This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/transform/transform_mode.c
Germano Cavalcante 92743cc895 Fix T85886: Rotate Tool and Adjust Last Operation - angles inverted
The constraint was not set when redoing.

This commit also removes `postInputRotation`. I really couldn't see a use for it.
2021-02-27 17:22:47 -03:00

1275 lines
36 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup edtransform
*/
#include <stdlib.h>
#include "DNA_anim_types.h"
#include "DNA_armature_types.h"
#include "DNA_constraint_types.h"
#include "DNA_gpencil_types.h"
#include "DNA_windowmanager_types.h"
#include "BLI_listbase.h"
#include "BLI_math.h"
#include "BLI_string.h"
#include "BKE_constraint.h"
#include "BKE_context.h"
#include "BKE_nla.h"
#include "RNA_access.h"
#include "UI_interface.h"
#include "BLT_translation.h"
#include "transform.h"
#include "transform_convert.h"
#include "transform_snap.h"
/* Own include. */
#include "transform_mode.h"
int transform_mode_really_used(bContext *C, int mode)
{
if (mode == TFM_BONESIZE) {
Object *ob = CTX_data_active_object(C);
BLI_assert(ob);
if (ob->type != OB_ARMATURE) {
return TFM_RESIZE;
}
bArmature *arm = ob->data;
if (arm->drawtype == ARM_ENVELOPE) {
return TFM_BONE_ENVELOPE_DIST;
}
}
return mode;
}
bool transdata_check_local_center(TransInfo *t, short around)
{
return ((around == V3D_AROUND_LOCAL_ORIGINS) &&
((t->options & (CTX_OBJECT | CTX_POSE_BONE)) ||
/* implicit: (t->flag & T_EDIT) */
(ELEM(t->obedit_type, OB_MESH, OB_CURVE, OB_MBALL, OB_ARMATURE, OB_GPENCIL)) ||
(t->spacetype == SPACE_GRAPH) ||
(t->options & (CTX_MOVIECLIP | CTX_MASK | CTX_PAINT_CURVE))));
}
/* Informs if the mode can be switched during modal. */
bool transform_mode_is_changeable(const int mode)
{
return ELEM(mode,
TFM_ROTATION,
TFM_RESIZE,
TFM_TRACKBALL,
TFM_TRANSLATION,
TFM_EDGE_SLIDE,
TFM_VERT_SLIDE);
}
/* -------------------------------------------------------------------- */
/** \name Transform Locks
* \{ */
void protectedTransBits(short protectflag, float vec[3])
{
if (protectflag & OB_LOCK_LOCX) {
vec[0] = 0.0f;
}
if (protectflag & OB_LOCK_LOCY) {
vec[1] = 0.0f;
}
if (protectflag & OB_LOCK_LOCZ) {
vec[2] = 0.0f;
}
}
/* this function only does the delta rotation */
static void protectedQuaternionBits(short protectflag, float quat[4], const float oldquat[4])
{
/* check that protection flags are set */
if ((protectflag & (OB_LOCK_ROTX | OB_LOCK_ROTY | OB_LOCK_ROTZ | OB_LOCK_ROTW)) == 0) {
return;
}
if (protectflag & OB_LOCK_ROT4D) {
/* quaternions getting limited as 4D entities that they are... */
if (protectflag & OB_LOCK_ROTW) {
quat[0] = oldquat[0];
}
if (protectflag & OB_LOCK_ROTX) {
quat[1] = oldquat[1];
}
if (protectflag & OB_LOCK_ROTY) {
quat[2] = oldquat[2];
}
if (protectflag & OB_LOCK_ROTZ) {
quat[3] = oldquat[3];
}
}
else {
/* quaternions get limited with euler... (compatibility mode) */
float eul[3], oldeul[3], nquat[4], noldquat[4];
float qlen;
qlen = normalize_qt_qt(nquat, quat);
normalize_qt_qt(noldquat, oldquat);
quat_to_eul(eul, nquat);
quat_to_eul(oldeul, noldquat);
if (protectflag & OB_LOCK_ROTX) {
eul[0] = oldeul[0];
}
if (protectflag & OB_LOCK_ROTY) {
eul[1] = oldeul[1];
}
if (protectflag & OB_LOCK_ROTZ) {
eul[2] = oldeul[2];
}
eul_to_quat(quat, eul);
/* restore original quat size */
mul_qt_fl(quat, qlen);
/* quaternions flip w sign to accumulate rotations correctly */
if ((nquat[0] < 0.0f && quat[0] > 0.0f) || (nquat[0] > 0.0f && quat[0] < 0.0f)) {
mul_qt_fl(quat, -1.0f);
}
}
}
static void protectedRotateBits(short protectflag, float eul[3], const float oldeul[3])
{
if (protectflag & OB_LOCK_ROTX) {
eul[0] = oldeul[0];
}
if (protectflag & OB_LOCK_ROTY) {
eul[1] = oldeul[1];
}
if (protectflag & OB_LOCK_ROTZ) {
eul[2] = oldeul[2];
}
}
/* this function only does the delta rotation */
/* axis-angle is usually internally stored as quats... */
static void protectedAxisAngleBits(
short protectflag, float axis[3], float *angle, const float oldAxis[3], float oldAngle)
{
/* check that protection flags are set */
if ((protectflag & (OB_LOCK_ROTX | OB_LOCK_ROTY | OB_LOCK_ROTZ | OB_LOCK_ROTW)) == 0) {
