This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/editors/transform/transform_constraints.c
Germano Cavalcante 2265104f0b Fix (unreported): Automatic transform contraint not being disabled
It does not make sense to maintain automatic constraint selection when
you manually set the constraint.
2021-05-24 11:39:50 -03:00

1193 lines
33 KiB
C

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*/
/** \file
* \ingroup edtransform
*/
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "DNA_object_types.h"
#include "DNA_scene_types.h"
#include "DNA_screen_types.h"
#include "DNA_space_types.h"
#include "DNA_view3d_types.h"
#include "GPU_immediate.h"
#include "GPU_matrix.h"
#include "GPU_state.h"
#include "BLI_math.h"
#include "BLI_rect.h"
#include "BLI_string.h"
#include "BLI_utildefines.h"
#include "BKE_context.h"
#include "ED_view3d.h"
#include "BLT_translation.h"
#include "UI_resources.h"
#include "transform.h"
#include "transform_orientations.h"
#include "transform_snap.h"
/* Own include. */
#include "transform_constraints.h"
static void drawObjectConstraint(TransInfo *t);
/* -------------------------------------------------------------------- */
/** \name Internal Utilities
* \{ */
static void projection_matrix_calc(const TransInfo *t, float r_pmtx[3][3])
{
unit_m3(r_pmtx);
if (!(t->con.mode & CON_AXIS0)) {
zero_v3(r_pmtx[0]);
}
if (!(t->con.mode & CON_AXIS1)) {
zero_v3(r_pmtx[1]);
}
if (!(t->con.mode & CON_AXIS2)) {
zero_v3(r_pmtx[2]);
}
float mat[3][3];
mul_m3_m3m3(mat, r_pmtx, t->spacemtx_inv);
mul_m3_m3m3(r_pmtx, t->spacemtx, mat);
}
static void view_vector_calc(const TransInfo *t, const float focus[3], float r_vec[3])
{
if (t->persp != RV3D_ORTHO) {
sub_v3_v3v3(r_vec, t->viewinv[3], focus);
}
else {
copy_v3_v3(r_vec, t->viewinv[2]);
}
normalize_v3(r_vec);
}
/* ************************** CONSTRAINTS ************************* */
#define CONSTRAIN_EPSILON 0.0001f
static void constraint_plane_calc(TransInfo *t, float r_plane[4])
{
const float *constraint_vector[2];
int n = 0;
for (int i = 0; i < 3; i++) {
if (t->con.mode & (CON_AXIS0 << i)) {
constraint_vector[n++] = t->spacemtx[i];
if (n == 2) {
break;
}
}
}
BLI_assert(n == 2);
cross_v3_v3v3(r_plane, constraint_vector[0], constraint_vector[1]);
normalize_v3(r_plane);
r_plane[3] = -dot_v3v3(r_plane, t->center_global);
}
void constraintNumInput(TransInfo *t, float vec[3])
{
int mode = t->con.mode;
if (mode & CON_APPLY) {
float nval = (t->flag & T_NULL_ONE) ? 1.0f : 0.0f;
const int dims = getConstraintSpaceDimension(t);
if (dims == 2) {
int axis = mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
if (axis == (CON_AXIS0 | CON_AXIS1)) {
/* vec[0] = vec[0]; */ /* same */
/* vec[1] = vec[1]; */ /* same */
vec[2] = nval;
}
else if (axis == (CON_AXIS1 | CON_AXIS2)) {
vec[2] = vec[1];
vec[1] = vec[0];
vec[0] = nval;
}
else if (axis == (CON_AXIS0 | CON_AXIS2)) {
/* vec[0] = vec[0]; */ /* same */
vec[2] = vec[1];
vec[1] = nval;
}
}
else if (dims == 1) {
if (mode & CON_AXIS0) {
/* vec[0] = vec[0]; */ /* same */
vec[1] = nval;
vec[2] = nval;
}
else if (mode & CON_AXIS1) {
vec[1] = vec[0];
vec[0] = nval;
vec[2] = nval;
}
else if (mode & CON_AXIS2) {
vec[2] = vec[0];
vec[0] = nval;
vec[1] = nval;
}
}
}
}
static void viewAxisCorrectCenter(const TransInfo *t, float t_con_center[3])
{
if (t->spacetype == SPACE_VIEW3D) {
// View3D *v3d = t->area->spacedata.first;
const float min_dist = 1.0f; /* v3d->clip_start; */
float dir[3];
float l;
sub_v3_v3v3(dir, t_con_center, t->viewinv[3]);
if (dot_v3v3(dir, t->viewinv[2]) < 0.0f) {
negate_v3(dir);
}
project_v3_v3v3(dir, dir, t->viewinv[2]);
l = len_v3(dir);
if (l < min_dist) {
float diff[3];
normalize_v3_v3_length(diff, t->viewinv[2], min_dist - l);
sub_v3_v3(t_con_center, diff);
}
}
}
/**
* Axis calculation taking the view into account, correcting view-aligned axis.
