ver->co, winmat, ho);
/* now map hocos to screenspace, uses very primitive clip still */
/* use ho[3] of original vertex, xy component of vel. direction */
if (ho[3]<0.1f) div= 10.0f;
else div= 1.0f/ho[3];
zco[0]= zmulx*hoco[0]*div;
zco[1]= zmuly*hoco[1]*div;
/* maximize speed as usual */
len= zco[0]*zco[0] + zco[1]*zco[1];
if (len > winsq) {
len= winroot/sqrtf(len);
zco[0]*= len; zco[1]*= len;
}
speed= RE_vertren_get_winspeed(obi, ver, 1);
/* set both to the same value */
speed[0]= speed[2]= zco[0];
speed[1]= speed[3]= zco[1];
//if (a < 20) fprintf(stderr,"speed %d %f,%f | camco %f,%f,%f | hoco %f,%f,%f,%f\n", a, speed[0], speed[1], camco[0],camco[1], camco[2], hoco[0],hoco[1], hoco[2],hoco[3]); // NT DEBUG
}
return 1;
}
/* makes copy per object of all vectors */
/* result should be that we can free entire database */
static void copy_dbase_object_vectors(Render *re, ListBase *lb)
{
ObjectInstanceRen *obi, *obilb;
ObjectRen *obr;
VertRen *ver= NULL;
float *vec, ho[4], winmat[4][4];
int a, totvector;
for (obi= re->instancetable.first; obi; obi= obi->next) {
obr= obi->obr;
obilb= MEM_mallocN(sizeof(ObjectInstanceRen), "ObInstanceVector");
memcpy(obilb, obi, sizeof(ObjectInstanceRen));
BLI_addtail(lb, obilb);
obilb->totvector= totvector= obr->totvert;
if (totvector > 0) {
vec= obilb->vectors= MEM_mallocN(2*sizeof(float)*totvector, "vector array");
if (obi->flag & R_TRANSFORMED)
mult_m4_m4m4(winmat, re->winmat, obi->mat);
else
copy_m4_m4(winmat, re->winmat);
for (a=0; a<obr->totvert; a++, vec+=2) {
if ((a & 255)==0) ver= obr->vertnodes[a>>8].vert;
else ver++;
projectvert(ver->co, winmat, ho);
speedvector_project(NULL, vec, ver->co, ho);
}
}
}
}
static void free_dbase_object_vectors(ListBase *lb)
{
ObjectInstanceRen *obi;
for (obi= lb->first; obi; obi= obi->next)
if (obi->vectors)
MEM_freeN(obi->vectors);
BLI_freelistN(lb);
}
void RE_Database_FromScene_Vectors(Render *re, Main *bmain, Scene *sce, unsigned int lay)
{
ObjectInstanceRen *obi, *oldobi;
StrandSurface *mesh;
ListBase *table;
ListBase oldtable= {NULL, NULL}, newtable= {NULL, NULL};
ListBase strandsurface;
int step;
re->i.infostr = IFACE_("Calculating previous frame vectors");
re->r.mode |= R_SPEED;
speedvector_project(re, NULL, NULL, NULL); /* initializes projection code */
/* creates entire dbase */
database_fromscene_vectors(re, sce, lay, -1);
/* copy away vertex info */
copy_dbase_object_vectors(re, &oldtable);
/* free dbase and make the future one */
strandsurface= re->strandsurface;
memset(&re->strandsurface, 0, sizeof(ListBase));
RE_Database_Free(re);
re->strandsurface= strandsurface;
if (!re->test_break(re->tbh)) {
/* creates entire dbase */
re->i.infostr = IFACE_("Calculating next frame vectors");
database_fromscene_vectors(re, sce, lay, +1);
}
/* copy away vertex info */
copy_dbase_object_vectors(re, &newtable);
/* free dbase and make the real one */
strandsurface= re->strandsurface;
memset(&re->strandsurface, 0, sizeof(ListBase));
RE_Database_Free(re);
re->strandsurface= strandsurface;
if (!re->test_break(re->tbh))
RE_Database_FromScene(re, bmain, sce, lay, 1);
if (!re->test_break(re->tbh)) {
int vectorlay= get_vector_renderlayers(re->scene);
for (step= 0; step<2; step++) {
if (step)
table= &newtable;
else
table= &oldtable;
oldobi= table->first;
for (obi= re->instancetable.first; obi && oldobi; obi= obi->next) {
int ok= 1;
FluidsimModifierData *fluidmd;
if (!(obi->lay & vectorlay))
continue;
obi->totvector= obi->obr->totvert;
/* find matching object in old table */
if (oldobi->ob!=obi->ob || oldobi->par!=obi->par || oldobi->index!=obi->index || oldobi->psysindex!=obi->psysindex) {
ok= 0;
for (oldobi= table->first; oldobi; oldobi= oldobi->next)
if (oldobi->ob==obi->ob && oldobi->par==obi->par && oldobi->index==obi->index && oldobi->psysindex==obi->psysindex)
break;
if (oldobi==NULL)
oldobi= table->first;
else
ok= 1;
}
if (ok==0) {
printf("speed table: missing object %s\n", obi->ob->id.name+2);
continue;
}
/* NT check for fluidsim special treatment */
fluidmd = (FluidsimModifierData *)modifiers_findByType(obi->ob, eModifierType_Fluidsim);
if (fluidmd && fluidmd->fss && (fluidmd->fss->type & OB_FLUIDSIM_DOMAIN)) {
/* use preloaded per vertex simulation data, only does calculation for step=1 */
/* NOTE/FIXME - velocities and meshes loaded unnecessarily often during the database_fromscene_vectors calls... */
