This repository has been archived on 2023-10-09. You can view files and clone it, but cannot push or open issues or pull requests.
Files
blender-archive/source/blender/blenkernel/intern/attribute_access.cc

2229 lines
76 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <utility>
#include "BKE_attribute_access.hh"
#include "BKE_attribute_math.hh"
#include "BKE_customdata.h"
#include "BKE_deform.h"
#include "BKE_geometry_set.hh"
#include "BKE_mesh.h"
#include "BKE_pointcloud.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_pointcloud_types.h"
#include "BLI_color.hh"
#include "BLI_float2.hh"
#include "BLI_span.hh"
#include "BLI_threads.h"
#include "CLG_log.h"
#include "NOD_node_tree_multi_function.hh"
static CLG_LogRef LOG = {"bke.attribute_access"};
using blender::float3;
using blender::Set;
using blender::StringRef;
using blender::StringRefNull;
using blender::bke::ReadAttributePtr;
using blender::bke::WriteAttributePtr;
using blender::fn::GMutableSpan;
/* Can't include BKE_object_deform.h right now, due to an enum forward declaration. */
extern "C" MDeformVert *BKE_object_defgroup_data_create(ID *id);
namespace blender::bke {
/* -------------------------------------------------------------------- */
/** \name Attribute Accessor implementations
* \{ */
ReadAttribute::~ReadAttribute()
{
if (array_is_temporary_ && array_buffer_ != nullptr) {
cpp_type_.destruct_n(array_buffer_, size_);
MEM_freeN(array_buffer_);
}
}
fn::GSpan ReadAttribute::get_span() const
{
if (size_ == 0) {
return fn::GSpan(cpp_type_);
}
if (array_buffer_ == nullptr) {
std::lock_guard lock{span_mutex_};
if (array_buffer_ == nullptr) {
this->initialize_span();
}
}
return fn::GSpan(cpp_type_, array_buffer_, size_);
}
void ReadAttribute::initialize_span() const
{
const int element_size = cpp_type_.size();
array_buffer_ = MEM_mallocN_aligned(size_ * element_size, cpp_type_.alignment(), __func__);
array_is_temporary_ = true;
for (const int i : IndexRange(size_)) {
this->get_internal(i, POINTER_OFFSET(array_buffer_, i * element_size));
}
}
WriteAttribute::~WriteAttribute()
{
if (array_should_be_applied_) {
CLOG_ERROR(&LOG, "Forgot to call apply_span.");
}
if (array_is_temporary_ && array_buffer_ != nullptr) {
cpp_type_.destruct_n(array_buffer_, size_);
MEM_freeN(array_buffer_);
}
}
/**
* Get a mutable span that can be modified. When all modifications to the attribute are done,
* #apply_span should be called. */
fn::GMutableSpan WriteAttribute::get_span()
{
if (size_ == 0) {
return fn::GMutableSpan(cpp_type_);
}
if (array_buffer_ == nullptr) {
this->initialize_span(false);
}
array_should_be_applied_ = true;
return fn::GMutableSpan(cpp_type_, array_buffer_, size_);
}
fn::GMutableSpan WriteAttribute::get_span_for_write_only()
{
if (size_ == 0) {
return fn::GMutableSpan(cpp_type_);
}
if (array_buffer_ == nullptr) {
this->initialize_span(true);
}
array_should_be_applied_ = true;
return fn::GMutableSpan(cpp_type_, array_buffer_, size_);
}
void WriteAttribute::initialize_span(const bool write_only)
{
const int element_size = cpp_type_.size();
array_buffer_ = MEM_mallocN_aligned(element_size * size_, cpp_type_.alignment(), __func__);
array_is_temporary_ = true;
if (write_only) {
/* This does nothing for trivial types, but is necessary for general correctness. */
cpp_type_.construct_default_n(array_buffer_, size_);
}
else {
for (const int i : IndexRange(size_)) {
this->get(i, POINTER_OFFSET(array_buffer_, i * element_size));
}
}
}
void WriteAttribute::apply_span()
{
this->apply_span_if_necessary();
array_should_be_applied_ = false;
}
void WriteAttribute::apply_span_if_necessary()
{
/* Only works when the span has been initialized beforehand. */
BLI_assert(array_buffer_ != nullptr);
const int element_size = cpp_type_.size();
for (const int i : IndexRange(size_)) {
this->set_internal(i, POINTER_OFFSET(array_buffer_, i * element_size));
}
}
class VertexWeightWriteAttribute final : public WriteAttribute {
private:
MDeformVert *dverts_;
const int dvert_index_;
public:
VertexWeightWriteAttribute(MDeformVert *dverts, const int totvert, const int dvert_index)
: WriteAttribute(ATTR_DOMAIN_POINT, CPPType::get<float>(), totvert),
dverts_(dverts),
dvert_index_(dvert_index)
{
}
void get_internal(const int64_t index, void *r_value) const override
{
get_internal(dverts_, dvert_index_, index, r_value);
}
void set_internal(const int64_t index, const void *value) override
{
MDeformWeight *weight = BKE_defvert_ensure_index(&dverts_[index], dvert_index_);
weight->weight = *reinterpret_cast<const float *>(value);
}
static void get_internal(const MDeformVert *dverts,
const int dvert_index,
const int64_t index,
void *r_value)
{
if (dverts == nullptr) {
*(float *)r_value = 0.0f;
return;
}
const MDeformVert &dvert = dverts[index];
for (const MDeformWeight &weight : Span(dvert.dw, dvert.totweight)) {
if (weight.def_nr == dvert_index) {
*(float *)r_value = weight.weight;
return;
}
}
*(float *)r_value = 0.0f;
}
};
class VertexWeightReadAttribute final : public ReadAttribute {
private:
const MDeformVert *dverts_;
const int dvert_index_;
public:
VertexWeightReadAttribute(const MDeformVert *dverts, const int totvert, const int dvert_index)
: ReadAttribute(ATTR_DOMAIN_POINT, CPPType::get<float>(), totvert),
dverts_(dverts),
dvert_index_(dvert_index)
{
}
void get_internal(const int64_t index, void *r_value) const override