*/
static void axisProjection(const TransInfo *t,
const float axis[3],
const float in[3],
float out[3])
{
float norm[3], vec[3], factor, angle;
float t_con_center[3];
if (is_zero_v3(in)) {
return;
}
copy_v3_v3(t_con_center, t->center_global);
/* checks for center being too close to the view center */
viewAxisCorrectCenter(t, t_con_center);
angle = fabsf(angle_v3v3(axis, t->viewinv[2]));
if (angle > (float)M_PI_2) {
angle = (float)M_PI - angle;
}
/* For when view is parallel to constraint... will cause NaNs otherwise
* So we take vertical motion in 3D space and apply it to the
* constraint axis. Nice for camera grab + MMB */
if (angle < DEG2RADF(5.0f)) {
project_v3_v3v3(vec, in, t->viewinv[1]);
factor = dot_v3v3(t->viewinv[1], vec) * 2.0f;
/* Since camera distance is quite relative, use quadratic relationship.
* holding shift can compensate. */
if (factor < 0.0f) {
factor *= -factor;
}
else {
factor *= factor;
}
/* -factor makes move down going backwards */
normalize_v3_v3_length(out, axis, -factor);
}
else {
float v[3];
float norm_center[3];
float plane[3];
view_vector_calc(t, t_con_center, norm_center);
cross_v3_v3v3(plane, norm_center, axis);
project_v3_v3v3(vec, in, plane);
sub_v3_v3v3(vec, in, vec);
add_v3_v3v3(v, vec, t_con_center);
view_vector_calc(t, v, norm);
/* give arbitrary large value if projection is impossible */
factor = dot_v3v3(axis, norm);
if (1.0f - fabsf(factor) < 0.0002f) {
copy_v3_v3(out, axis);
if (factor > 0) {
mul_v3_fl(out, 1000000000.0f);
}
else {
mul_v3_fl(out, -1000000000.0f);
}
}
else {
/* Use ray-ray intersection instead of line-line because this gave
* precision issues adding small values to large numbers. */
float mul;
if (isect_ray_ray_v3(t_con_center, axis, v, norm, &mul, NULL)) {
mul_v3_v3fl(out, axis, mul);
}
else {
/* In practice this should never fail. */
BLI_assert(0);
}
/* possible some values become nan when
* viewpoint and object are both zero */
if (!isfinite(out[0])) {
out[0] = 0.0f;
}
if (!isfinite(out[1])) {
out[1] = 0.0f;
}
if (!isfinite(out[2])) {
out[2] = 0.0f;
}
}
}
}
/**
* Snap to the intersection between the edge direction and the constraint plane.
*/
static void constraint_snap_plane_to_edge(const TransInfo *t, const float plane[4], float r_out[3])
{
float lambda;
const float *edge_snap_point = t->tsnap.snapPoint;
const float *edge_dir = t->tsnap.snapNormal;
bool is_aligned = fabsf(dot_v3v3(edge_dir, plane)) < CONSTRAIN_EPSILON;
if (!is_aligned && isect_ray_plane_v3(edge_snap_point, edge_dir, plane, &lambda, false)) {
madd_v3_v3v3fl(r_out, edge_snap_point, edge_dir, lambda);
sub_v3_v3(r_out, t->tsnap.snapTarget);
}
}
/**
* Snap to the nearest point between the snap point and the line that
* intersects the face plane with the constraint plane.
*/
static void UNUSED_FUNCTION(constraint_snap_plane_to_face(const TransInfo *t,
const float plane[4],
float r_out[3]))
{
float face_plane[4], isect_orig[3], isect_dir[3];
const float *face_snap_point = t->tsnap.snapPoint;
const float *face_normal = t->tsnap.snapNormal;
plane_from_point_normal_v3(face_plane, face_snap_point, face_normal);
bool is_aligned = fabsf(dot_v3v3(plane, face_plane)) > (1.0f - CONSTRAIN_EPSILON);
if (!is_aligned && isect_plane_plane_v3(plane, face_plane, isect_orig, isect_dir)) {
closest_to_ray_v3(r_out, face_snap_point, isect_orig, isect_dir);
sub_v3_v3(r_out, t->tsnap.snapTarget);
}
}
/**
* Snap to the nearest point on the axis to the edge/line element.