load_fluidsimspeedvectors(re, obi, oldobi->vectors, step);
}
else {
/* check if both have same amounts of vertices */
if (obi->totvector==oldobi->totvector)
calculate_speedvectors(re, obi, oldobi->vectors, step);
else
printf("Warning: object %s has different amount of vertices or strands on other frame\n", obi->ob->id.name+2);
} /* not fluidsim */
oldobi= oldobi->next;
}
}
}
free_dbase_object_vectors(&oldtable);
free_dbase_object_vectors(&newtable);
for (mesh=re->strandsurface.first; mesh; mesh=mesh->next) {
if (mesh->prevco) {
MEM_freeN(mesh->prevco);
mesh->prevco= NULL;
}
if (mesh->nextco) {
MEM_freeN(mesh->nextco);
mesh->nextco= NULL;
}
}
re->i.infostr = NULL;
re->stats_draw(re->sdh, &re->i);
}
/* ------------------------------------------------------------------------- */
/* Baking */
/* ------------------------------------------------------------------------- */
/* setup for shaded view or bake, so only lamps and materials are initialized */
/* type:
* RE_BAKE_LIGHT: for shaded view, only add lamps
* RE_BAKE_ALL: for baking, all lamps and objects
* RE_BAKE_NORMALS:for baking, no lamps and only selected objects
* RE_BAKE_AO: for baking, no lamps, but all objects
* RE_BAKE_TEXTURE:for baking, no lamps, only selected objects
* RE_BAKE_DISPLACEMENT:for baking, no lamps, only selected objects
* RE_BAKE_SHADOW: for baking, only shadows, but all objects
*/
void RE_Database_Baking(Render *re, Main *bmain, Scene *scene, unsigned int lay, const int type, Object *actob)
{
Object *camera;
float mat[4][4];
float amb[3];
const short onlyselected= !ELEM4(type, RE_BAKE_LIGHT, RE_BAKE_ALL, RE_BAKE_SHADOW, RE_BAKE_AO);
const short nolamps= ELEM3(type, RE_BAKE_NORMALS, RE_BAKE_TEXTURE, RE_BAKE_DISPLACEMENT);
re->main= bmain;
re->scene= scene;
re->lay= lay;
/* renderdata setup and exceptions */
re->r= scene->r;
RE_init_threadcount(re);
re->flag |= R_BAKING;
re->excludeob= actob;
if (actob)
re->flag |= R_BAKE_TRACE;
if (type==RE_BAKE_NORMALS && re->r.bake_normal_space==R_BAKE_SPACE_TANGENT)
re->flag |= R_NEED_TANGENT;
if (!actob && ELEM4(type, RE_BAKE_LIGHT, RE_BAKE_NORMALS, RE_BAKE_TEXTURE, RE_BAKE_DISPLACEMENT)) {
re->r.mode &= ~R_SHADOW;
re->r.mode &= ~R_RAYTRACE;
}
if (!actob && (type==RE_BAKE_SHADOW)) {
re->r.mode |= R_SHADOW;
}
/* setup render stuff */
re->memArena = BLI_memarena_new(BLI_MEMARENA_STD_BUFSIZE, "bake db arena");
re->totvlak=re->totvert=re->totstrand=re->totlamp=re->tothalo= 0;
re->lights.first= re->lights.last= NULL;
re->lampren.first= re->lampren.last= NULL;
/* in localview, lamps are using normal layers, objects only local bits */
if (re->lay & 0xFF000000)
lay &= 0xFF000000;
camera= RE_GetCamera(re);
/* if no camera, set unit */
if (camera) {
normalize_m4_m4(mat, camera->obmat);
invert_m4(mat);
RE_SetView(re, mat);
}
else {
unit_m4(mat);
RE_SetView(re, mat);
}
copy_m3_m4(re->imat, re->viewinv);
/* TODO: deep shadow maps + baking + strands */
/* strands use the window matrix and view size, there is to correct
* window matrix but at least avoids malloc and crash loop [#27807] */
unit_m4(re->winmat);
re->winx= re->winy= 256;
/* done setting dummy values */
init_render_world(re); /* do first, because of ambient. also requires re->osa set correct */
if (re->r.mode & R_RAYTRACE) {
init_render_qmcsampler(re);
if (re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT))
if (re->wrld.ao_samp_method == WO_AOSAMP_CONSTANT)
init_ao_sphere(&re->wrld);
}
/* still bad... doing all */
init_render_textures(re);
copy_v3_v3(amb, &re->wrld.ambr);
init_render_materials(re->main, re->r.mode, amb);
set_node_shader_lamp_loop(shade_material_loop);
/* MAKE RENDER DATA */
database_init_objects(re, lay, nolamps, onlyselected, actob, 0);
set_material_lightgroups(re);
/* SHADOW BUFFER */
if (type!=RE_BAKE_LIGHT)
if (re->r.mode & R_SHADOW)
threaded_makeshadowbufs(re);
/* raytree */
if (!re->test_break(re->tbh))
if (re->r.mode & R_RAYTRACE)
makeraytree(re);
/* point density texture */
if (!re->test_break(re->tbh))
make_pointdensities(re);
/* voxel data texture */
if (!re->test_break(re->tbh))
make_voxeldata(re);
/* occlusion */
if ((re->wrld.mode & (WO_AMB_OCC|WO_ENV_LIGHT|WO_INDIRECT_LIGHT)) && !re->test_break(re->tbh))
if (re->wrld.ao_gather_method == WO_AOGATHER_APPROX)
if (re->r.mode & R_SHADOW)
make_occ_tree(re);
}