This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/python/generic/Mathutils.c
Campbell Barton bce3f7e019 PyAPI Mathutils Vector callbacks, referencing other PyObjects rather then thin wrapping vectors which is crash prone.
in short, vectors can work as if they are thin wrapped but not crash blender if the original data is removed.

* RNA vector's return Mathutils vector types.
* BGE vectors for GameObject's localPosition, worldPosition, localPosition, localScale, worldScale, localInertia.
* Comment USE_MATHUTILS define to disable returning vectors.

Example...

* 2.49... *
 loc = gameOb.worldPosition
 loc[1] = 0
 gameOb.worldPosition = loc

* With vectors... *
 gameOb.worldPosition[1] = 0


* But this wont crash... *
 loc = gameOb.worldPosition
 gameOb.endObject()
 loc[1] = 0 # will raise an error that the objects removed.

This breaks games which assume return values are lists.

Will add this to eulers, matrix and quaternion types later.
2009-06-22 04:26:48 +00:00

1226 lines
41 KiB
C

/*
* $Id: Mathutils.c 20922 2009-06-16 07:16:51Z campbellbarton $
*
* ***** BEGIN GPL LICENSE BLOCK *****
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*
* The Original Code is Copyright (C) 2001-2002 by NaN Holding BV.
* All rights reserved.
*
* This is a new part of Blender.
*
* Contributor(s): Joseph Gilbert, Campbell Barton
*
* ***** END GPL LICENSE BLOCK *****
*/
#include "Mathutils.h"
#include "BLI_arithb.h"
#include "PIL_time.h"
#include "BLI_rand.h"
#include "BKE_utildefines.h"
//-------------------------DOC STRINGS ---------------------------
static char M_Mathutils_doc[] = "The Blender Mathutils module\n\n";
static char M_Mathutils_Rand_doc[] = "() - return a random number";
static char M_Mathutils_AngleBetweenVecs_doc[] = "() - returns the angle between two vectors in degrees";
static char M_Mathutils_MidpointVecs_doc[] = "() - return the vector to the midpoint between two vectors";
static char M_Mathutils_ProjectVecs_doc[] = "() - returns the projection vector from the projection of vecA onto vecB";
static char M_Mathutils_RotationMatrix_doc[] = "() - construct a rotation matrix from an angle and axis of rotation";
static char M_Mathutils_ScaleMatrix_doc[] = "() - construct a scaling matrix from a scaling factor";
static char M_Mathutils_OrthoProjectionMatrix_doc[] = "() - construct a orthographic projection matrix from a selected plane";
static char M_Mathutils_ShearMatrix_doc[] = "() - construct a shearing matrix from a plane of shear and a shear factor";
static char M_Mathutils_TranslationMatrix_doc[] = "(vec) - create a translation matrix from a vector";
static char M_Mathutils_Slerp_doc[] = "() - returns the interpolation between two quaternions";
static char M_Mathutils_DifferenceQuats_doc[] = "() - return the angular displacment difference between two quats";
static char M_Mathutils_Intersect_doc[] = "(v1, v2, v3, ray, orig, clip=1) - returns the intersection between a ray and a triangle, if possible, returns None otherwise";
static char M_Mathutils_TriangleArea_doc[] = "(v1, v2, v3) - returns the area size of the 2D or 3D triangle defined";
static char M_Mathutils_TriangleNormal_doc[] = "(v1, v2, v3) - returns the normal of the 3D triangle defined";
static char M_Mathutils_QuadNormal_doc[] = "(v1, v2, v3, v4) - returns the normal of the 3D quad defined";
static char M_Mathutils_LineIntersect_doc[] = "(v1, v2, v3, v4) - returns a tuple with the points on each line respectively closest to the other";
//-----------------------METHOD DEFINITIONS ----------------------
static PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args);
static PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args);
static PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args);
static PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args);
static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args);
static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * value);
static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args);
static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args);
static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args);
static PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args);
static PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args);
static PyObject *M_Mathutils_Intersect( PyObject * self, PyObject * args );
static PyObject *M_Mathutils_TriangleArea( PyObject * self, PyObject * args );