*/
void transform_constraint_snap_axis_to_edge(const TransInfo *t,
const float axis[3],
float r_out[3])
{
float lambda;
const float *edge_snap_point = t->tsnap.snapPoint;
const float *edge_dir = t->tsnap.snapNormal;
bool is_aligned = fabsf(dot_v3v3(axis, edge_dir)) > (1.0f - CONSTRAIN_EPSILON);
if (!is_aligned &&
isect_ray_ray_v3(t->tsnap.snapTarget, axis, edge_snap_point, edge_dir, &lambda, NULL)) {
mul_v3_v3fl(r_out, axis, lambda);
}
}
/**
* Snap to the intersection of the axis and the plane defined by the face.
*/
void transform_constraint_snap_axis_to_face(const TransInfo *t,
const float axis[3],
float r_out[3])
{
float lambda;
float face_plane[4];
const float *face_snap_point = t->tsnap.snapPoint;
const float *face_normal = t->tsnap.snapNormal;
plane_from_point_normal_v3(face_plane, face_snap_point, face_normal);
bool is_aligned = fabsf(dot_v3v3(axis, face_plane)) < CONSTRAIN_EPSILON;
if (!is_aligned && isect_ray_plane_v3(t->tsnap.snapTarget, axis, face_plane, &lambda, false)) {
mul_v3_v3fl(r_out, axis, lambda);
}
}
/**
* Return true if the 2x axis are both aligned when projected into the view.
* In this case, we can't usefully project the cursor onto the plane.
*/
static bool isPlaneProjectionViewAligned(const TransInfo *t, const float plane[4])
{
const float eps = 0.001f;
float view_to_plane[3];
view_vector_calc(t, t->center_global, view_to_plane);
float factor = dot_v3v3(plane, view_to_plane);
return fabsf(factor) < eps;
}
static void planeProjection(const TransInfo *t, const float in[3], float out[3])
{
float vec[3], factor, norm[3];
add_v3_v3v3(vec, in, t->center_global);
view_vector_calc(t, vec, norm);
sub_v3_v3v3(vec, out, in);
factor = dot_v3v3(vec, norm);
if (factor == 0.0f) {
return; /* prevent divide by zero */
}
factor = dot_v3v3(vec, vec) / factor;
copy_v3_v3(vec, norm);
mul_v3_fl(vec, factor);
add_v3_v3v3(out, in, vec);
}
/**
* Generic callback for constant spatial constraints applied to linear motion
*
* The `in` vector in projected into the constrained space and then further
* projected along the view vector.
* (in perspective mode, the view vector is relative to the position on screen)
*/
static void applyAxisConstraintVec(
TransInfo *t, TransDataContainer *UNUSED(tc), TransData *td, const float in[3], float out[3])
{
copy_v3_v3(out, in);
if (!td && t->con.mode & CON_APPLY) {
bool is_snap_to_point = false, is_snap_to_edge = false, is_snap_to_face = false;
mul_m3_v3(t->con.pmtx, out);
if (activeSnap(t)) {
if (validSnap(t)) {
is_snap_to_edge = (t->tsnap.snapElem & SCE_SNAP_MODE_EDGE) != 0;
is_snap_to_face = (t->tsnap.snapElem & SCE_SNAP_MODE_FACE) != 0;
is_snap_to_point = !is_snap_to_edge && !is_snap_to_face;
}
else if (t->tsnap.snapElem & SCE_SNAP_MODE_GRID) {
is_snap_to_point = true;
}
}
/* With snap points, a projection is alright, no adjustments needed. */
if (!is_snap_to_point || is_snap_to_edge || is_snap_to_face) {
const int dims = getConstraintSpaceDimension(t);
if (dims == 2) {
if (!is_zero_v3(out)) {
float plane[4];
constraint_plane_calc(t, plane);
if (is_snap_to_edge) {
constraint_snap_plane_to_edge(t, plane, out);
}
else if (is_snap_to_face) {
/* Disabled, as it has not proven to be really useful. (See T82386). */
// constraint_snap_plane_to_face(t, plane, out);
}
else {
/* View alignment correction. */
if (!isPlaneProjectionViewAligned(t, plane)) {
planeProjection(t, in, out);
}
}
}
}
else if (dims == 1) {
float c[3];
if (t->con.mode & CON_AXIS0) {
copy_v3_v3(c, t->spacemtx[0]);
}
else if (t->con.mode & CON_AXIS1) {
copy_v3_v3(c, t->spacemtx[1]);
}
else {
BLI_assert(t->con.mode & CON_AXIS2);
copy_v3_v3(c, t->spacemtx[2]);
}
if (is_snap_to_edge) {
transform_constraint_snap_axis_to_edge(t, c, out);
}
else if (is_snap_to_face) {
transform_constraint_snap_axis_to_face(t, c, out);
}
else {
/* View alignment correction. */
axisProjection(t, c, in, out);
}
}
}
}
}
/**
* Generic callback for object based spatial constraints applied to linear motion
*
* At first, the following is applied without orientation
* The IN vector in projected into the constrained space and then further
* projected along the view vector.