{
VertexWeightWriteAttribute::get_internal(dverts_, dvert_index_, index, r_value);
}
};
template<typename T> class ArrayWriteAttribute final : public WriteAttribute {
private:
MutableSpan<T> data_;
public:
ArrayWriteAttribute(AttributeDomain domain, MutableSpan<T> data)
: WriteAttribute(domain, CPPType::get<T>(), data.size()), data_(data)
{
}
void get_internal(const int64_t index, void *r_value) const override
{
new (r_value) T(data_[index]);
}
void set_internal(const int64_t index, const void *value) override
{
data_[index] = *reinterpret_cast<const T *>(value);
}
void initialize_span(const bool UNUSED(write_only)) override
{
array_buffer_ = data_.data();
array_is_temporary_ = false;
}
void apply_span_if_necessary() override
{
/* Do nothing, because the span contains the attribute itself already. */
}
};
/* This is used by the #OutputAttributePtr class. */
class TemporaryWriteAttribute final : public WriteAttribute {
public:
GMutableSpan data;
GeometryComponent &component;
std::string final_name;
TemporaryWriteAttribute(AttributeDomain domain,
GMutableSpan data,
GeometryComponent &component,
std::string final_name)
: WriteAttribute(domain, data.type(), data.size()),
data(data),
component(component),
final_name(std::move(final_name))
{
}
~TemporaryWriteAttribute() override
{
if (data.data() != nullptr) {
cpp_type_.destruct_n(data.data(), data.size());
MEM_freeN(data.data());
}
}
void get_internal(const int64_t index, void *r_value) const override
{
data.type().copy_to_uninitialized(data[index], r_value);
}
void set_internal(const int64_t index, const void *value) override
{
data.type().copy_to_initialized(value, data[index]);
}
void initialize_span(const bool UNUSED(write_only)) override
{
array_buffer_ = data.data();
array_is_temporary_ = false;
}
void apply_span_if_necessary() override
{
/* Do nothing, because the span contains the attribute itself already. */
}
};
template<typename T> class ArrayReadAttribute final : public ReadAttribute {
private:
Span<T> data_;
public:
ArrayReadAttribute(AttributeDomain domain, Span<T> data)
: ReadAttribute(domain, CPPType::get<T>(), data.size()), data_(data)
{
}
void get_internal(const int64_t index, void *r_value) const override
{
new (r_value) T(data_[index]);
}
void initialize_span() const override
{
/* The data will not be modified, so this const_cast is fine. */
array_buffer_ = const_cast<T *>(data_.data());
array_is_temporary_ = false;
}
};
template<typename T> class OwnedArrayReadAttribute final : public ReadAttribute {
private:
Array<T> data_;
public:
OwnedArrayReadAttribute(AttributeDomain domain, Array<T> data)
: ReadAttribute(domain, CPPType::get<T>(), data.size()), data_(std::move(data))
{
}
void get_internal(const int64_t index, void *r_value) const override
{
new (r_value) T(data_[index]);
}
void initialize_span() const override
{
/* The data will not be modified, so this const_cast is fine. */
array_buffer_ = const_cast<T *>(data_.data());
array_is_temporary_ = false;
}
};
template<typename StructT,
typename ElemT,
ElemT (*GetFunc)(const StructT &),
void (*SetFunc)(StructT &, const ElemT &)>
class DerivedArrayWriteAttribute final : public WriteAttribute {
private:
MutableSpan<StructT> data_;
public:
DerivedArrayWriteAttribute(AttributeDomain domain, MutableSpan<StructT> data)
: WriteAttribute(domain, CPPType::get<ElemT>(), data.size()), data_(data)
{
}
void get_internal(const int64_t index, void *r_value) const override
{
const StructT &struct_value = data_[index];
const ElemT value = GetFunc(struct_value);
new (r_value) ElemT(value);
}
void set_internal(const int64_t index, const void *value) override
{
StructT &struct_value = data_[index];
const ElemT &typed_value = *reinterpret_cast<const ElemT *>(value);
SetFunc(struct_value, typed_value);
}
};
template<typename StructT, typename ElemT, ElemT (*GetFunc)(const StructT &)>
class DerivedArrayReadAttribute final : public ReadAttribute {
private:
Span<StructT> data_;
public:
DerivedArrayReadAttribute(AttributeDomain domain, Span<StructT> data)
: ReadAttribute(domain, CPPType::get<ElemT>(), data.size()), data_(data)
{
}
void get_internal(const int64_t index, void *r_value) const override
{
const StructT &struct_value = data_[index];
const ElemT value = GetFunc(struct_value);
new (r_value) ElemT(value);
}
};
class ConstantReadAttribute final : public ReadAttribute {
private:
void *value_;
public:
ConstantReadAttribute(AttributeDomain domain,
const int64_t size,
const CPPType &type,
const void *value)
: ReadAttribute(domain, type, size)
{
value_ = MEM_mallocN_aligned(type.size(), type.alignment(), __func__);
type.copy_to_uninitialized(value, value_);
}
~ConstantReadAttribute() override
{
this->cpp_type_.destruct(value_);
MEM_freeN(value_);
}
void get_internal(const int64_t UNUSED(index), void *r_value) const override
{
this->cpp_type_.copy_to_uninitialized(value_, r_value);
}
void initialize_span() const override
{
const int element_size = cpp_type_.size();
array_buffer_ = MEM_mallocN_aligned(size_ * element_size, cpp_type_.alignment(), __func__);
array_is_temporary_ = true;
cpp_type_.fill_uninitialized(value_, array_buffer_, size_);
}
};
class ConvertedReadAttribute final : public ReadAttribute {
private:
const CPPType &from_type_;
const CPPType &to_type_;
ReadAttributePtr base_attribute_;