return;
}
if (protectflag & OB_LOCK_ROT4D) {
/* axis-angle getting limited as 4D entities that they are... */
if (protectflag & OB_LOCK_ROTW) {
*angle = oldAngle;
}
if (protectflag & OB_LOCK_ROTX) {
axis[0] = oldAxis[0];
}
if (protectflag & OB_LOCK_ROTY) {
axis[1] = oldAxis[1];
}
if (protectflag & OB_LOCK_ROTZ) {
axis[2] = oldAxis[2];
}
}
else {
/* axis-angle get limited with euler... */
float eul[3], oldeul[3];
axis_angle_to_eulO(eul, EULER_ORDER_DEFAULT, axis, *angle);
axis_angle_to_eulO(oldeul, EULER_ORDER_DEFAULT, oldAxis, oldAngle);
if (protectflag & OB_LOCK_ROTX) {
eul[0] = oldeul[0];
}
if (protectflag & OB_LOCK_ROTY) {
eul[1] = oldeul[1];
}
if (protectflag & OB_LOCK_ROTZ) {
eul[2] = oldeul[2];
}
eulO_to_axis_angle(axis, angle, eul, EULER_ORDER_DEFAULT);
/* When converting to axis-angle,
* we need a special exception for the case when there is no axis. */
if (IS_EQF(axis[0], axis[1]) && IS_EQF(axis[1], axis[2])) {
/* for now, rotate around y-axis then (so that it simply becomes the roll) */
axis[1] = 1.0f;
}
}
}
void protectedSizeBits(short protectflag, float size[3])
{
if (protectflag & OB_LOCK_SCALEX) {
size[0] = 1.0f;
}
if (protectflag & OB_LOCK_SCALEY) {
size[1] = 1.0f;
}
if (protectflag & OB_LOCK_SCALEZ) {
size[2] = 1.0f;
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform Limits
* \{ */
void constraintTransLim(TransInfo *t, TransData *td)
{
if (td->con) {
const bConstraintTypeInfo *ctiLoc = BKE_constraint_typeinfo_from_type(
CONSTRAINT_TYPE_LOCLIMIT);
const bConstraintTypeInfo *ctiDist = BKE_constraint_typeinfo_from_type(
CONSTRAINT_TYPE_DISTLIMIT);
bConstraintOb cob = {NULL};
bConstraint *con;
float ctime = (float)(t->scene->r.cfra);
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
unit_m4(cob.matrix);
copy_v3_v3(cob.matrix[3], td->loc);
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
const bConstraintTypeInfo *cti = NULL;
ListBase targets = {NULL, NULL};
/* only consider constraint if enabled */
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) {
continue;
}
if (con->enforce == 0.0f) {
continue;
}
/* only use it if it's tagged for this purpose (and the right type) */
if (con->type == CONSTRAINT_TYPE_LOCLIMIT) {
bLocLimitConstraint *data = (bLocLimitConstraint *)con->data;
if ((data->flag2 & LIMIT_TRANSFORM) == 0) {
continue;
}
cti = ctiLoc;
}
else if (con->type == CONSTRAINT_TYPE_DISTLIMIT) {
bDistLimitConstraint *data = (bDistLimitConstraint *)con->data;
if ((data->flag & LIMITDIST_TRANSFORM) == 0) {
continue;
}
cti = ctiDist;
}
if (cti) {
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatible spacetype */
continue;
}
/* get constraint targets if needed */
BKE_constraint_targets_for_solving_get(t->depsgraph, con, &cob, &targets, ctime);
/* do constraint */
cti->evaluate_constraint(con, &cob, &targets);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
/* free targets list */
BLI_freelistN(&targets);
}
}
/* copy results from cob->matrix */
copy_v3_v3(td->loc, cob.matrix[3]);
}
}
static void constraintob_from_transdata(bConstraintOb *cob, TransData *td)
{
/* Make a temporary bConstraintOb for use by limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
memset(cob, 0, sizeof(bConstraintOb));
if (td->ext) {
if (td->ext->rotOrder == ROT_MODE_QUAT) {
/* quats */
/* objects and bones do normalization first too, otherwise
* we don't necessarily end up with a rotation matrix, and
* then conversion back to quat gives a different result */
float quat[4];
normalize_qt_qt(quat, td->ext->quat);
quat_to_mat4(cob->matrix, quat);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* axis angle */
axis_angle_to_mat4(cob->matrix, td->ext->rotAxis, *td->ext->rotAngle);
}
else {
/* eulers */
eulO_to_mat4(cob->matrix, td->ext->rot, td->ext->rotOrder);
}
}
}
static void constraintRotLim(TransInfo *UNUSED(t), TransData *td)
{
if (td->con) {
const bConstraintTypeInfo *cti = BKE_constraint_typeinfo_from_type(CONSTRAINT_TYPE_ROTLIMIT);
bConstraintOb cob;
bConstraint *con;
bool do_limit = false;
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