* (in perspective mode, the view vector is relative to the position on screen).
*
* Further down, that vector is mapped to each data's space.
*/
static void applyObjectConstraintVec(
TransInfo *t, TransDataContainer *tc, TransData *td, const float in[3], float out[3])
{
if (!td) {
applyAxisConstraintVec(t, tc, td, in, out);
}
else {
/* Specific TransData's space. */
copy_v3_v3(out, in);
if (t->con.mode & CON_APPLY) {
mul_m3_v3(t->spacemtx_inv, out);
mul_m3_v3(td->axismtx, out);
if (t->flag & T_EDIT) {
mul_m3_v3(tc->mat3_unit, out);
}
}
}
}
/**
* Generic callback for constant spatial constraints applied to resize motion.
*/
static void applyAxisConstraintSize(TransInfo *t,
TransDataContainer *UNUSED(tc),
TransData *td,
float smat[3][3])
{
if (!td && t->con.mode & CON_APPLY) {
float tmat[3][3];
if (!(t->con.mode & CON_AXIS0)) {
smat[0][0] = 1.0f;
}
if (!(t->con.mode & CON_AXIS1)) {
smat[1][1] = 1.0f;
}
if (!(t->con.mode & CON_AXIS2)) {
smat[2][2] = 1.0f;
}
mul_m3_m3m3(tmat, smat, t->spacemtx_inv);
mul_m3_m3m3(smat, t->spacemtx, tmat);
}
}
/**
* Callback for object based spatial constraints applied to resize motion.
*/
static void applyObjectConstraintSize(TransInfo *t,
TransDataContainer *tc,
TransData *td,
float smat[3][3])
{
if (td && t->con.mode & CON_APPLY) {
float tmat[3][3];
float imat[3][3];
invert_m3_m3(imat, td->axismtx);
if (!(t->con.mode & CON_AXIS0)) {
smat[0][0] = 1.0f;
}
if (!(t->con.mode & CON_AXIS1)) {
smat[1][1] = 1.0f;
}
if (!(t->con.mode & CON_AXIS2)) {
smat[2][2] = 1.0f;
}
mul_m3_m3m3(tmat, smat, imat);
if (t->flag & T_EDIT) {
mul_m3_m3m3(smat, tc->mat3_unit, smat);
}
mul_m3_m3m3(smat, td->axismtx, tmat);
}
}
static void constraints_rotation_impl(TransInfo *t,
const float axismtx[3][3],
float r_vec[3],
float *r_angle)
{
BLI_assert(t->con.mode & CON_APPLY);
int mode = t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2);
switch (mode) {
case CON_AXIS0:
case (CON_AXIS1 | CON_AXIS2):
copy_v3_v3(r_vec, axismtx[0]);
break;
case CON_AXIS1:
case (CON_AXIS0 | CON_AXIS2):
copy_v3_v3(r_vec, axismtx[1]);
break;
case CON_AXIS2:
case (CON_AXIS0 | CON_AXIS1):
copy_v3_v3(r_vec, axismtx[2]);
break;
}
/* don't flip axis if asked to or if num input */
if (r_angle &&
!((mode & CON_NOFLIP) || hasNumInput(&t->num) || (t->flag & T_INPUT_IS_VALUES_FINAL))) {
float view_vector[3];
view_vector_calc(t, t->center_global, view_vector);
if (dot_v3v3(r_vec, view_vector) > 0.0f) {
*r_angle = -(*r_angle);
}
}
}
/**
* Generic callback for constant spatial constraints applied to rotations
*
* The rotation axis is copied into `vec`.
*
* In the case of single axis constraints, the rotation axis is directly the one constrained to.
* For planar constraints (2 axis), the rotation axis is the normal of the plane.
*
* The following only applies when #CON_NOFLIP is not set.
* The vector is then modified to always point away from the screen (in global space)
* This insures that the rotation is always logically following the mouse.
* (ie: not doing counterclockwise rotations when the mouse moves clockwise).