const nodes::DataTypeConversions &conversions_;
public:
ConvertedReadAttribute(ReadAttributePtr base_attribute, const CPPType &to_type)
: ReadAttribute(base_attribute->domain(), to_type, base_attribute->size()),
from_type_(base_attribute->cpp_type()),
to_type_(to_type),
base_attribute_(std::move(base_attribute)),
conversions_(nodes::get_implicit_type_conversions())
{
}
void get_internal(const int64_t index, void *r_value) const override
{
BUFFER_FOR_CPP_TYPE_VALUE(from_type_, buffer);
base_attribute_->get(index, buffer);
conversions_.convert(from_type_, to_type_, buffer, r_value);
}
};
/** \} */
const blender::fn::CPPType *custom_data_type_to_cpp_type(const CustomDataType type)
{
switch (type) {
case CD_PROP_FLOAT:
return &CPPType::get<float>();
case CD_PROP_FLOAT2:
return &CPPType::get<float2>();
case CD_PROP_FLOAT3:
return &CPPType::get<float3>();
case CD_PROP_INT32:
return &CPPType::get<int>();
case CD_PROP_COLOR:
return &CPPType::get<Color4f>();
case CD_PROP_BOOL:
return &CPPType::get<bool>();
default:
return nullptr;
}
return nullptr;
}
CustomDataType cpp_type_to_custom_data_type(const blender::fn::CPPType &type)
{
if (type.is<float>()) {
return CD_PROP_FLOAT;
}
if (type.is<float2>()) {
return CD_PROP_FLOAT2;
}
if (type.is<float3>()) {
return CD_PROP_FLOAT3;
}
if (type.is<int>()) {
return CD_PROP_INT32;
}
if (type.is<Color4f>()) {
return CD_PROP_COLOR;
}
if (type.is<bool>()) {
return CD_PROP_BOOL;
}
return static_cast<CustomDataType>(-1);
}
static int attribute_data_type_complexity(const CustomDataType data_type)
{
switch (data_type) {
case CD_PROP_BOOL:
return 0;
case CD_PROP_INT32:
return 1;
case CD_PROP_FLOAT:
return 2;
case CD_PROP_FLOAT2:
return 3;
case CD_PROP_FLOAT3:
return 4;
case CD_PROP_COLOR:
return 5;
#if 0 /* These attribute types are not supported yet. */
case CD_MLOOPCOL:
return 3;
case CD_PROP_STRING:
return 6;
#endif
default:
/* Only accept "generic" custom data types used by the attribute system. */
BLI_assert(false);
return 0;
}
}
CustomDataType attribute_data_type_highest_complexity(Span<CustomDataType> data_types)
{
int highest_complexity = INT_MIN;
CustomDataType most_complex_type = CD_PROP_COLOR;
for (const CustomDataType data_type : data_types) {
const int complexity = attribute_data_type_complexity(data_type);
if (complexity > highest_complexity) {
highest_complexity = complexity;
most_complex_type = data_type;
}
}
return most_complex_type;
}
/**
* \note Generally the order should mirror the order of the domains
* established in each component's ComponentAttributeProviders.
*/
static int attribute_domain_priority(const AttributeDomain domain)
{
switch (domain) {
#if 0
case ATTR_DOMAIN_CURVE:
return 0;
#endif
case ATTR_DOMAIN_POLYGON:
return 1;
case ATTR_DOMAIN_EDGE:
return 2;
case ATTR_DOMAIN_POINT:
return 3;
case ATTR_DOMAIN_CORNER:
return 4;
default:
/* Domain not supported in nodes yet. */
BLI_assert(false);
return 0;
}
}
/**
* Domains with a higher "information density" have a higher priority, in order
* to choose a domain that will not lose data through domain conversion.
*/
AttributeDomain attribute_domain_highest_priority(Span<AttributeDomain> domains)
{
int highest_priority = INT_MIN;
AttributeDomain highest_priority_domain = ATTR_DOMAIN_CORNER;
for (const AttributeDomain domain : domains) {
const int priority = attribute_domain_priority(domain);
if (priority > highest_priority) {
highest_priority = priority;
highest_priority_domain = domain;
}
}
return highest_priority_domain;
}
/**
* A #BuiltinAttributeProvider is responsible for exactly one attribute on a geometry component.
* The attribute is identified by its name and has a fixed domain and type. Builtin attributes do
* not follow the same loose rules as other attributes, because they are mapped to internal
* "legacy" data structures. For example, some builtin attributes cannot be deleted. */
class BuiltinAttributeProvider {
public:
/* Some utility enums to avoid hard to read booleans in function calls. */
enum CreatableEnum {
Creatable,
NonCreatable,
};
enum WritableEnum {
Writable,
Readonly,
};
enum DeletableEnum {
Deletable,
NonDeletable,
};
protected:
const std::string name_;
const AttributeDomain domain_;
const CustomDataType data_type_;
const CreatableEnum createable_;
const WritableEnum writable_;
const DeletableEnum deletable_;
public:
BuiltinAttributeProvider(std::string name,
const AttributeDomain domain,
const CustomDataType data_type,
const CreatableEnum createable,
const WritableEnum writable,
const DeletableEnum deletable)
: name_(std::move(name)),
domain_(domain),
data_type_(data_type),
createable_(createable),
writable_(writable),
deletable_(deletable)
{
}
virtual ReadAttributePtr try_get_for_read(const GeometryComponent &component) const = 0;
virtual WriteAttributePtr try_get_for_write(GeometryComponent &component) const = 0;
virtual bool try_delete(GeometryComponent &component) const = 0;
virtual bool try_create(GeometryComponent &UNUSED(component)) const = 0;
virtual bool exists(const GeometryComponent &component) const = 0;
StringRefNull name() const
{
return name_;
}
AttributeDomain domain() const
{
return domain_;
}
CustomDataType data_type() const
{
return data_type_;
}
};
/**
* A #DynamicAttributesProvider manages a set of named attributes on a geometry component. Each
* attribute has a name, domain and type.