static PyObject *M_Mathutils_TriangleNormal( PyObject * self, PyObject * args );
static PyObject *M_Mathutils_QuadNormal( PyObject * self, PyObject * args );
static PyObject *M_Mathutils_LineIntersect( PyObject * self, PyObject * args );
struct PyMethodDef M_Mathutils_methods[] = {
{"Rand", (PyCFunction) M_Mathutils_Rand, METH_VARARGS, M_Mathutils_Rand_doc},
{"AngleBetweenVecs", (PyCFunction) M_Mathutils_AngleBetweenVecs, METH_VARARGS, M_Mathutils_AngleBetweenVecs_doc},
{"MidpointVecs", (PyCFunction) M_Mathutils_MidpointVecs, METH_VARARGS, M_Mathutils_MidpointVecs_doc},
{"ProjectVecs", (PyCFunction) M_Mathutils_ProjectVecs, METH_VARARGS, M_Mathutils_ProjectVecs_doc},
{"RotationMatrix", (PyCFunction) M_Mathutils_RotationMatrix, METH_VARARGS, M_Mathutils_RotationMatrix_doc},
{"ScaleMatrix", (PyCFunction) M_Mathutils_ScaleMatrix, METH_VARARGS, M_Mathutils_ScaleMatrix_doc},
{"ShearMatrix", (PyCFunction) M_Mathutils_ShearMatrix, METH_VARARGS, M_Mathutils_ShearMatrix_doc},
{"TranslationMatrix", (PyCFunction) M_Mathutils_TranslationMatrix, METH_O, M_Mathutils_TranslationMatrix_doc},
{"OrthoProjectionMatrix", (PyCFunction) M_Mathutils_OrthoProjectionMatrix, METH_VARARGS, M_Mathutils_OrthoProjectionMatrix_doc},
{"DifferenceQuats", (PyCFunction) M_Mathutils_DifferenceQuats, METH_VARARGS,M_Mathutils_DifferenceQuats_doc},
{"Slerp", (PyCFunction) M_Mathutils_Slerp, METH_VARARGS, M_Mathutils_Slerp_doc},
{"Intersect", ( PyCFunction ) M_Mathutils_Intersect, METH_VARARGS, M_Mathutils_Intersect_doc},
{"TriangleArea", ( PyCFunction ) M_Mathutils_TriangleArea, METH_VARARGS, M_Mathutils_TriangleArea_doc},
{"TriangleNormal", ( PyCFunction ) M_Mathutils_TriangleNormal, METH_VARARGS, M_Mathutils_TriangleNormal_doc},
{"QuadNormal", ( PyCFunction ) M_Mathutils_QuadNormal, METH_VARARGS, M_Mathutils_QuadNormal_doc},
{"LineIntersect", ( PyCFunction ) M_Mathutils_LineIntersect, METH_VARARGS, M_Mathutils_LineIntersect_doc},
{NULL, NULL, 0, NULL}
};
/*----------------------------MODULE INIT-------------------------*/
/* from can be Blender.Mathutils or GameLogic.Mathutils for the BGE */
#if (PY_VERSION_HEX >= 0x03000000)
static struct PyModuleDef M_Mathutils_module_def = {
{}, /* m_base */
"Mathutils", /* m_name */
M_Mathutils_doc, /* m_doc */
0, /* m_size */
M_Mathutils_methods, /* m_methods */
0, /* m_reload */
0, /* m_traverse */
0, /* m_clear */
0, /* m_free */
};
#endif
PyObject *Mathutils_Init(const char *from)
{
PyObject *submodule;
//seed the generator for the rand function
BLI_srand((unsigned int) (PIL_check_seconds_timer() * 0x7FFFFFFF));
if( PyType_Ready( &vector_Type ) < 0 )
return NULL;
if( PyType_Ready( &matrix_Type ) < 0 )
return NULL;
if( PyType_Ready( &euler_Type ) < 0 )
return NULL;
if( PyType_Ready( &quaternion_Type ) < 0 )
return NULL;
#if (PY_VERSION_HEX >= 0x03000000)
submodule = PyModule_Create(&M_Mathutils_module_def);
PyDict_SetItemString(PySys_GetObject("modules"), M_Mathutils_module_def.m_name, submodule);
#else
submodule = Py_InitModule3(from, M_Mathutils_methods, M_Mathutils_doc);
#endif
/* each type has its own new() function */
PyModule_AddObject( submodule, "Vector", (PyObject *)&vector_Type );
PyModule_AddObject( submodule, "Matrix", (PyObject *)&matrix_Type );
PyModule_AddObject( submodule, "Euler", (PyObject *)&euler_Type );
PyModule_AddObject( submodule, "Quaternion", (PyObject *)&quaternion_Type );
return (submodule);
}
//-----------------------------METHODS----------------------------
//-----------------quat_rotation (internal)-----------
//This function multiplies a vector/point * quat or vice versa
//to rotate the point/vector by the quaternion
//arguments should all be 3D
PyObject *quat_rotation(PyObject *arg1, PyObject *arg2)
{
float rot[3];
QuaternionObject *quat = NULL;
VectorObject *vec = NULL;
if(QuaternionObject_Check(arg1)){
quat = (QuaternionObject*)arg1;
if(VectorObject_Check(arg2)){
vec = (VectorObject*)arg2;
if(!Vector_ReadCallback(vec))
return NULL;
rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
return newVectorObject(rot, 3, Py_NEW);
}
}else if(VectorObject_Check(arg1)){
vec = (VectorObject*)arg1;
if(!Vector_ReadCallback(vec))
return NULL;
if(QuaternionObject_Check(arg2)){
quat = (QuaternionObject*)arg2;
rot[0] = quat->quat[0]*quat->quat[0]*vec->vec[0] + 2*quat->quat[2]*quat->quat[0]*vec->vec[2] -
2*quat->quat[3]*quat->quat[0]*vec->vec[1] + quat->quat[1]*quat->quat[1]*vec->vec[0] +
2*quat->quat[2]*quat->quat[1]*vec->vec[1] + 2*quat->quat[3]*quat->quat[1]*vec->vec[2] -