*/
static void applyAxisConstraintRot(
TransInfo *t, TransDataContainer *UNUSED(tc), TransData *td, float vec[3], float *angle)
{
if (!td && t->con.mode & CON_APPLY) {
constraints_rotation_impl(t, t->spacemtx, vec, angle);
}
}
/**
* Callback for object based spatial constraints applied to rotations
*
* The rotation axis is copied into `vec`.
*
* In the case of single axis constraints, the rotation axis is directly the one constrained to.
* For planar constraints (2 axis), the rotation axis is the normal of the plane.
*
* The following only applies when #CON_NOFLIP is not set.
* The vector is then modified to always point away from the screen (in global space)
* This insures that the rotation is always logically following the mouse.
* (ie: not doing counterclockwise rotations when the mouse moves clockwise).
*/
static void applyObjectConstraintRot(
TransInfo *t, TransDataContainer *tc, TransData *td, float vec[3], float *angle)
{
if (t->con.mode & CON_APPLY) {
float tmp_axismtx[3][3];
const float(*axismtx)[3];
/* on setup call, use first object */
if (td == NULL) {
BLI_assert(tc == NULL);
tc = TRANS_DATA_CONTAINER_FIRST_OK(t);
td = tc->data;
}
if (t->flag & T_EDIT) {
mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx);
axismtx = tmp_axismtx;
}
else {
axismtx = td->axismtx;
}
constraints_rotation_impl(t, axismtx, vec, angle);
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Internal Setup Calls
* \{ */
void setConstraint(TransInfo *t, int mode, const char text[])
{
BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1);
t->con.mode = mode;
projection_matrix_calc(t, t->con.pmtx);
startConstraint(t);
t->con.drawExtra = NULL;
t->con.applyVec = applyAxisConstraintVec;
t->con.applySize = applyAxisConstraintSize;
t->con.applyRot = applyAxisConstraintRot;
t->redraw = TREDRAW_HARD;
}
/* applies individual td->axismtx constraints */
void setAxisMatrixConstraint(TransInfo *t, int mode, const char text[])
{
BLI_strncpy(t->con.text + 1, text, sizeof(t->con.text) - 1);
t->con.mode = mode;
projection_matrix_calc(t, t->con.pmtx);
startConstraint(t);
t->con.drawExtra = drawObjectConstraint;
t->con.applyVec = applyObjectConstraintVec;
t->con.applySize = applyObjectConstraintSize;
t->con.applyRot = applyObjectConstraintRot;
t->redraw = TREDRAW_HARD;
}
void setLocalConstraint(TransInfo *t, int mode, const char text[])
{
if ((t->flag & T_EDIT) || t->data_len_all == 1) {
/* Although in edit-mode each object has its local space, use the
* orientation of the active object. */
setConstraint(t, mode, text);
}
else {
setAxisMatrixConstraint(t, mode, text);
}
}
/**
* Set the constraint according to the user defined orientation
*
* `ftext` is a format string passed to #BLI_snprintf. It will add the name of
* the orientation where %s is (logically).
*/
void setUserConstraint(TransInfo *t, int mode, const char ftext[])
{
char text[256];
short orientation = t->orient[t->orient_curr].type;
if (orientation == V3D_ORIENT_CUSTOM_MATRIX) {
/* Use the real value of the "orient_type". */
orientation = t->orient[0].type;
}
const char *spacename = transform_orientations_spacename_get(t, orientation);
BLI_snprintf(text, sizeof(text), ftext, spacename);
switch (orientation) {
case V3D_ORIENT_LOCAL:
setLocalConstraint(t, mode, text);
break;
case V3D_ORIENT_NORMAL:
if (checkUseAxisMatrix(t)) {
setAxisMatrixConstraint(t, mode, text);
break;
}
ATTR_FALLTHROUGH;
case V3D_ORIENT_GLOBAL:
case V3D_ORIENT_VIEW:
case V3D_ORIENT_CURSOR:
case V3D_ORIENT_GIMBAL:
case V3D_ORIENT_CUSTOM_MATRIX:
case V3D_ORIENT_CUSTOM:
default: {
setConstraint(t, mode, text);
break;
}
}