/* only consider constraint if enabled */
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) {
continue;
}
if (con->enforce == 0.0f) {
continue;
}
/* we're only interested in Limit-Rotation constraints */
if (con->type == CONSTRAINT_TYPE_ROTLIMIT) {
bRotLimitConstraint *data = (bRotLimitConstraint *)con->data;
/* only use it if it's tagged for this purpose */
if ((data->flag2 & LIMIT_TRANSFORM) == 0) {
continue;
}
/* skip incompatible spacetypes */
if (!ELEM(con->ownspace, CONSTRAINT_SPACE_WORLD, CONSTRAINT_SPACE_LOCAL)) {
continue;
}
/* only do conversion if necessary, to preserve quats and eulers */
if (do_limit == false) {
constraintob_from_transdata(&cob, td);
do_limit = true;
}
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
}
}
if (do_limit) {
/* copy results from cob->matrix */
if (td->ext->rotOrder == ROT_MODE_QUAT) {
/* quats */
mat4_to_quat(td->ext->quat, cob.matrix);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* axis angle */
mat4_to_axis_angle(td->ext->rotAxis, td->ext->rotAngle, cob.matrix);
}
else {
/* eulers */
mat4_to_eulO(td->ext->rot, td->ext->rotOrder, cob.matrix);
}
}
}
}
void constraintSizeLim(TransInfo *t, TransData *td)
{
if (td->con && td->ext) {
const bConstraintTypeInfo *cti = BKE_constraint_typeinfo_from_type(CONSTRAINT_TYPE_SIZELIMIT);
bConstraintOb cob = {NULL};
bConstraint *con;
float size_sign[3], size_abs[3];
int i;
/* Make a temporary bConstraintOb for using these limit constraints
* - they only care that cob->matrix is correctly set ;-)
* - current space should be local
*/
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; /* TODO: fix this case */
}
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE) {
return;
}
/* separate out sign to apply back later */
for (i = 0; i < 3; i++) {
size_sign[i] = signf(td->ext->size[i]);
size_abs[i] = fabsf(td->ext->size[i]);
}
size_to_mat4(cob.matrix, size_abs);
/* Evaluate valid constraints */
for (con = td->con; con; con = con->next) {
/* only consider constraint if enabled */
if (con->flag & (CONSTRAINT_DISABLE | CONSTRAINT_OFF)) {
continue;
}
if (con->enforce == 0.0f) {
continue;
}
/* we're only interested in Limit-Scale constraints */
if (con->type == CONSTRAINT_TYPE_SIZELIMIT) {
bSizeLimitConstraint *data = con->data;
/* only use it if it's tagged for this purpose */
if ((data->flag2 & LIMIT_TRANSFORM) == 0) {
continue;
}
/* do space conversions */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->mtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->mtx, cob.matrix);
}
else if (con->ownspace != CONSTRAINT_SPACE_LOCAL) {
/* skip... incompatible spacetype */
continue;
}
/* do constraint */
cti->evaluate_constraint(con, &cob, NULL);
/* convert spaces again */
if (con->ownspace == CONSTRAINT_SPACE_WORLD) {
/* just multiply by td->smtx (this should be ok) */
mul_m4_m3m4(cob.matrix, td->smtx, cob.matrix);
}
}
}
/* copy results from cob->matrix */
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
return; /* TODO: fix this case. */
}
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE) {
return;
}
/* Extract scale from matrix and apply back sign. */
mat4_to_size(td->ext->size, cob.matrix);
mul_v3_v3(td->ext->size, size_sign);
}
}
/* -------------------------------------------------------------------- */
/** \name Transform (Rotation Utils)
* \{ */
/* Used by Transform Rotation and Transform Normal Rotation */
void headerRotation(TransInfo *t, char str[UI_MAX_DRAW_STR], float final)
{
size_t ofs = 0;
if (hasNumInput(&t->num)) {
char c[NUM_STR_REP_LEN];
outputNumInput(&(t->num), c, &t->scene->unit);
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
TIP_("Rotation: %s %s %s"),
&c[0],
t->con.text,
t->proptext);
}
else {
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
TIP_("Rotation: %.2f%s %s"),
RAD2DEGF(final),
t->con.text,
t->proptext);
}
if (t->flag & T_PROP_EDIT_ALL) {
ofs += BLI_snprintf(
str + ofs, UI_MAX_DRAW_STR - ofs, TIP_(" Proportional size: %.2f"), t->prop_size);
}
}
/**
* Applies values of rotation to `td->loc` and `td->ext->quat`
* based on a rotation matrix (mat) and a pivot (center).