quat->quat[3]*quat->quat[3]*vec->vec[0] - quat->quat[2]*quat->quat[2]*vec->vec[0];
rot[1] = 2*quat->quat[1]*quat->quat[2]*vec->vec[0] + quat->quat[2]*quat->quat[2]*vec->vec[1] +
2*quat->quat[3]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[3]*vec->vec[0] -
quat->quat[3]*quat->quat[3]*vec->vec[1] + quat->quat[0]*quat->quat[0]*vec->vec[1] -
2*quat->quat[1]*quat->quat[0]*vec->vec[2] - quat->quat[1]*quat->quat[1]*vec->vec[1];
rot[2] = 2*quat->quat[1]*quat->quat[3]*vec->vec[0] + 2*quat->quat[2]*quat->quat[3]*vec->vec[1] +
quat->quat[3]*quat->quat[3]*vec->vec[2] - 2*quat->quat[0]*quat->quat[2]*vec->vec[0] -
quat->quat[2]*quat->quat[2]*vec->vec[2] + 2*quat->quat[0]*quat->quat[1]*vec->vec[1] -
quat->quat[1]*quat->quat[1]*vec->vec[2] + quat->quat[0]*quat->quat[0]*vec->vec[2];
return newVectorObject(rot, 3, Py_NEW);
}
}
PyErr_SetString(PyExc_RuntimeError, "quat_rotation(internal): internal problem rotating vector/point\n");
return NULL;
}
//----------------------------------Mathutils.Rand() --------------------
//returns a random number between a high and low value
static PyObject *M_Mathutils_Rand(PyObject * self, PyObject * args)
{
float high, low, range;
double drand;
//initializers
high = 1.0;
low = 0.0;
if(!PyArg_ParseTuple(args, "|ff", &low, &high)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.Rand(): expected nothing or optional (float, float)\n");
return NULL;
}
if((high < low) || (high < 0 && low > 0)) {
PyErr_SetString(PyExc_ValueError, "Mathutils.Rand(): high value should be larger than low value\n");
return NULL;
}
//get the random number 0 - 1
drand = BLI_drand();
//set it to range
range = high - low;
drand = drand * range;
drand = drand + low;
return PyFloat_FromDouble(drand);
}
//----------------------------------VECTOR FUNCTIONS---------------------
//----------------------------------Mathutils.AngleBetweenVecs() ---------
//calculates the angle between 2 vectors
static PyObject *M_Mathutils_AngleBetweenVecs(PyObject * self, PyObject * args)
{
VectorObject *vec1 = NULL, *vec2 = NULL;
double dot = 0.0f, angleRads, test_v1 = 0.0f, test_v2 = 0.0f;
int x, size;
if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2))
goto AttributeError1; //not vectors
if(vec1->size != vec2->size)
goto AttributeError1; //bad sizes
if(!Vector_ReadCallback(vec1) || !Vector_ReadCallback(vec2))
return NULL;
//since size is the same....
size = vec1->size;
for(x = 0; x < size; x++) {
test_v1 += vec1->vec[x] * vec1->vec[x];
test_v2 += vec2->vec[x] * vec2->vec[x];
}
if (!test_v1 || !test_v2){
goto AttributeError2; //zero-length vector
}
//dot product
for(x = 0; x < size; x++) {
dot += vec1->vec[x] * vec2->vec[x];
}
dot /= (sqrt(test_v1) * sqrt(test_v2));
angleRads = (double)saacos(dot);
return PyFloat_FromDouble(angleRads * (180/ Py_PI));
AttributeError1:
PyErr_SetString(PyExc_AttributeError, "Mathutils.AngleBetweenVecs(): expects (2) VECTOR objects of the same size\n");
return NULL;
AttributeError2:
PyErr_SetString(PyExc_AttributeError, "Mathutils.AngleBetweenVecs(): zero length vectors are not acceptable arguments\n");
return NULL;
}
//----------------------------------Mathutils.MidpointVecs() -------------
//calculates the midpoint between 2 vectors
static PyObject *M_Mathutils_MidpointVecs(PyObject * self, PyObject * args)
{
VectorObject *vec1 = NULL, *vec2 = NULL;
float vec[4];
int x;
if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
return NULL;
}
if(vec1->size != vec2->size) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.MidpointVecs(): expects (2) vector objects of the same size\n");
return NULL;
}
if(!Vector_ReadCallback(vec1) || !Vector_ReadCallback(vec2))
return NULL;
for(x = 0; x < vec1->size; x++) {
vec[x] = 0.5f * (vec1->vec[x] + vec2->vec[x]);
}
return newVectorObject(vec, vec1->size, Py_NEW);
}
//----------------------------------Mathutils.ProjectVecs() -------------
//projects vector 1 onto vector 2
static PyObject *M_Mathutils_ProjectVecs(PyObject * self, PyObject * args)
{
VectorObject *vec1 = NULL, *vec2 = NULL;
float vec[4];
double dot = 0.0f, dot2 = 0.0f;
int x, size;
if(!PyArg_ParseTuple(args, "O!O!", &vector_Type, &vec1, &vector_Type, &vec2)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
return NULL;
}
if(vec1->size != vec2->size) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.ProjectVecs(): expects (2) vector objects of the same size\n");
return NULL;
}
if(!Vector_ReadCallback(vec1) || !Vector_ReadCallback(vec2))
return NULL;
//since they are the same size...