t->con.mode |= CON_USER;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Drawing Constraints
* \{ */
void drawConstraint(TransInfo *t)
{
TransCon *tc = &(t->con);
if (!ELEM(t->spacetype, SPACE_VIEW3D, SPACE_IMAGE, SPACE_NODE)) {
return;
}
if (!(tc->mode & CON_APPLY)) {
return;
}
if (t->flag & T_NO_CONSTRAINT) {
return;
}
if (tc->drawExtra) {
tc->drawExtra(t);
}
else {
if (tc->mode & CON_SELECT) {
float vec[3];
convertViewVec(t, vec, (t->mval[0] - t->con.imval[0]), (t->mval[1] - t->con.imval[1]));
add_v3_v3(vec, t->center_global);
drawLine(t, t->center_global, t->spacemtx[0], 'X', 0);
drawLine(t, t->center_global, t->spacemtx[1], 'Y', 0);
drawLine(t, t->center_global, t->spacemtx[2], 'Z', 0);
eGPUDepthTest depth_test_enabled = GPU_depth_test_get();
if (depth_test_enabled) {
GPU_depth_test(GPU_DEPTH_NONE);
}
const uint shdr_pos = GPU_vertformat_attr_add(
immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_LINE_DASHED_UNIFORM_COLOR);
float viewport_size[4];
GPU_viewport_size_get_f(viewport_size);
immUniform2f("viewport_size", viewport_size[2], viewport_size[3]);
immUniform1i("colors_len", 0); /* "simple" mode */
immUniformColor4f(1.0f, 1.0f, 1.0f, 1.0f);
immUniform1f("dash_width", 2.0f);
immUniform1f("dash_factor", 0.5f);
immBegin(GPU_PRIM_LINES, 2);
immVertex3fv(shdr_pos, t->center_global);
immVertex3fv(shdr_pos, vec);
immEnd();
immUnbindProgram();
if (depth_test_enabled) {
GPU_depth_test(GPU_DEPTH_LESS_EQUAL);
}
}
if (tc->mode & CON_AXIS0) {
drawLine(t, t->center_global, t->spacemtx[0], 'X', DRAWLIGHT);
}
if (tc->mode & CON_AXIS1) {
drawLine(t, t->center_global, t->spacemtx[1], 'Y', DRAWLIGHT);
}
if (tc->mode & CON_AXIS2) {
drawLine(t, t->center_global, t->spacemtx[2], 'Z', DRAWLIGHT);
}
}
}
/* called from drawview.c, as an extra per-window draw option */
void drawPropCircle(const struct bContext *C, TransInfo *t)
{
if (t->flag & T_PROP_EDIT) {
RegionView3D *rv3d = CTX_wm_region_view3d(C);
float tmat[4][4], imat[4][4];
if (t->spacetype == SPACE_VIEW3D && rv3d != NULL) {
copy_m4_m4(tmat, rv3d->viewmat);
invert_m4_m4(imat, tmat);
}
else {
unit_m4(tmat);
unit_m4(imat);
}
GPU_matrix_push();
if (t->spacetype == SPACE_VIEW3D) {
/* pass */
}
else if (t->spacetype == SPACE_IMAGE) {
GPU_matrix_scale_2f(1.0f / t->aspect[0], 1.0f / t->aspect[1]);
}
else if (ELEM(t->spacetype, SPACE_GRAPH, SPACE_ACTION)) {
/* only scale y */
rcti *mask = &t->region->v2d.mask;
rctf *datamask = &t->region->v2d.cur;
float xsize = BLI_rctf_size_x(datamask);
float ysize = BLI_rctf_size_y(datamask);
float xmask = BLI_rcti_size_x(mask);
float ymask = BLI_rcti_size_y(mask);
GPU_matrix_scale_2f(1.0f, (ysize / xsize) * (xmask / ymask));
}
eGPUDepthTest depth_test_enabled = GPU_depth_test_get();
if (depth_test_enabled) {
GPU_depth_test(GPU_DEPTH_NONE);
}
uint pos = GPU_vertformat_attr_add(immVertexFormat(), "pos", GPU_COMP_F32, 3, GPU_FETCH_FLOAT);
immBindBuiltinProgram(GPU_SHADER_3D_POLYLINE_UNIFORM_COLOR);
float viewport[4];
GPU_viewport_size_get_f(viewport);
GPU_blend(GPU_BLEND_ALPHA);
immUniform2fv("viewportSize", &viewport[2]);
immUniform1f("lineWidth", 3.0f * U.pixelsize);
immUniformThemeColorShadeAlpha(TH_GRID, -20, 255);
imm_drawcircball(t->center_global, t->prop_size, imat, pos);
immUniform1f("lineWidth", 1.0f * U.pixelsize);
immUniformThemeColorShadeAlpha(TH_GRID, 20, 255);
imm_drawcircball(t->center_global, t->prop_size, imat, pos);
immUnbindProgram();
if (depth_test_enabled) {
GPU_depth_test(GPU_DEPTH_LESS_EQUAL);
}
GPU_matrix_pop();
}
}
static void drawObjectConstraint(TransInfo *t)
{
/* Draw the first one lighter because that's the one who controls the others.