*/
class DynamicAttributesProvider {
public:
virtual ReadAttributePtr try_get_for_read(const GeometryComponent &component,
const StringRef attribute_name) const = 0;
virtual WriteAttributePtr try_get_for_write(GeometryComponent &component,
const StringRef attribute_name) const = 0;
virtual bool try_delete(GeometryComponent &component, const StringRef attribute_name) const = 0;
virtual bool try_create(GeometryComponent &UNUSED(component),
const StringRef UNUSED(attribute_name),
const AttributeDomain UNUSED(domain),
const CustomDataType UNUSED(data_type)) const
{
/* Some providers should not create new attributes. */
return false;
};
virtual bool foreach_attribute(const GeometryComponent &component,
const AttributeForeachCallback callback) const = 0;
virtual void supported_domains(Vector<AttributeDomain> &r_domains) const = 0;
};
/**
* Utility to group together multiple functions that are used to access custom data on geometry
* components in a generic way.
*/
struct CustomDataAccessInfo {
using CustomDataGetter = CustomData *(*)(GeometryComponent &component);
using ConstCustomDataGetter = const CustomData *(*)(const GeometryComponent &component);
using UpdateCustomDataPointers = void (*)(GeometryComponent &component);
CustomDataGetter get_custom_data;
ConstCustomDataGetter get_const_custom_data;
UpdateCustomDataPointers update_custom_data_pointers;
};
/**
* This provider is used to provide access to builtin attributes. It supports making internal types
* available as different types. For example, the vertex position attribute is stored as part of
* the #MVert struct, but is exposed as float3 attribute.
*/
class BuiltinCustomDataLayerProvider final : public BuiltinAttributeProvider {
using AsReadAttribute = ReadAttributePtr (*)(const void *data, const int domain_size);
using AsWriteAttribute = WriteAttributePtr (*)(void *data, const int domain_size);
using UpdateOnRead = void (*)(const GeometryComponent &component);
using UpdateOnWrite = void (*)(GeometryComponent &component);
const CustomDataType stored_type_;
const CustomDataAccessInfo custom_data_access_;
const AsReadAttribute as_read_attribute_;
const AsWriteAttribute as_write_attribute_;
const UpdateOnRead update_on_read_;
const UpdateOnWrite update_on_write_;
public:
BuiltinCustomDataLayerProvider(std::string attribute_name,
const AttributeDomain domain,
const CustomDataType attribute_type,
const CustomDataType stored_type,
const CreatableEnum creatable,
const WritableEnum writable,
const DeletableEnum deletable,
const CustomDataAccessInfo custom_data_access,
const AsReadAttribute as_read_attribute,
const AsWriteAttribute as_write_attribute,
const UpdateOnRead update_on_read,
const UpdateOnWrite update_on_write)
: BuiltinAttributeProvider(
std::move(attribute_name), domain, attribute_type, creatable, writable, deletable),
stored_type_(stored_type),
custom_data_access_(custom_data_access),
as_read_attribute_(as_read_attribute),
as_write_attribute_(as_write_attribute),
update_on_read_(update_on_read),
update_on_write_(update_on_write)
{
}
ReadAttributePtr try_get_for_read(const GeometryComponent &component) const final
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return {};
}
if (update_on_read_ != nullptr) {
update_on_read_(component);
}
const int domain_size = component.attribute_domain_size(domain_);
const void *data = CustomData_get_layer(custom_data, stored_type_);
if (data == nullptr) {
return {};
}
return as_read_attribute_(data, domain_size);
}
WriteAttributePtr try_get_for_write(GeometryComponent &component) const final
{
if (writable_ != Writable) {
return {};
}
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return {};
}
const int domain_size = component.attribute_domain_size(domain_);
void *data = CustomData_get_layer(custom_data, stored_type_);
if (data == nullptr) {
return {};
}
void *new_data = CustomData_duplicate_referenced_layer(custom_data, stored_type_, domain_size);
if (data != new_data) {
custom_data_access_.update_custom_data_pointers(component);
data = new_data;
}
if (update_on_write_ != nullptr) {
update_on_write_(component);
}
return as_write_attribute_(data, domain_size);
}
bool try_delete(GeometryComponent &component) const final
{
if (deletable_ != Deletable) {
return false;
}
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return {};
}
const int domain_size = component.attribute_domain_size(domain_);
const int layer_index = CustomData_get_layer_index(custom_data, stored_type_);
const bool delete_success = CustomData_free_layer(
custom_data, stored_type_, domain_size, layer_index);
if (delete_success) {
custom_data_access_.update_custom_data_pointers(component);
}
return delete_success;
}
bool try_create(GeometryComponent &component) const final
{
if (createable_ != Creatable) {
return false;
}
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return false;
}
if (CustomData_get_layer(custom_data, stored_type_) != nullptr) {
/* Exists already. */
return false;
}
const int domain_size = component.attribute_domain_size(domain_);
const void *data = CustomData_add_layer(
custom_data, stored_type_, CD_DEFAULT, nullptr, domain_size);
const bool success = data != nullptr;
if (success) {
custom_data_access_.update_custom_data_pointers(component);
}
return success;
}
bool exists(const GeometryComponent &component) const final
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return false;
}
const void *data = CustomData_get_layer(custom_data, stored_type_);
return data != nullptr;
}
};
/**
* This is the attribute provider for most user generated attributes.