size = vec1->size;
//get dot products
for(x = 0; x < size; x++) {
dot += vec1->vec[x] * vec2->vec[x];
dot2 += vec2->vec[x] * vec2->vec[x];
}
//projection
dot /= dot2;
for(x = 0; x < size; x++) {
vec[x] = (float)(dot * vec2->vec[x]);
}
return newVectorObject(vec, size, Py_NEW);
}
//----------------------------------MATRIX FUNCTIONS--------------------
//----------------------------------Mathutils.RotationMatrix() ----------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
//creates a rotation matrix
static PyObject *M_Mathutils_RotationMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec = NULL;
char *axis = NULL;
int matSize;
float angle = 0.0f, norm = 0.0f, cosAngle = 0.0f, sinAngle = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|sO!", &angle, &matSize, &axis, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.RotationMatrix(): expected float int and optional string and vector\n");
return NULL;
}
/* Clamp to -360:360 */
while (angle<-360.0f)
angle+=360.0;
while (angle>360.0f)
angle-=360.0;
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(matSize == 2 && (axis != NULL || vec != NULL)) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): cannot create a 2x2 rotation matrix around arbitrary axis\n");
return NULL;
}
if((matSize == 3 || matSize == 4) && axis == NULL) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): please choose an axis of rotation for 3d and 4d matrices\n");
return NULL;
}
if(axis) {
if(((strcmp(axis, "r") == 0) || (strcmp(axis, "R") == 0)) && vec == NULL) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): please define the arbitrary axis of rotation\n");
return NULL;
}
}
if(vec) {
if(vec->size != 3) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): the arbitrary axis must be a 3D vector\n");
return NULL;
}
if(!Vector_ReadCallback(vec))
return NULL;
}
//convert to radians
angle = angle * (float) (Py_PI / 180);
if(axis == NULL && matSize == 2) {
//2D rotation matrix
mat[0] = (float) cos (angle);
mat[1] = (float) sin (angle);
mat[2] = -((float) sin(angle));
mat[3] = (float) cos(angle);
} else if((strcmp(axis, "x") == 0) || (strcmp(axis, "X") == 0)) {
//rotation around X
mat[0] = 1.0f;
mat[4] = (float) cos(angle);
mat[5] = (float) sin(angle);
mat[7] = -((float) sin(angle));
mat[8] = (float) cos(angle);
} else if((strcmp(axis, "y") == 0) || (strcmp(axis, "Y") == 0)) {
//rotation around Y
mat[0] = (float) cos(angle);
mat[2] = -((float) sin(angle));
mat[4] = 1.0f;
mat[6] = (float) sin(angle);
mat[8] = (float) cos(angle);
} else if((strcmp(axis, "z") == 0) || (strcmp(axis, "Z") == 0)) {
//rotation around Z
mat[0] = (float) cos(angle);
mat[1] = (float) sin(angle);
mat[3] = -((float) sin(angle));
mat[4] = (float) cos(angle);
mat[8] = 1.0f;
} else if((strcmp(axis, "r") == 0) || (strcmp(axis, "R") == 0)) {
//arbitrary rotation
//normalize arbitrary axis
norm = (float) sqrt(vec->vec[0] * vec->vec[0] +
vec->vec[1] * vec->vec[1] +
vec->vec[2] * vec->vec[2]);
vec->vec[0] /= norm;
vec->vec[1] /= norm;
vec->vec[2] /= norm;
if (isnan(vec->vec[0]) || isnan(vec->vec[1]) || isnan(vec->vec[2])) {
/* zero length vector, return an identity matrix, could also return an error */
mat[0]= mat[4] = mat[8] = 1.0f;
} else {
/* create matrix */
cosAngle = (float) cos(angle);
sinAngle = (float) sin(angle);
mat[0] = ((vec->vec[0] * vec->vec[0]) * (1 - cosAngle)) +
cosAngle;
mat[1] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) +
(vec->vec[2] * sinAngle);
mat[2] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) -
(vec->vec[1] * sinAngle);
mat[3] = ((vec->vec[0] * vec->vec[1]) * (1 - cosAngle)) -
(vec->vec[2] * sinAngle);
mat[4] = ((vec->vec[1] * vec->vec[1]) * (1 - cosAngle)) +
cosAngle;
mat[5] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) +
(vec->vec[0] * sinAngle);
mat[6] = ((vec->vec[0] * vec->vec[2]) * (1 - cosAngle)) +
(vec->vec[1] * sinAngle);
mat[7] = ((vec->vec[1] * vec->vec[2]) * (1 - cosAngle)) -
(vec->vec[0] * sinAngle);
mat[8] = ((vec->vec[2] * vec->vec[2]) * (1 - cosAngle)) +
cosAngle;
}
} else {
PyErr_SetString(PyExc_AttributeError, "Mathutils.RotationMatrix(): unrecognizable axis of rotation type - expected x,y,z or r\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
//----------------------------------Mathutils.TranslationMatrix() -------
//creates a translation matrix
static PyObject *M_Mathutils_TranslationMatrix(PyObject * self, VectorObject * vec)
{
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!VectorObject_Check(vec)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): expected vector\n");
return NULL;
}
if(vec->size != 3 && vec->size != 4) {
PyErr_SetString(PyExc_TypeError, "Mathutils.TranslationMatrix(): vector must be 3D or 4D\n");
return NULL;
}
if(!Vector_ReadCallback(vec))
return NULL;
//create a identity matrix and add translation
Mat4One((float(*)[4]) mat);
mat[12] = vec->vec[0];
mat[13] = vec->vec[1];
mat[14] = vec->vec[2];
return newMatrixObject(mat, 4, 4, Py_NEW);
}
//----------------------------------Mathutils.ScaleMatrix() -------------
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
//creates a scaling matrix
static PyObject *M_Mathutils_ScaleMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec = NULL;
float norm = 0.0f, factor;
int matSize, x;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "fi|O!", &factor, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.ScaleMatrix(): expected float int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.ScaleMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!Vector_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //scaling along axis
if(matSize == 2) {
mat[0] = factor;
mat[3] = factor;
} else {
mat[0] = factor;
mat[4] = factor;
mat[8] = factor;
}
} else { //scaling in arbitrary direction
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if(matSize == 2) {
mat[0] = 1 +((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[3] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
} else {
mat[0] = 1 + ((factor - 1) *(vec->vec[0] * vec->vec[0]));
mat[1] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[2] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[3] =((factor - 1) *(vec->vec[0] * vec->vec[1]));
mat[4] = 1 + ((factor - 1) *(vec->vec[1] * vec->vec[1]));
mat[5] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[6] =((factor - 1) *(vec->vec[0] * vec->vec[2]));
mat[7] =((factor - 1) *(vec->vec[1] * vec->vec[2]));
mat[8] = 1 + ((factor - 1) *(vec->vec[2] * vec->vec[2]));
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
//----------------------------------Mathutils.OrthoProjectionMatrix() ---
//mat is a 1D array of floats - row[0][0],row[0][1], row[1][0], etc.