* Meaning the transformation is projected on that one and just copied on the others
* constraint space.
* In a nutshell, the object with light axis is controlled by the user and the others follow.
* Without drawing the first light, users have little clue what they are doing.
*/
short options = DRAWLIGHT;
float tmp_axismtx[3][3];
FOREACH_TRANS_DATA_CONTAINER (t, tc) {
TransData *td = tc->data;
for (int i = 0; i < tc->data_len; i++, td++) {
float co[3];
float(*axismtx)[3];
if (t->flag & T_PROP_EDIT) {
/* we're sorted, so skip the rest */
if (td->factor == 0.0f) {
break;
}
}
if (t->options & CTX_GPENCIL_STROKES) {
/* only draw a constraint line for one point, otherwise we can't see anything */
if ((options & DRAWLIGHT) == 0) {
break;
}
}
if (t->flag & T_EDIT) {
mul_v3_m4v3(co, tc->mat, td->center);
mul_m3_m3m3(tmp_axismtx, tc->mat3_unit, td->axismtx);
axismtx = tmp_axismtx;
}
else if (t->options & CTX_POSE_BONE) {
mul_v3_m4v3(co, tc->mat, td->center);
axismtx = td->axismtx;
}
else {
copy_v3_v3(co, td->center);
axismtx = td->axismtx;
}
if (t->con.mode & CON_AXIS0) {
drawLine(t, co, axismtx[0], 'X', options);
}
if (t->con.mode & CON_AXIS1) {
drawLine(t, co, axismtx[1], 'Y', options);
}
if (t->con.mode & CON_AXIS2) {
drawLine(t, co, axismtx[2], 'Z', options);
}
options &= ~DRAWLIGHT;
}
}
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Start / Stop Constraints
* \{ */
void startConstraint(TransInfo *t)
{
t->con.mode |= CON_APPLY;
*t->con.text = ' ';
t->num.idx_max = min_ii(getConstraintSpaceDimension(t) - 1, t->idx_max);
}
void stopConstraint(TransInfo *t)
{
if (t->orient_curr != O_DEFAULT) {
transform_orientations_current_set(t, O_DEFAULT);
}
t->con.mode &= ~(CON_APPLY | CON_SELECT);
*t->con.text = '\0';
t->num.idx_max = t->idx_max;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Middle Mouse Button Select
* \{ */
void initSelectConstraint(TransInfo *t)
{
if (t->orient_curr == O_DEFAULT) {
transform_orientations_current_set(t, O_SCENE);
}
setUserConstraint(t, CON_APPLY | CON_SELECT, "%s");
}
void selectConstraint(TransInfo *t)
{
if (t->con.mode & CON_SELECT) {
setNearestAxis(t);
startConstraint(t);
}
}
void postSelectConstraint(TransInfo *t)
{
if (!(t->con.mode & CON_SELECT)) {
return;
}
t->con.mode &= ~CON_AXIS0;
t->con.mode &= ~CON_AXIS1;
t->con.mode &= ~CON_AXIS2;
t->con.mode &= ~CON_SELECT;
setNearestAxis(t);
startConstraint(t);
t->redraw = TREDRAW_HARD;
}
static void setNearestAxis2d(TransInfo *t)
{
/* no correction needed... just use whichever one is lower */
if (abs(t->mval[0] - t->con.imval[0]) < abs(t->mval[1] - t->con.imval[1])) {
t->con.mode |= CON_AXIS1;
BLI_strncpy(t->con.text, TIP_(" along Y axis"), sizeof(t->con.text));
}
else {
t->con.mode |= CON_AXIS0;
BLI_strncpy(t->con.text, TIP_(" along X axis"), sizeof(t->con.text));
}
}
static void setNearestAxis3d(TransInfo *t)
{
float zfac;
float mvec[3], proj[3];
float len[3];
int i;
/* calculate mouse movement */
mvec[0] = (float)(t->mval[0] - t->con.imval[0]);
mvec[1] = (float)(t->mval[1] - t->con.imval[1]);
mvec[2] = 0.0f;
/* We need to correct axis length for the current zoom-level of view,
* this to prevent projected values to be clipped behind the camera
* and to overflow the short integers.
* The formula used is a bit stupid, just a simplification of the subtraction
* of two 2D points 30 pixels apart (that's the last factor in the formula) after
* projecting them with ED_view3d_win_to_delta and then get the length of that vector.