*
* Protected axis and other transform settings are taken into account.
*/
void ElementRotation_ex(TransInfo *t,
TransDataContainer *tc,
TransData *td,
const float mat[3][3],
const float *center)
{
float vec[3], totmat[3][3], smat[3][3];
float eul[3], fmat[3][3], quat[4];
if (t->flag & T_POINTS) {
mul_m3_m3m3(totmat, mat, td->mtx);
mul_m3_m3m3(smat, td->smtx, totmat);
/* apply gpencil falloff */
if (t->options & CTX_GPENCIL_STROKES) {
bGPDstroke *gps = (bGPDstroke *)td->extra;
float sx = smat[0][0];
float sy = smat[1][1];
float sz = smat[2][2];
mul_m3_fl(smat, gps->runtime.multi_frame_falloff);
/* fix scale */
smat[0][0] = sx;
smat[1][1] = sy;
smat[2][2] = sz;
}
sub_v3_v3v3(vec, td->iloc, center);
mul_m3_v3(smat, vec);
add_v3_v3v3(td->loc, vec, center);
sub_v3_v3v3(vec, td->loc, td->iloc);
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
if (td->flag & TD_USEQUAT) {
mul_m3_series(fmat, td->smtx, mat, td->mtx);
mat3_to_quat(quat, fmat); /* Actual transform */
if (td->ext->quat) {
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* is there a reason not to have this here? -jahka */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
}
}
/**
* HACK WARNING
*
* This is some VERY ugly special case to deal with pose mode.
*
* The problem is that mtx and smtx include each bone orientation.
*
* That is needed to rotate each bone properly, HOWEVER, to calculate
* the translation component, we only need the actual armature object's
* matrix (and inverse). That is not all though. Once the proper translation
* has been computed, it has to be converted back into the bone's space.
*/
else if (t->options & CTX_POSE_BONE) {
/* Extract and invert armature object matrix */
if ((td->flag & TD_NO_LOC) == 0) {
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(tc->mat3, vec); /* To Global space. */
mul_m3_v3(mat, vec); /* Applying rotation. */
mul_m3_v3(tc->imat3, vec); /* To Local space. */
add_v3_v3(vec, center);
/* vec now is the location where the object has to be */
sub_v3_v3v3(vec, vec, td->center); /* Translation needed from the initial location */
/* special exception, see TD_PBONE_LOCAL_MTX definition comments */
if (td->flag & TD_PBONE_LOCAL_MTX_P) {
/* do nothing */
}
else if (td->flag & TD_PBONE_LOCAL_MTX_C) {
mul_m3_v3(tc->mat3, vec); /* To Global space. */
mul_m3_v3(td->ext->l_smtx, vec); /* To Pose space (Local Location). */
}
else {
mul_m3_v3(tc->mat3, vec); /* To Global space. */
mul_m3_v3(td->smtx, vec); /* To Pose space. */
}
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
constraintTransLim(t, td);
}
/* rotation */
/* MORE HACK: as in some cases the matrix to apply location and rot/scale is not the same,
* and ElementRotation() might be called in Translation context (with align snapping),
* we need to be sure to actually use the *rotation* matrix here...