//creates an ortho projection matrix
static PyObject *M_Mathutils_OrthoProjectionMatrix(PyObject * self, PyObject * args)
{
VectorObject *vec = NULL;
char *plane;
int matSize, x;
float norm = 0.0f;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "si|O!", &plane, &matSize, &vector_Type, &vec)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.OrthoProjectionMatrix(): expected string and int and optional vector\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"Mathutils.OrthoProjectionMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(vec) {
if(vec->size > 2 && matSize == 2) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): please use 2D vectors when scaling in 2D\n");
return NULL;
}
if(!Vector_ReadCallback(vec))
return NULL;
}
if(vec == NULL) { //ortho projection onto cardinal plane
if(((strcmp(plane, "x") == 0)
|| (strcmp(plane, "X") == 0)) && matSize == 2) {
mat[0] = 1.0f;
} else if(((strcmp(plane, "y") == 0)
|| (strcmp(plane, "Y") == 0))
&& matSize == 2) {
mat[3] = 1.0f;
} else if(((strcmp(plane, "xy") == 0)
|| (strcmp(plane, "XY") == 0))
&& matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
} else if(((strcmp(plane, "xz") == 0)
|| (strcmp(plane, "XZ") == 0))
&& matSize > 2) {
mat[0] = 1.0f;
mat[8] = 1.0f;
} else if(((strcmp(plane, "yz") == 0)
|| (strcmp(plane, "YZ") == 0))
&& matSize > 2) {
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: x, y, xy, xz, yz\n");
return NULL;
}
} else { //arbitrary plane
//normalize arbitrary axis
for(x = 0; x < vec->size; x++) {
norm += vec->vec[x] * vec->vec[x];
}
norm = (float) sqrt(norm);
for(x = 0; x < vec->size; x++) {
vec->vec[x] /= norm;
}
if(((strcmp(plane, "r") == 0)
|| (strcmp(plane, "R") == 0)) && matSize == 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[1]);
mat[3] = 1 - (vec->vec[1] * vec->vec[1]);
} else if(((strcmp(plane, "r") == 0)
|| (strcmp(plane, "R") == 0))
&& matSize > 2) {
mat[0] = 1 - (vec->vec[0] * vec->vec[0]);
mat[1] = -(vec->vec[0] * vec->vec[1]);
mat[2] = -(vec->vec[0] * vec->vec[2]);
mat[3] = -(vec->vec[0] * vec->vec[1]);
mat[4] = 1 - (vec->vec[1] * vec->vec[1]);
mat[5] = -(vec->vec[1] * vec->vec[2]);
mat[6] = -(vec->vec[0] * vec->vec[2]);
mat[7] = -(vec->vec[1] * vec->vec[2]);
mat[8] = 1 - (vec->vec[2] * vec->vec[2]);
} else {
PyErr_SetString(PyExc_AttributeError, "Mathutils.OrthoProjectionMatrix(): unknown plane - expected: 'r' expected for axis designation\n");
return NULL;
}
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
//----------------------------------Mathutils.ShearMatrix() -------------
//creates a shear matrix
static PyObject *M_Mathutils_ShearMatrix(PyObject * self, PyObject * args)
{
int matSize;
char *plane;
float factor;
float mat[16] = {0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f,
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f};
if(!PyArg_ParseTuple(args, "sfi", &plane, &factor, &matSize)) {
PyErr_SetString(PyExc_TypeError,"Mathutils.ShearMatrix(): expected string float and int\n");
return NULL;
}
if(matSize != 2 && matSize != 3 && matSize != 4) {
PyErr_SetString(PyExc_AttributeError,"Mathutils.ShearMatrix(): can only return a 2x2 3x3 or 4x4 matrix\n");
return NULL;
}
if(((strcmp(plane, "x") == 0) || (strcmp(plane, "X") == 0))
&& matSize == 2) {
mat[0] = 1.0f;
mat[2] = factor;
mat[3] = 1.0f;
} else if(((strcmp(plane, "y") == 0)
|| (strcmp(plane, "Y") == 0)) && matSize == 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[3] = 1.0f;
} else if(((strcmp(plane, "xy") == 0)
|| (strcmp(plane, "XY") == 0)) && matSize > 2) {
mat[0] = 1.0f;
mat[4] = 1.0f;
mat[6] = factor;
mat[7] = factor;
} else if(((strcmp(plane, "xz") == 0)
|| (strcmp(plane, "XZ") == 0)) && matSize > 2) {
mat[0] = 1.0f;
mat[3] = factor;
mat[4] = 1.0f;
mat[5] = factor;
mat[8] = 1.0f;
} else if(((strcmp(plane, "yz") == 0)
|| (strcmp(plane, "YZ") == 0)) && matSize > 2) {
mat[0] = 1.0f;
mat[1] = factor;
mat[2] = factor;
mat[4] = 1.0f;
mat[8] = 1.0f;
} else {
PyErr_SetString(PyExc_AttributeError, "Mathutils.ShearMatrix(): expected: x, y, xy, xz, yz or wrong matrix size for shearing plane\n");
return NULL;
}
if(matSize == 4) {
//resize matrix
mat[10] = mat[8];
mat[9] = mat[7];
mat[8] = mat[6];