*/
zfac = mul_project_m4_v3_zfac(t->persmat, t->center_global);
zfac = len_v3(t->persinv[0]) * 2.0f / t->region->winx * zfac * 30.0f;
for (i = 0; i < 3; i++) {
float axis[3], axis_2d[2];
copy_v3_v3(axis, t->spacemtx[i]);
mul_v3_fl(axis, zfac);
/* now we can project to get window coordinate */
add_v3_v3(axis, t->center_global);
projectFloatView(t, axis, axis_2d);
sub_v2_v2v2(axis, axis_2d, t->center2d);
axis[2] = 0.0f;
if (normalize_v3(axis) > 1e-3f) {
project_v3_v3v3(proj, mvec, axis);
sub_v3_v3v3(axis, mvec, proj);
len[i] = normalize_v3(axis);
}
else {
len[i] = 1e10f;
}
}
if (len[0] <= len[1] && len[0] <= len[2]) {
if (t->modifiers & MOD_CONSTRAINT_SELECT_PLANE) {
t->con.mode |= (CON_AXIS1 | CON_AXIS2);
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s X axis"), t->spacename);
}
else {
t->con.mode |= CON_AXIS0;
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s X axis"), t->spacename);
}
}
else if (len[1] <= len[0] && len[1] <= len[2]) {
if (t->modifiers & MOD_CONSTRAINT_SELECT_PLANE) {
t->con.mode |= (CON_AXIS0 | CON_AXIS2);
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s Y axis"), t->spacename);
}
else {
t->con.mode |= CON_AXIS1;
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s Y axis"), t->spacename);
}
}
else if (len[2] <= len[1] && len[2] <= len[0]) {
if (t->modifiers & MOD_CONSTRAINT_SELECT_PLANE) {
t->con.mode |= (CON_AXIS0 | CON_AXIS1);
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" locking %s Z axis"), t->spacename);
}
else {
t->con.mode |= CON_AXIS2;
BLI_snprintf(t->con.text, sizeof(t->con.text), TIP_(" along %s Z axis"), t->spacename);
}
}
}
void setNearestAxis(TransInfo *t)
{
/* clear any prior constraint flags */
t->con.mode &= ~CON_AXIS0;
t->con.mode &= ~CON_AXIS1;
t->con.mode &= ~CON_AXIS2;
/* constraint setting - depends on spacetype */
if (t->spacetype == SPACE_VIEW3D) {
/* 3d-view */
setNearestAxis3d(t);
}
else {
/* assume that this means a 2D-Editor */
setNearestAxis2d(t);
}
projection_matrix_calc(t, t->con.pmtx);
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Helper Functions
* \{ */
int constraintModeToIndex(const TransInfo *t)
{
if ((t->con.mode & CON_APPLY) == 0) {
return -1;
}
switch (t->con.mode & (CON_AXIS0 | CON_AXIS1 | CON_AXIS2)) {
case (CON_AXIS0):
case (CON_AXIS1 | CON_AXIS2):
return 0;
case (CON_AXIS1):
case (CON_AXIS0 | CON_AXIS2):
return 1;
case (CON_AXIS2):
case (CON_AXIS0 | CON_AXIS1):
return 2;
default:
return -1;
}
}
bool isLockConstraint(TransInfo *t)
{
int mode = t->con.mode;
if ((mode & (CON_AXIS0 | CON_AXIS1)) == (CON_AXIS0 | CON_AXIS1)) {
return true;
}
if ((mode & (CON_AXIS1 | CON_AXIS2)) == (CON_AXIS1 | CON_AXIS2)) {
return true;
}
if ((mode & (CON_AXIS0 | CON_AXIS2)) == (CON_AXIS0 | CON_AXIS2)) {
return true;
}
return false;
}
/**
* Returns the dimension of the constraint space.
*
* For that reason, the flags always needs to be set to properly evaluate here,
* even if they aren't actually used in the callback function.
* (Which could happen for weird constraints not yet designed. Along a path for example.)
*/
int getConstraintSpaceDimension(TransInfo *t)
{
int n = 0;
if (t->con.mode & CON_AXIS0) {
n++;
}
if (t->con.mode & CON_AXIS1) {
n++;
}
if (t->con.mode & CON_AXIS2) {
n++;
}
return n;
/* Someone willing to do it cryptically could do the following instead:
*
* `return t->con & (CON_AXIS0|CON_AXIS1|CON_AXIS2);`
*
* Based on the assumptions that the axis flags are one after the other and start at 1
*/
}
/** \} */