* So no other way than storing it in some dedicated members of td->ext! */
if ((t->flag & T_V3D_ALIGN) == 0) { /* align mode doesn't rotate objects itself */
/* euler or quaternion/axis-angle? */
if (td->ext->rotOrder == ROT_MODE_QUAT) {
mul_m3_series(fmat, td->ext->r_smtx, mat, td->ext->r_mtx);
mat3_to_quat(quat, fmat); /* Actual transform */
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* calculate effect based on quats */
float iquat[4], tquat[4];
axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle);
mul_m3_series(fmat, td->ext->r_smtx, mat, td->ext->r_mtx);
mat3_to_quat(quat, fmat); /* Actual transform */
mul_qt_qtqt(tquat, quat, iquat);
quat_to_axis_angle(td->ext->rotAxis, td->ext->rotAngle, tquat);
/* this function works on end result */
protectedAxisAngleBits(td->protectflag,
td->ext->rotAxis,
td->ext->rotAngle,
td->ext->irotAxis,
td->ext->irotAngle);
}
else {
float eulmat[3][3];
mul_m3_m3m3(totmat, mat, td->ext->r_mtx);
mul_m3_m3m3(smat, td->ext->r_smtx, totmat);
/* Calculate the total rotation in eulers. */
copy_v3_v3(eul, td->ext->irot);
eulO_to_mat3(eulmat, eul, td->ext->rotOrder);
/* mat = transform, obmat = bone rotation */
mul_m3_m3m3(fmat, smat, eulmat);
mat3_to_compatible_eulO(eul, td->ext->rot, td->ext->rotOrder, fmat);
/* and apply (to end result only) */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
copy_v3_v3(td->ext->rot, eul);
}
constraintRotLim(t, td);
}
}
else {
if ((td->flag & TD_NO_LOC) == 0) {
/* translation */
sub_v3_v3v3(vec, td->center, center);
mul_m3_v3(mat, vec);
add_v3_v3(vec, center);
/* vec now is the location where the object has to be */
sub_v3_v3(vec, td->center);
mul_m3_v3(td->smtx, vec);
protectedTransBits(td->protectflag, vec);
add_v3_v3v3(td->loc, td->iloc, vec);
}
constraintTransLim(t, td);
/* rotation */
if ((t->flag & T_V3D_ALIGN) == 0) { /* Align mode doesn't rotate objects itself. */
/* euler or quaternion? */
if ((td->ext->rotOrder == ROT_MODE_QUAT) || (td->flag & TD_USEQUAT)) {
/* can be called for texture space translate for example, then opt out */
if (td->ext->quat) {
mul_m3_series(fmat, td->smtx, mat, td->mtx);
mat3_to_quat(quat, fmat); /* Actual transform */
mul_qt_qtqt(td->ext->quat, quat, td->ext->iquat);
/* this function works on end result */
protectedQuaternionBits(td->protectflag, td->ext->quat, td->ext->iquat);
}
}
else if (td->ext->rotOrder == ROT_MODE_AXISANGLE) {
/* calculate effect based on quats */
float iquat[4], tquat[4];
axis_angle_to_quat(iquat, td->ext->irotAxis, td->ext->irotAngle);
mul_m3_series(fmat, td->smtx, mat, td->mtx);
mat3_to_quat(quat, fmat); /* Actual transform */
mul_qt_qtqt(tquat, quat, iquat);
quat_to_axis_angle(td->ext->rotAxis, td->ext->rotAngle, tquat);
/* this function works on end result */
protectedAxisAngleBits(td->protectflag,
td->ext->rotAxis,
td->ext->rotAngle,
td->ext->irotAxis,
td->ext->irotAngle);
}
else {
float obmat[3][3];
mul_m3_m3m3(totmat, mat, td->mtx);
mul_m3_m3m3(smat, td->smtx, totmat);
/* Calculate the total rotation in eulers. */
add_v3_v3v3(eul, td->ext->irot, td->ext->drot); /* correct for delta rot */
eulO_to_mat3(obmat, eul, td->ext->rotOrder);
/* mat = transform, obmat = object rotation */
mul_m3_m3m3(fmat, smat, obmat);
mat3_to_compatible_eulO(eul, td->ext->rot, td->ext->rotOrder, fmat);
/* correct back for delta rot */
sub_v3_v3v3(eul, eul, td->ext->drot);
/* and apply */
protectedRotateBits(td->protectflag, eul, td->ext->irot);
copy_v3_v3(td->ext->rot, eul);
}
constraintRotLim(t, td);
}
}
}
void ElementRotation(
TransInfo *t, TransDataContainer *tc, TransData *td, float mat[3][3], const short around)
{
const float *center;