*/
class CustomDataAttributeProvider final : public DynamicAttributesProvider {
private:
static constexpr uint64_t supported_types_mask = CD_MASK_PROP_FLOAT | CD_MASK_PROP_FLOAT2 |
CD_MASK_PROP_FLOAT3 | CD_MASK_PROP_INT32 |
CD_MASK_PROP_COLOR | CD_MASK_PROP_BOOL;
const AttributeDomain domain_;
const CustomDataAccessInfo custom_data_access_;
public:
CustomDataAttributeProvider(const AttributeDomain domain,
const CustomDataAccessInfo custom_data_access)
: domain_(domain), custom_data_access_(custom_data_access)
{
}
ReadAttributePtr try_get_for_read(const GeometryComponent &component,
const StringRef attribute_name) const final
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return {};
}
const int domain_size = component.attribute_domain_size(domain_);
for (const CustomDataLayer &layer : Span(custom_data->layers, custom_data->totlayer)) {
if (layer.name != attribute_name) {
continue;
}
const CustomDataType data_type = (CustomDataType)layer.type;
switch (data_type) {
case CD_PROP_FLOAT:
return this->layer_to_read_attribute<float>(layer, domain_size);
case CD_PROP_FLOAT2:
return this->layer_to_read_attribute<float2>(layer, domain_size);
case CD_PROP_FLOAT3:
return this->layer_to_read_attribute<float3>(layer, domain_size);
case CD_PROP_INT32:
return this->layer_to_read_attribute<int>(layer, domain_size);
case CD_PROP_COLOR:
return this->layer_to_read_attribute<Color4f>(layer, domain_size);
case CD_PROP_BOOL:
return this->layer_to_read_attribute<bool>(layer, domain_size);
default:
break;
}
}
return {};
}
WriteAttributePtr try_get_for_write(GeometryComponent &component,
const StringRef attribute_name) const final
{
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return {};
}
const int domain_size = component.attribute_domain_size(domain_);
for (CustomDataLayer &layer : MutableSpan(custom_data->layers, custom_data->totlayer)) {
if (layer.name != attribute_name) {
continue;
}
CustomData_duplicate_referenced_layer_named(
custom_data, layer.type, layer.name, domain_size);
const CustomDataType data_type = (CustomDataType)layer.type;
switch (data_type) {
case CD_PROP_FLOAT:
return this->layer_to_write_attribute<float>(layer, domain_size);
case CD_PROP_FLOAT2:
return this->layer_to_write_attribute<float2>(layer, domain_size);
case CD_PROP_FLOAT3:
return this->layer_to_write_attribute<float3>(layer, domain_size);
case CD_PROP_INT32:
return this->layer_to_write_attribute<int>(layer, domain_size);
case CD_PROP_COLOR:
return this->layer_to_write_attribute<Color4f>(layer, domain_size);
case CD_PROP_BOOL:
return this->layer_to_write_attribute<bool>(layer, domain_size);
default:
break;
}
}
return {};
}
bool try_delete(GeometryComponent &component, const StringRef attribute_name) const final
{
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return false;
}
const int domain_size = component.attribute_domain_size(domain_);
for (const int i : IndexRange(custom_data->totlayer)) {
const CustomDataLayer &layer = custom_data->layers[i];
if (this->type_is_supported((CustomDataType)layer.type) && layer.name == attribute_name) {
CustomData_free_layer(custom_data, layer.type, domain_size, i);
return true;
}
}
return false;
}
bool try_create(GeometryComponent &component,
const StringRef attribute_name,
const AttributeDomain domain,
const CustomDataType data_type) const final
{
if (domain_ != domain) {
return false;
}
if (!this->type_is_supported(data_type)) {
return false;
}
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return false;
}
for (const CustomDataLayer &layer : Span(custom_data->layers, custom_data->totlayer)) {
if (layer.name == attribute_name) {
return false;
}
}
const int domain_size = component.attribute_domain_size(domain_);
char attribute_name_c[MAX_NAME];
attribute_name.copy(attribute_name_c);
CustomData_add_layer_named(
custom_data, data_type, CD_DEFAULT, nullptr, domain_size, attribute_name_c);
return true;
}
bool foreach_attribute(const GeometryComponent &component,
const AttributeForeachCallback callback) const final
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return true;
}
for (const CustomDataLayer &layer : Span(custom_data->layers, custom_data->totlayer)) {
const CustomDataType data_type = (CustomDataType)layer.type;
if (this->type_is_supported(data_type)) {
AttributeMetaData meta_data{domain_, data_type};
if (!callback(layer.name, meta_data)) {
return false;
}
}
}
return true;
}
void supported_domains(Vector<AttributeDomain> &r_domains) const final
{
r_domains.append_non_duplicates(domain_);
}
private:
template<typename T>
ReadAttributePtr layer_to_read_attribute(const CustomDataLayer &layer,
const int domain_size) const
{
return std::make_unique<ArrayReadAttribute<T>>(
domain_, Span(static_cast<const T *>(layer.data), domain_size));
}
template<typename T>
WriteAttributePtr layer_to_write_attribute(CustomDataLayer &layer, const int domain_size) const
{
return std::make_unique<ArrayWriteAttribute<T>>(
domain_, MutableSpan(static_cast<T *>(layer.data), domain_size));
}
bool type_is_supported(CustomDataType data_type) const
{
return ((1ULL << data_type) & supported_types_mask) != 0;
}
};
static Mesh *get_mesh_from_component_for_write(GeometryComponent &component)
{
BLI_assert(component.type() == GeometryComponentType::Mesh);
MeshComponent &mesh_component = static_cast<MeshComponent &>(component);
return mesh_component.get_for_write();
}
static const Mesh *get_mesh_from_component_for_read(const GeometryComponent &component)
{
BLI_assert(component.type() == GeometryComponentType::Mesh);
const MeshComponent &mesh_component = static_cast<const MeshComponent &>(component);
return mesh_component.get_for_read();
}
/**
* This attribute provider is used for uv maps and vertex colors.