mat[7] = 0.0f;
mat[6] = mat[5];
mat[5] = mat[4];
mat[4] = mat[3];
mat[3] = 0.0f;
}
//pass to matrix creation
return newMatrixObject(mat, matSize, matSize, Py_NEW);
}
//----------------------------------QUATERNION FUNCTIONS-----------------
//----------------------------------Mathutils.DifferenceQuats() ---------
//returns the difference between 2 quaternions
static PyObject *M_Mathutils_DifferenceQuats(PyObject * self, PyObject * args)
{
QuaternionObject *quatU = NULL, *quatV = NULL;
float quat[4], tempQuat[4];
double dot = 0.0f;
int x;
if(!PyArg_ParseTuple(args, "O!O!", &quaternion_Type, &quatU, &quaternion_Type, &quatV)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.DifferenceQuats(): expected Quaternion types");
return NULL;
}
tempQuat[0] = quatU->quat[0];
tempQuat[1] = -quatU->quat[1];
tempQuat[2] = -quatU->quat[2];
tempQuat[3] = -quatU->quat[3];
dot = sqrt(tempQuat[0] * tempQuat[0] + tempQuat[1] * tempQuat[1] +
tempQuat[2] * tempQuat[2] + tempQuat[3] * tempQuat[3]);
for(x = 0; x < 4; x++) {
tempQuat[x] /= (float)(dot * dot);
}
QuatMul(quat, tempQuat, quatV->quat);
return newQuaternionObject(quat, Py_NEW);
}
//----------------------------------Mathutils.Slerp() ------------------
//attemps to interpolate 2 quaternions and return the result
static PyObject *M_Mathutils_Slerp(PyObject * self, PyObject * args)
{
QuaternionObject *quatU = NULL, *quatV = NULL;
float quat[4], quat_u[4], quat_v[4], param;
double x, y, dot, sinT, angle, IsinT;
int z;
if(!PyArg_ParseTuple(args, "O!O!f", &quaternion_Type, &quatU, &quaternion_Type, &quatV, &param)) {
PyErr_SetString(PyExc_TypeError, "Mathutils.Slerp(): expected Quaternion types and float");
return NULL;
}
if(param > 1.0f || param < 0.0f) {
PyErr_SetString(PyExc_AttributeError, "Mathutils.Slerp(): interpolation factor must be between 0.0 and 1.0");
return NULL;
}
//copy quats
for(z = 0; z < 4; z++){
quat_u[z] = quatU->quat[z];
quat_v[z] = quatV->quat[z];
}
//dot product
dot = quat_u[0] * quat_v[0] + quat_u[1] * quat_v[1] +
quat_u[2] * quat_v[2] + quat_u[3] * quat_v[3];
//if negative negate a quat (shortest arc)
if(dot < 0.0f) {
quat_v[0] = -quat_v[0];
quat_v[1] = -quat_v[1];
quat_v[2] = -quat_v[2];
quat_v[3] = -quat_v[3];
dot = -dot;
}
if(dot > .99999f) { //very close
x = 1.0f - param;
y = param;
} else {
//calculate sin of angle
sinT = sqrt(1.0f - (dot * dot));
//calculate angle
angle = atan2(sinT, dot);
//caluculate inverse of sin(theta)
IsinT = 1.0f / sinT;
x = sin((1.0f - param) * angle) * IsinT;
y = sin(param * angle) * IsinT;
}
//interpolate
quat[0] = (float)(quat_u[0] * x + quat_v[0] * y);
quat[1] = (float)(quat_u[1] * x + quat_v[1] * y);
quat[2] = (float)(quat_u[2] * x + quat_v[2] * y);
quat[3] = (float)(quat_u[3] * x + quat_v[3] * y);
return newQuaternionObject(quat, Py_NEW);
}
//----------------------------------EULER FUNCTIONS----------------------
//---------------------------------INTERSECTION FUNCTIONS--------------------
//----------------------------------Mathutils.Intersect() -------------------
static PyObject *M_Mathutils_Intersect( PyObject * self, PyObject * args )
{
VectorObject *ray, *ray_off, *vec1, *vec2, *vec3;
float dir[3], orig[3], v1[3], v2[3], v3[3], e1[3], e2[3], pvec[3], tvec[3], qvec[3];
float det, inv_det, u, v, t;
int clip = 1;
if(!PyArg_ParseTuple(args, "O!O!O!O!O!|i", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &ray, &vector_Type, &ray_off , &clip)) {
PyErr_SetString( PyExc_TypeError, "expected 5 vector types\n" );
return NULL;
}
if(vec1->size != 3 || vec2->size != 3 || vec3->size != 3 || ray->size != 3 || ray_off->size != 3) {
PyErr_SetString( PyExc_TypeError, "only 3D vectors for all parameters\n");
return NULL;
}
if(!Vector_ReadCallback(vec1) || !Vector_ReadCallback(vec2) || !Vector_ReadCallback(vec3) || !Vector_ReadCallback(ray) || !Vector_ReadCallback(ray_off))
return NULL;
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
VECCOPY(dir, ray->vec);
Normalize(dir);
VECCOPY(orig, ray_off->vec);
/* find vectors for two edges sharing v1 */
VecSubf(e1, v2, v1);
VecSubf(e2, v3, v1);
/* begin calculating determinant - also used to calculated U parameter */
Crossf(pvec, dir, e2);