/* local constraint shouldn't alter center */
if (transdata_check_local_center(t, around)) {
center = td->center;
}
else {
center = tc->center_local;
}
ElementRotation_ex(t, tc, td, mat, center);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Resize Utils)
* \{ */
void headerResize(TransInfo *t, const float vec[3], char str[UI_MAX_DRAW_STR])
{
char tvec[NUM_STR_REP_LEN * 3];
size_t ofs = 0;
if (hasNumInput(&t->num)) {
outputNumInput(&(t->num), tvec, &t->scene->unit);
}
else {
BLI_snprintf(&tvec[0], NUM_STR_REP_LEN, "%.4f", vec[0]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN], NUM_STR_REP_LEN, "%.4f", vec[1]);
BLI_snprintf(&tvec[NUM_STR_REP_LEN * 2], NUM_STR_REP_LEN, "%.4f", vec[2]);
}
if (t->con.mode & CON_APPLY) {
switch (t->num.idx_max) {
case 0:
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
TIP_("Scale: %s%s %s"),
&tvec[0],
t->con.text,
t->proptext);
break;
case 1:
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
TIP_("Scale: %s : %s%s %s"),
&tvec[0],
&tvec[NUM_STR_REP_LEN],
t->con.text,
t->proptext);
break;
case 2:
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
TIP_("Scale: %s : %s : %s%s %s"),
&tvec[0],
&tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2],
t->con.text,
t->proptext);
break;
}
}
else {
if (t->flag & T_2D_EDIT) {
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
TIP_("Scale X: %s Y: %s%s %s"),
&tvec[0],
&tvec[NUM_STR_REP_LEN],
t->con.text,
t->proptext);
}
else {
ofs += BLI_snprintf(str + ofs,
UI_MAX_DRAW_STR - ofs,
TIP_("Scale X: %s Y: %s Z: %s%s %s"),
&tvec[0],
&tvec[NUM_STR_REP_LEN],
&tvec[NUM_STR_REP_LEN * 2],
t->con.text,
t->proptext);
}
}
if (t->flag & T_PROP_EDIT_ALL) {
ofs += BLI_snprintf(
str + ofs, UI_MAX_DRAW_STR - ofs, TIP_(" Proportional size: %.2f"), t->prop_size);
}
}
/**
* \a smat is reference matrix only.
*
* \note this is a tricky area, before making changes see: T29633, T42444
*/
static void TransMat3ToSize(const float mat[3][3], const float smat[3][3], float size[3])
{
float rmat[3][3];
mat3_to_rot_size(rmat, size, mat);
/* First tried with dot-product... but the sign flip is crucial. */
if (dot_v3v3(rmat[0], smat[0]) < 0.0f) {
size[0] = -size[0];
}
if (dot_v3v3(rmat[1], smat[1]) < 0.0f) {
size[1] = -size[1];
}
if (dot_v3v3(rmat[2], smat[2]) < 0.0f) {
size[2] = -size[2];
}
}
void ElementResize(TransInfo *t, TransDataContainer *tc, TransData *td, float mat[3][3])
{
float tmat[3][3], smat[3][3], center[3];
float vec[3];
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, mat, td->mtx);
mul_m3_m3m3(tmat, td->smtx, smat);
}
else {
copy_m3_m3(tmat, mat);
}
if (t->con.applySize) {
t->con.applySize(t, tc, td, tmat);
}
/* local constraint shouldn't alter center */
if (transdata_check_local_center(t, t->around)) {
copy_v3_v3(center, td->center);
}
else if (t->options & CTX_MOVIECLIP) {
if (td->flag & TD_INDIVIDUAL_SCALE) {
copy_v3_v3(center, td->center);
}
else {
copy_v3_v3(center, tc->center_local);
}
}
else {
copy_v3_v3(center, tc->center_local);
}
/* Size checked needed since the 3D cursor only uses rotation fields. */
if (td->ext && td->ext->size) {
float fsize[3];
if (ELEM(t->data_type, TC_SCULPT, TC_OBJECT, TC_OBJECT_TEXSPACE, TC_POSE)) {
float obsizemat[3][3];
/* Reorient the size mat to fit the oriented object. */
mul_m3_m3m3(obsizemat, tmat, td->axismtx);
/* print_m3("obsizemat", obsizemat); */
TransMat3ToSize(obsizemat, td->axismtx, fsize);
/* print_v3("fsize", fsize); */
}
else {
mat3_to_size(fsize, tmat);
}
protectedSizeBits(td->protectflag, fsize);
if ((t->flag & T_V3D_ALIGN) == 0) { /* align mode doesn't resize objects itself */
if ((td->flag & TD_SINGLESIZE) && !(t->con.mode & CON_APPLY)) {