*/
class NamedLegacyCustomDataProvider final : public DynamicAttributesProvider {
private:
using AsReadAttribute = ReadAttributePtr (*)(const void *data, const int domain_size);
using AsWriteAttribute = WriteAttributePtr (*)(void *data, const int domain_size);
const AttributeDomain domain_;
const CustomDataType attribute_type_;
const CustomDataType stored_type_;
const CustomDataAccessInfo custom_data_access_;
const AsReadAttribute as_read_attribute_;
const AsWriteAttribute as_write_attribute_;
public:
NamedLegacyCustomDataProvider(const AttributeDomain domain,
const CustomDataType attribute_type,
const CustomDataType stored_type,
const CustomDataAccessInfo custom_data_access,
const AsReadAttribute as_read_attribute,
const AsWriteAttribute as_write_attribute)
: domain_(domain),
attribute_type_(attribute_type),
stored_type_(stored_type),
custom_data_access_(custom_data_access),
as_read_attribute_(as_read_attribute),
as_write_attribute_(as_write_attribute)
{
}
ReadAttributePtr try_get_for_read(const GeometryComponent &component,
const StringRef attribute_name) const final
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return {};
}
for (const CustomDataLayer &layer : Span(custom_data->layers, custom_data->totlayer)) {
if (layer.type == stored_type_) {
if (layer.name == attribute_name) {
const int domain_size = component.attribute_domain_size(domain_);
return as_read_attribute_(layer.data, domain_size);
}
}
}
return {};
}
WriteAttributePtr try_get_for_write(GeometryComponent &component,
const StringRef attribute_name) const final
{
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return {};
}
for (CustomDataLayer &layer : MutableSpan(custom_data->layers, custom_data->totlayer)) {
if (layer.type == stored_type_) {
if (layer.name == attribute_name) {
const int domain_size = component.attribute_domain_size(domain_);
void *data_old = layer.data;
void *data_new = CustomData_duplicate_referenced_layer_named(
custom_data, stored_type_, layer.name, domain_size);
if (data_old != data_new) {
custom_data_access_.update_custom_data_pointers(component);
}
return as_write_attribute_(layer.data, domain_size);
}
}
}
return {};
}
bool try_delete(GeometryComponent &component, const StringRef attribute_name) const final
{
CustomData *custom_data = custom_data_access_.get_custom_data(component);
if (custom_data == nullptr) {
return false;
}
for (const int i : IndexRange(custom_data->totlayer)) {
const CustomDataLayer &layer = custom_data->layers[i];
if (layer.type == stored_type_) {
if (layer.name == attribute_name) {
const int domain_size = component.attribute_domain_size(domain_);
CustomData_free_layer(custom_data, stored_type_, domain_size, i);
custom_data_access_.update_custom_data_pointers(component);
return true;
}
}
}
return false;
}
bool foreach_attribute(const GeometryComponent &component,
const AttributeForeachCallback callback) const final
{
const CustomData *custom_data = custom_data_access_.get_const_custom_data(component);
if (custom_data == nullptr) {
return true;
}
for (const CustomDataLayer &layer : Span(custom_data->layers, custom_data->totlayer)) {
if (layer.type == stored_type_) {
AttributeMetaData meta_data{domain_, attribute_type_};
if (!callback(layer.name, meta_data)) {
return false;
}
}
}
return true;
}
void supported_domains(Vector<AttributeDomain> &r_domains) const final
{
r_domains.append_non_duplicates(domain_);
}
};
/**
* This provider makes vertex groups available as float attributes.
*/
class VertexGroupsAttributeProvider final : public DynamicAttributesProvider {
public:
ReadAttributePtr try_get_for_read(const GeometryComponent &component,
const StringRef attribute_name) const final
{
BLI_assert(component.type() == GeometryComponentType::Mesh);
const MeshComponent &mesh_component = static_cast<const MeshComponent &>(component);
const Mesh *mesh = mesh_component.get_for_read();
const int vertex_group_index = mesh_component.vertex_group_names().lookup_default_as(
attribute_name, -1);
if (vertex_group_index < 0) {
return {};
}
if (mesh == nullptr || mesh->dvert == nullptr) {
static const float default_value = 0.0f;
return std::make_unique<ConstantReadAttribute>(
ATTR_DOMAIN_POINT, mesh->totvert, CPPType::get<float>(), &default_value);
}
return std::make_unique<VertexWeightReadAttribute>(
mesh->dvert, mesh->totvert, vertex_group_index);
}
WriteAttributePtr try_get_for_write(GeometryComponent &component,
const StringRef attribute_name) const final
{
BLI_assert(component.type() == GeometryComponentType::Mesh);
MeshComponent &mesh_component = static_cast<MeshComponent &>(component);
Mesh *mesh = mesh_component.get_for_write();
if (mesh == nullptr) {
return {};
}
const int vertex_group_index = mesh_component.vertex_group_names().lookup_default_as(
attribute_name, -1);
if (vertex_group_index < 0) {
return {};
}
if (mesh->dvert == nullptr) {
BKE_object_defgroup_data_create(&mesh->id);
}
else {
/* Copy the data layer if it is shared with some other mesh. */
mesh->dvert = (MDeformVert *)CustomData_duplicate_referenced_layer(
&mesh->vdata, CD_MDEFORMVERT, mesh->totvert);
}
return std::make_unique<blender::bke::VertexWeightWriteAttribute>(
mesh->dvert, mesh->totvert, vertex_group_index);
}
bool try_delete(GeometryComponent &component, const StringRef attribute_name) const final
{
BLI_assert(component.type() == GeometryComponentType::Mesh);
MeshComponent &mesh_component = static_cast<MeshComponent &>(component);
const int vertex_group_index = mesh_component.vertex_group_names().pop_default_as(
attribute_name, -1);
if (vertex_group_index < 0) {
return false;
}
Mesh *mesh = mesh_component.get_for_write();
if (mesh == nullptr) {
return true;
}
if (mesh->dvert == nullptr) {
return true;
}
for (MDeformVert &dvert : MutableSpan(mesh->dvert, mesh->totvert)) {
MDeformWeight *weight = BKE_defvert_find_index(&dvert, vertex_group_index);
BKE_defvert_remove_group(&dvert, weight);
}
return true;
}
bool foreach_attribute(const GeometryComponent &component,
const AttributeForeachCallback callback) const final
{
BLI_assert(component.type() == GeometryComponentType::Mesh);
const MeshComponent &mesh_component = static_cast<const MeshComponent &>(component);
for (const auto item : mesh_component.vertex_group_names().items()) {
const StringRefNull name = item.key;
const int vertex_group_index = item.value;
if (vertex_group_index >= 0) {
AttributeMetaData meta_data{ATTR_DOMAIN_POINT, CD_PROP_FLOAT};
if (!callback(name, meta_data)) {
return false;
}
}
}
return true;
}
void supported_domains(Vector<AttributeDomain> &r_domains) const final
{
r_domains.append_non_duplicates(ATTR_DOMAIN_POINT);
}
};
/**
* This is a container for multiple attribute providers that are used by one geometry component
* type (e.g. there is a set of attribute providers for mesh components).