/* if determinant is near zero, ray lies in plane of triangle */
det = Inpf(e1, pvec);
if (det > -0.000001 && det < 0.000001) {
Py_RETURN_NONE;
}
inv_det = 1.0f / det;
/* calculate distance from v1 to ray origin */
VecSubf(tvec, orig, v1);
/* calculate U parameter and test bounds */
u = Inpf(tvec, pvec) * inv_det;
if (clip && (u < 0.0f || u > 1.0f)) {
Py_RETURN_NONE;
}
/* prepare to test the V parameter */
Crossf(qvec, tvec, e1);
/* calculate V parameter and test bounds */
v = Inpf(dir, qvec) * inv_det;
if (clip && (v < 0.0f || u + v > 1.0f)) {
Py_RETURN_NONE;
}
/* calculate t, ray intersects triangle */
t = Inpf(e2, qvec) * inv_det;
VecMulf(dir, t);
VecAddf(pvec, orig, dir);
return newVectorObject(pvec, 3, Py_NEW);
}
//----------------------------------Mathutils.LineIntersect() -------------------
/* Line-Line intersection using algorithm from mathworld.wolfram.com */
static PyObject *M_Mathutils_LineIntersect( PyObject * self, PyObject * args )
{
PyObject * tuple;
VectorObject *vec1, *vec2, *vec3, *vec4;
float v1[3], v2[3], v3[3], v4[3], i1[3], i2[3];
if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec2->size) {
PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" );
return NULL;
}
if(!Vector_ReadCallback(vec1) || !Vector_ReadCallback(vec2) || !Vector_ReadCallback(vec3) || !Vector_ReadCallback(vec4))
return NULL;
if( vec1->size == 3 || vec1->size == 2) {
int result;
if (vec1->size == 3) {
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
VECCOPY(v4, vec4->vec);
}
else {
v1[0] = vec1->vec[0];
v1[1] = vec1->vec[1];
v1[2] = 0.0f;
v2[0] = vec2->vec[0];
v2[1] = vec2->vec[1];
v2[2] = 0.0f;
v3[0] = vec3->vec[0];
v3[1] = vec3->vec[1];
v3[2] = 0.0f;
v4[0] = vec4->vec[0];
v4[1] = vec4->vec[1];
v4[2] = 0.0f;
}
result = LineIntersectLine(v1, v2, v3, v4, i1, i2);
if (result == 0) {
/* colinear */
Py_RETURN_NONE;
}
else {
tuple = PyTuple_New( 2 );
PyTuple_SetItem( tuple, 0, newVectorObject(i1, vec1->size, Py_NEW) );
PyTuple_SetItem( tuple, 1, newVectorObject(i2, vec1->size, Py_NEW) );
return tuple;
}
}
else {
PyErr_SetString( PyExc_TypeError, "2D/3D vectors only\n" );
return NULL;
}
}
//---------------------------------NORMALS FUNCTIONS--------------------
//----------------------------------Mathutils.QuadNormal() -------------------
static PyObject *M_Mathutils_QuadNormal( PyObject * self, PyObject * args )
{
VectorObject *vec1;
VectorObject *vec2;
VectorObject *vec3;
VectorObject *vec4;
float v1[3], v2[3], v3[3], v4[3], e1[3], e2[3], n1[3], n2[3];
if( !PyArg_ParseTuple( args, "O!O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3, &vector_Type, &vec4 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 4 vector types\n" );
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size || vec1->size != vec4->size) {
PyErr_SetString( PyExc_TypeError,"vectors must be of the same size\n" );
return NULL;
}
if( vec1->size != 3 ) {
PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
return NULL;
}
if(!Vector_ReadCallback(vec1) || !Vector_ReadCallback(vec2) || !Vector_ReadCallback(vec3) || !Vector_ReadCallback(vec4))
return NULL;
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
VECCOPY(v4, vec4->vec);
/* find vectors for two edges sharing v2 */
VecSubf(e1, v1, v2);
VecSubf(e2, v3, v2);
Crossf(n1, e2, e1);
Normalize(n1);
/* find vectors for two edges sharing v4 */
VecSubf(e1, v3, v4);
VecSubf(e2, v1, v4);
Crossf(n2, e2, e1);
Normalize(n2);
/* adding and averaging the normals of both triangles */
VecAddf(n1, n2, n1);
Normalize(n1);
return newVectorObject(n1, 3, Py_NEW);
}
//----------------------------Mathutils.TriangleNormal() -------------------
static PyObject *M_Mathutils_TriangleNormal( PyObject * self, PyObject * args )
{
VectorObject *vec1, *vec2, *vec3;
float v1[3], v2[3], v3[3], e1[3], e2[3], n[3];
if( !PyArg_ParseTuple( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2, &vector_Type, &vec3 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n" );
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size ) {
PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" );
return NULL;
}
if( vec1->size != 3 ) {
PyErr_SetString( PyExc_TypeError, "only 3D vectors\n" );
return NULL;
}