/* scale val and reset size */
*td->val = td->ival * (1 + (fsize[0] - 1) * td->factor);
td->ext->size[0] = td->ext->isize[0];
td->ext->size[1] = td->ext->isize[1];
td->ext->size[2] = td->ext->isize[2];
}
else {
/* Reset val if SINGLESIZE but using a constraint */
if (td->flag & TD_SINGLESIZE) {
*td->val = td->ival;
}
td->ext->size[0] = td->ext->isize[0] * (1 + (fsize[0] - 1) * td->factor);
td->ext->size[1] = td->ext->isize[1] * (1 + (fsize[1] - 1) * td->factor);
td->ext->size[2] = td->ext->isize[2] * (1 + (fsize[2] - 1) * td->factor);
}
}
constraintSizeLim(t, td);
}
/* For individual element center, Editmode need to use iloc */
if (t->flag & T_POINTS) {
sub_v3_v3v3(vec, td->iloc, center);
}
else {
sub_v3_v3v3(vec, td->center, center);
}
mul_m3_v3(tmat, vec);
add_v3_v3(vec, center);
if (t->flag & T_POINTS) {
sub_v3_v3(vec, td->iloc);
}
else {
sub_v3_v3(vec, td->center);
}
/* grease pencil falloff */
if (t->options & CTX_GPENCIL_STROKES) {
bGPDstroke *gps = (bGPDstroke *)td->extra;
mul_v3_fl(vec, td->factor * gps->runtime.multi_frame_falloff);
/* scale stroke thickness */
if (td->val) {
transform_snap_increment(t, t->values_final);
applyNumInput(&t->num, t->values_final);
float ratio = t->values_final[0];
*td->val = td->ival * ratio * gps->runtime.multi_frame_falloff;
CLAMP_MIN(*td->val, 0.001f);
}
}
else {
mul_v3_fl(vec, td->factor);
}
if (t->options & (CTX_OBJECT | CTX_POSE_BONE)) {
mul_m3_v3(td->smtx, vec);
}
protectedTransBits(td->protectflag, vec);
if (td->loc) {
add_v3_v3v3(td->loc, td->iloc, vec);
}
constraintTransLim(t, td);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform (Frame Utils)
* \{ */
/**
* This function returns the snapping 'mode' for Animation Editors only.
* We cannot use the standard snapping due to NLA-strip scaling complexities.
*
* TODO: these modifier checks should be key-mappable.
*/
short getAnimEdit_SnapMode(TransInfo *t)
{
short autosnap = SACTSNAP_OFF;
if (t->spacetype == SPACE_ACTION) {
SpaceAction *saction = (SpaceAction *)t->area->spacedata.first;
if (saction) {
autosnap = saction->autosnap;
}
}
else if (t->spacetype == SPACE_GRAPH) {
SpaceGraph *sipo = (SpaceGraph *)t->area->spacedata.first;
if (sipo) {
autosnap = sipo->autosnap;
}
}
else if (t->spacetype == SPACE_NLA) {
SpaceNla *snla = (SpaceNla *)t->area->spacedata.first;
if (snla) {
autosnap = snla->autosnap;
}
}
else {
autosnap = SACTSNAP_OFF;
}
/* toggle autosnap on/off
* - when toggling on, prefer nearest frame over 1.0 frame increments
*/
if (t->modifiers & MOD_SNAP_INVERT) {
if (autosnap) {
autosnap = SACTSNAP_OFF;
}
else {
autosnap = SACTSNAP_FRAME;
}
}
return autosnap;
}
/* This function is used by Animation Editor specific transform functions to do
* the Snap Keyframe to Nearest Frame/Marker
*/
void doAnimEdit_SnapFrame(
TransInfo *t, TransData *td, TransData2D *td2d, AnimData *adt, short autosnap)
{
if (autosnap != SACTSNAP_OFF) {
float val;
/* convert frame to nla-action time (if needed) */
if (adt && (t->spacetype != SPACE_SEQ)) {
val = BKE_nla_tweakedit_remap(adt, *(td->val), NLATIME_CONVERT_MAP);
}
else {
val = *(td->val);
}
snapFrameTransform(t, autosnap, true, val, &val);
/* convert frame out of nla-action time */
if (adt && (t->spacetype != SPACE_SEQ)) {
*(td->val) = BKE_nla_tweakedit_remap(adt, val, NLATIME_CONVERT_UNMAP);
}
else {
*(td->val) = val;
}
}
/* If the handles are to be moved too
* (as side-effect of keyframes moving, to keep the general effect)
* offset them by the same amount so that the general angles are maintained
* (i.e. won't change while handles are free-to-roam and keyframes are snap-locked).