*/
class ComponentAttributeProviders {
private:
/**
* Builtin attribute providers are identified by their name. Attribute names that are in this
* map will only be accessed using builtin attribute providers. Therefore, these providers have
* higher priority when an attribute name is looked up. Usually, that means that builtin
* providers are checked before dynamic ones.
*/
Map<std::string, const BuiltinAttributeProvider *> builtin_attribute_providers_;
/**
* An ordered list of dynamic attribute providers. The order is important because that is order
* in which they are checked when an attribute is looked up.
*/
Vector<const DynamicAttributesProvider *> dynamic_attribute_providers_;
/**
* All the domains that are supported by at least one of the providers above.
*/
Vector<AttributeDomain> supported_domains_;
public:
ComponentAttributeProviders(Span<const BuiltinAttributeProvider *> builtin_attribute_providers,
Span<const DynamicAttributesProvider *> dynamic_attribute_providers)
: dynamic_attribute_providers_(dynamic_attribute_providers)
{
Set<AttributeDomain> domains;
for (const BuiltinAttributeProvider *provider : builtin_attribute_providers) {
/* Use #add_new to make sure that no two builtin attributes have the same name. */
builtin_attribute_providers_.add_new(provider->name(), provider);
supported_domains_.append_non_duplicates(provider->domain());
}
for (const DynamicAttributesProvider *provider : dynamic_attribute_providers) {
provider->supported_domains(supported_domains_);
}
}
const Map<std::string, const BuiltinAttributeProvider *> &builtin_attribute_providers() const
{
return builtin_attribute_providers_;
}
Span<const DynamicAttributesProvider *> dynamic_attribute_providers() const
{
return dynamic_attribute_providers_;
}
Span<AttributeDomain> supported_domains() const
{
return supported_domains_;
}
};
static float3 get_vertex_position(const MVert &vert)
{
return float3(vert.co);
}
static void set_vertex_position(MVert &vert, const float3 &position)
{
copy_v3_v3(vert.co, position);
}
static ReadAttributePtr make_vertex_position_read_attribute(const void *data,
const int domain_size)
{
return std::make_unique<DerivedArrayReadAttribute<MVert, float3, get_vertex_position>>(
ATTR_DOMAIN_POINT, Span<MVert>((const MVert *)data, domain_size));
}
static WriteAttributePtr make_vertex_position_write_attribute(void *data, const int domain_size)
{
return std::make_unique<
DerivedArrayWriteAttribute<MVert, float3, get_vertex_position, set_vertex_position>>(
ATTR_DOMAIN_POINT, MutableSpan<MVert>((MVert *)data, domain_size));
}
static void tag_normals_dirty_when_writing_position(GeometryComponent &component)
{
Mesh *mesh = get_mesh_from_component_for_write(component);
if (mesh != nullptr) {
mesh->runtime.cd_dirty_vert |= CD_MASK_NORMAL;
}
}
static int get_material_index(const MPoly &mpoly)
{
return static_cast<int>(mpoly.mat_nr);
}
static void set_material_index(MPoly &mpoly, const int &index)
{
mpoly.mat_nr = static_cast<short>(std::clamp(index, 0, SHRT_MAX));
}
static ReadAttributePtr make_material_index_read_attribute(const void *data, const int domain_size)
{
return std::make_unique<DerivedArrayReadAttribute<MPoly, int, get_material_index>>(
ATTR_DOMAIN_POLYGON, Span<MPoly>((const MPoly *)data, domain_size));
}
static WriteAttributePtr make_material_index_write_attribute(void *data, const int domain_size)
{
return std::make_unique<
DerivedArrayWriteAttribute<MPoly, int, get_material_index, set_material_index>>(
ATTR_DOMAIN_POLYGON, MutableSpan<MPoly>((MPoly *)data, domain_size));
}
static float3 get_vertex_normal(const MVert &vert)
{
float3 result;
normal_short_to_float_v3(result, vert.no);
return result;
}
static ReadAttributePtr make_vertex_normal_read_attribute(const void *data, const int domain_size)
{
return std::make_unique<DerivedArrayReadAttribute<MVert, float3, get_vertex_normal>>(
ATTR_DOMAIN_POINT, Span<MVert>((const MVert *)data, domain_size));
}
static void update_vertex_normals_when_dirty(const GeometryComponent &component)
{
const Mesh *mesh = get_mesh_from_component_for_read(component);
if (mesh == nullptr) {
return;
}
/* Since normals are derived data, `const` write access to them is okay. However, ensure that
* two threads don't use write normals to a mesh at the same time. Note that this relies on
* the idempotence of the operation; calculating the normals just fills the #MVert struct
* rather than allocating new memory. */
if (mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) {
ThreadMutex *mesh_eval_mutex = (ThreadMutex *)mesh->runtime.eval_mutex;
BLI_mutex_lock(mesh_eval_mutex);
/* Check again to avoid a second thread needlessly recalculating the same normals. */
if (mesh->runtime.cd_dirty_vert & CD_MASK_NORMAL) {
BKE_mesh_calc_normals(const_cast<Mesh *>(mesh));
}
BLI_mutex_unlock(mesh_eval_mutex);
}
}
static float2 get_loop_uv(const MLoopUV &uv)
{
return float2(uv.uv);
}
static void set_loop_uv(MLoopUV &uv, const float2 &co)
{
copy_v2_v2(uv.uv, co);
}
static ReadAttributePtr make_uvs_read_attribute(const void *data, const int domain_size)
{
return std::make_unique<DerivedArrayReadAttribute<MLoopUV, float2, get_loop_uv>>(
ATTR_DOMAIN_CORNER, Span((const MLoopUV *)data, domain_size));
}
static WriteAttributePtr make_uvs_write_attribute(void *data, const int domain_size)
{
return std::make_unique<DerivedArrayWriteAttribute<MLoopUV, float2, get_loop_uv, set_loop_uv>>(
ATTR_DOMAIN_CORNER, MutableSpan((MLoopUV *)data, domain_size));
}
static Color4f get_loop_color(const MLoopCol &col)
{
Color4f value;
rgba_uchar_to_float(value, &col.r);
return value;
}
static void set_loop_color(MLoopCol &col, const Color4f &value)
{
rgba_float_to_uchar(&col.r, value);
}
static ReadAttributePtr make_vertex_color_read_attribute(const void *data, const int domain_size)
{
return std::make_unique<DerivedArrayReadAttribute<MLoopCol, Color4f, get_loop_color>>(
ATTR_DOMAIN_CORNER, Span((const MLoopCol *)data, domain_size));
}
static WriteAttributePtr make_vertex_color_write_attribute(void *data, const int domain_size)
{
return std::make_unique<
DerivedArrayWriteAttribute<MLoopCol, Color4f, get_loop_color, set_loop_color>>(
ATTR_DOMAIN_CORNER, MutableSpan((MLoopCol *)data, domain_size));
}
template<typename T, AttributeDomain Domain>
static ReadAttributePtr make_array_read_attribute(const void *data, const int domain_size)
{
return std::make_unique<ArrayReadAttribute<T>>(Domain, Span<T>((const T *)data, domain_size));
}
template<typename T, AttributeDomain Domain>
static WriteAttributePtr make_array_write_attribute(void *data, const int domain_size)
{
return std::make_unique<ArrayWriteAttribute<T>>(Domain, MutableSpan<T>((T *)data, domain_size));
}
/**
* In this function all the attribute providers for a mesh component are created. Most data in this
* function is statically allocated, because it does not change over time.