if(!Vector_ReadCallback(vec1) || !Vector_ReadCallback(vec2) || !Vector_ReadCallback(vec3))
return NULL;
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
/* find vectors for two edges sharing v2 */
VecSubf(e1, v1, v2);
VecSubf(e2, v3, v2);
Crossf(n, e2, e1);
Normalize(n);
return newVectorObject(n, 3, Py_NEW);
}
//--------------------------------- AREA FUNCTIONS--------------------
//----------------------------------Mathutils.TriangleArea() -------------------
static PyObject *M_Mathutils_TriangleArea( PyObject * self, PyObject * args )
{
VectorObject *vec1, *vec2, *vec3;
float v1[3], v2[3], v3[3];
if( !PyArg_ParseTuple
( args, "O!O!O!", &vector_Type, &vec1, &vector_Type, &vec2
, &vector_Type, &vec3 ) ) {
PyErr_SetString( PyExc_TypeError, "expected 3 vector types\n");
return NULL;
}
if( vec1->size != vec2->size || vec1->size != vec3->size ) {
PyErr_SetString( PyExc_TypeError, "vectors must be of the same size\n" );
return NULL;
}
if(!Vector_ReadCallback(vec1) || !Vector_ReadCallback(vec2) || !Vector_ReadCallback(vec3))
return NULL;
if (vec1->size == 3) {
VECCOPY(v1, vec1->vec);
VECCOPY(v2, vec2->vec);
VECCOPY(v3, vec3->vec);
return PyFloat_FromDouble( AreaT3Dfl(v1, v2, v3) );
}
else if (vec1->size == 2) {
v1[0] = vec1->vec[0];
v1[1] = vec1->vec[1];
v2[0] = vec2->vec[0];
v2[1] = vec2->vec[1];
v3[0] = vec3->vec[0];
v3[1] = vec3->vec[1];
return PyFloat_FromDouble( AreaF2Dfl(v1, v2, v3) );
}
else {
PyErr_SetString( PyExc_TypeError, "only 2D,3D vectors are supported\n" );
return NULL;
}
}
/* Utility functions */
/*---------------------- EXPP_FloatsAreEqual -------------------------
Floating point comparisons
floatStep = number of representable floats allowable in between
float A and float B to be considered equal. */
int EXPP_FloatsAreEqual(float A, float B, int floatSteps)
{
int a, b, delta;
assert(floatSteps > 0 && floatSteps < (4 * 1024 * 1024));
a = *(int*)&A;
if (a < 0)
a = 0x80000000 - a;
b = *(int*)&B;
if (b < 0)
b = 0x80000000 - b;
delta = abs(a - b);
if (delta <= floatSteps)
return 1;
return 0;
}
/*---------------------- EXPP_VectorsAreEqual -------------------------
Builds on EXPP_FloatsAreEqual to test vectors */
int EXPP_VectorsAreEqual(float *vecA, float *vecB, int size, int floatSteps)
{
int x;
for (x=0; x< size; x++){
if (EXPP_FloatsAreEqual(vecA[x], vecB[x], floatSteps) == 0)
return 0;
}
return 1;
}
/* Mathutils Callbacks */
/* for mathutils internal use only, eventually should re-alloc but to start with we only have a few users */
Mathutils_Callback *mathutils_callbacks[8] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL};
int Mathutils_RegisterCallback(Mathutils_Callback *cb)
{
int i;
/* find the first free slot */
for(i= 0; mathutils_callbacks[i]; i++) {
if(mathutils_callbacks[i]==cb) /* alredy registered? */
return i;
}
mathutils_callbacks[i] = cb;
return i;
}
int Vector_ReadCallback(VectorObject *self) {
if(self->user) {
Mathutils_Callback *cb= mathutils_callbacks[self->callback_type];
if(cb->get(self->user, self->subtype, self->vec)) {
return 1;
}
else {
PyErr_SetString(PyExc_SystemError, "Vector user has become invalid");
return 0;
}
}
return 1; /* no user continue silently */
}
int Vector_WriteCallback(VectorObject *self) {
if(self->user) {
Mathutils_Callback *cb= mathutils_callbacks[self->callback_type];
if(cb->set(self->user, self->subtype, self->vec)) {
return 1;
}
else {
PyErr_SetString(PyExc_SystemError, "Vector user has become invalid");
return 0;
}
}
return 1; /* no user continue silently */
}
int Vector_ReadIndexCallback(VectorObject *self, int index) {
if(self->user) {
Mathutils_Callback *cb= mathutils_callbacks[self->callback_type];
if(cb->get_index(self->user, self->subtype, self->vec, index)) {
return 1;
}
else {
PyErr_SetString(PyExc_SystemError, "Vector user has become invalid");
return 0;
}
}
return 1; /* no user continue silently */
}
int Vector_WriteIndexCallback(VectorObject *self, int index) {
if(self->user) {
Mathutils_Callback *cb= mathutils_callbacks[self->callback_type];
if(cb->set_index(self->user, self->subtype, self->vec, index)) {
return 1;
}
else {
PyErr_SetString(PyExc_SystemError, "Vector user has become invalid");
return 0;
}
}
return 1; /* no user continue silently */
}