*/
if ((td->flag & TD_MOVEHANDLE1) && td2d->h1) {
td2d->h1[0] = td2d->ih1[0] + *td->val - td->ival;
}
if ((td->flag & TD_MOVEHANDLE2) && td2d->h2) {
td2d->h2[0] = td2d->ih2[0] + *td->val - td->ival;
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Transform Mode Initialization
* \{ */
void transform_mode_init(TransInfo *t, wmOperator *op, const int mode)
{
t->mode = mode;
switch (mode) {
case TFM_TRANSLATION:
initTranslation(t);
break;
case TFM_ROTATION:
initRotation(t);
break;
case TFM_RESIZE:
initResize(t);
break;
case TFM_SKIN_RESIZE:
initSkinResize(t);
break;
case TFM_TOSPHERE:
initToSphere(t);
break;
case TFM_SHEAR:
initShear(t);
break;
case TFM_BEND:
initBend(t);
break;
case TFM_SHRINKFATTEN:
initShrinkFatten(t);
break;
case TFM_TILT:
initTilt(t);
break;
case TFM_CURVE_SHRINKFATTEN:
initCurveShrinkFatten(t);
break;
case TFM_MASK_SHRINKFATTEN:
initMaskShrinkFatten(t);
break;
case TFM_GPENCIL_SHRINKFATTEN:
initGPShrinkFatten(t);
break;
case TFM_TRACKBALL:
initTrackball(t);
break;
case TFM_PUSHPULL:
initPushPull(t);
break;
case TFM_CREASE:
initCrease(t);
break;
case TFM_BONESIZE:
initBoneSize(t);
break;
case TFM_BONE_ENVELOPE:
case TFM_BONE_ENVELOPE_DIST:
initBoneEnvelope(t);
break;
case TFM_EDGE_SLIDE:
case TFM_VERT_SLIDE: {
const bool use_even = (op ? RNA_boolean_get(op->ptr, "use_even") : false);
const bool flipped = (op ? RNA_boolean_get(op->ptr, "flipped") : false);
const bool use_clamp = (op ? RNA_boolean_get(op->ptr, "use_clamp") : true);
if (mode == TFM_EDGE_SLIDE) {
const bool use_double_side = (op ? !RNA_boolean_get(op->ptr, "single_side") : true);
initEdgeSlide_ex(t, use_double_side, use_even, flipped, use_clamp);
}
else {
initVertSlide_ex(t, use_even, flipped, use_clamp);
}
break;
}
case TFM_BONE_ROLL:
initBoneRoll(t);
break;
case TFM_TIME_TRANSLATE:
initTimeTranslate(t);
break;
case TFM_TIME_SLIDE:
initTimeSlide(t);
break;
case TFM_TIME_SCALE:
initTimeScale(t);
break;
case TFM_TIME_DUPLICATE:
/* same as TFM_TIME_EXTEND, but we need the mode info for later
* so that duplicate-culling will work properly
*/
if (ELEM(t->spacetype, SPACE_GRAPH, SPACE_NLA)) {
initTranslation(t);
}
else {
initTimeTranslate(t);
}
break;
case TFM_TIME_EXTEND:
/* now that transdata has been made, do like for TFM_TIME_TRANSLATE (for most Animation
* Editors because they have only 1D transforms for time values) or TFM_TRANSLATION
* (for Graph/NLA Editors only since they uses 'standard' transforms to get 2D movement)
* depending on which editor this was called from
*/
if (ELEM(t->spacetype, SPACE_GRAPH, SPACE_NLA)) {
initTranslation(t);
}
else {
initTimeTranslate(t);
}
break;
case TFM_BAKE_TIME:
initBakeTime(t);
break;
case TFM_MIRROR:
initMirror(t);
break;
case TFM_BWEIGHT:
initBevelWeight(t);
break;
case TFM_ALIGN:
initAlign(t);
break;
case TFM_SEQ_SLIDE:
initSeqSlide(t);
break;
case TFM_NORMAL_ROTATION:
initNormalRotation(t);
break;
case TFM_GPENCIL_OPACITY:
initGPOpacity(t);
break;
}
if (t->data_type == TC_MESH_VERTS) {
/* Init Custom Data correction.
* Ideally this should be called when creating the TransData. */
mesh_customdatacorrect_init(t);
}
/* TODO(germano): Some of these operations change the `t->mode`.
* This can be bad for Redo.
* BLI_assert(t->mode == mode); */
}
/** \} */