*/
static ComponentAttributeProviders create_attribute_providers_for_mesh()
{
static auto update_custom_data_pointers = [](GeometryComponent &component) {
Mesh *mesh = get_mesh_from_component_for_write(component);
if (mesh != nullptr) {
BKE_mesh_update_customdata_pointers(mesh, false);
}
};
#define MAKE_MUTABLE_CUSTOM_DATA_GETTER(NAME) \
[](GeometryComponent &component) -> CustomData * { \
Mesh *mesh = get_mesh_from_component_for_write(component); \
return mesh ? &mesh->NAME : nullptr; \
}
#define MAKE_CONST_CUSTOM_DATA_GETTER(NAME) \
[](const GeometryComponent &component) -> const CustomData * { \
const Mesh *mesh = get_mesh_from_component_for_read(component); \
return mesh ? &mesh->NAME : nullptr; \
}
static CustomDataAccessInfo corner_access = {MAKE_MUTABLE_CUSTOM_DATA_GETTER(ldata),
MAKE_CONST_CUSTOM_DATA_GETTER(ldata),
update_custom_data_pointers};
static CustomDataAccessInfo point_access = {MAKE_MUTABLE_CUSTOM_DATA_GETTER(vdata),
MAKE_CONST_CUSTOM_DATA_GETTER(vdata),
update_custom_data_pointers};
static CustomDataAccessInfo edge_access = {MAKE_MUTABLE_CUSTOM_DATA_GETTER(edata),
MAKE_CONST_CUSTOM_DATA_GETTER(edata),
update_custom_data_pointers};
static CustomDataAccessInfo polygon_access = {MAKE_MUTABLE_CUSTOM_DATA_GETTER(pdata),
MAKE_CONST_CUSTOM_DATA_GETTER(pdata),
update_custom_data_pointers};
#undef MAKE_CONST_CUSTOM_DATA_GETTER
#undef MAKE_MUTABLE_CUSTOM_DATA_GETTER
static BuiltinCustomDataLayerProvider position("position",
ATTR_DOMAIN_POINT,
CD_PROP_FLOAT3,
CD_MVERT,
BuiltinAttributeProvider::NonCreatable,
BuiltinAttributeProvider::Writable,
BuiltinAttributeProvider::NonDeletable,
point_access,
make_vertex_position_read_attribute,
make_vertex_position_write_attribute,
nullptr,
tag_normals_dirty_when_writing_position);
static BuiltinCustomDataLayerProvider material_index("material_index",
ATTR_DOMAIN_POLYGON,
CD_PROP_INT32,
CD_MPOLY,
BuiltinAttributeProvider::NonCreatable,
BuiltinAttributeProvider::Writable,
BuiltinAttributeProvider::NonDeletable,
polygon_access,
make_material_index_read_attribute,
make_material_index_write_attribute,
nullptr,
nullptr);
static BuiltinCustomDataLayerProvider vertex_normal("vertex_normal",
ATTR_DOMAIN_POINT,
CD_PROP_FLOAT3,
CD_MVERT,
BuiltinAttributeProvider::NonCreatable,
BuiltinAttributeProvider::Readonly,
BuiltinAttributeProvider::NonDeletable,
point_access,
make_vertex_normal_read_attribute,
nullptr,
update_vertex_normals_when_dirty,
nullptr);
static NamedLegacyCustomDataProvider uvs(ATTR_DOMAIN_CORNER,
CD_PROP_FLOAT2,
CD_MLOOPUV,
corner_access,
make_uvs_read_attribute,
make_uvs_write_attribute);
static NamedLegacyCustomDataProvider vertex_colors(ATTR_DOMAIN_CORNER,
CD_PROP_COLOR,
CD_MLOOPCOL,
corner_access,
make_vertex_color_read_attribute,
make_vertex_color_write_attribute);
static VertexGroupsAttributeProvider vertex_groups;
static CustomDataAttributeProvider corner_custom_data(ATTR_DOMAIN_CORNER, corner_access);
static CustomDataAttributeProvider point_custom_data(ATTR_DOMAIN_POINT, point_access);
static CustomDataAttributeProvider edge_custom_data(ATTR_DOMAIN_EDGE, edge_access);
static CustomDataAttributeProvider polygon_custom_data(ATTR_DOMAIN_POLYGON, polygon_access);
return ComponentAttributeProviders({&position, &material_index, &vertex_normal},
{&uvs,
&vertex_colors,
&corner_custom_data,
&vertex_groups,
&point_custom_data,
&edge_custom_data,
&polygon_custom_data});
}
/**
* In this function all the attribute providers for a point cloud component are created. Most data
* in this function is statically allocated, because it does not change over time.
*/
static ComponentAttributeProviders create_attribute_providers_for_point_cloud()
{
static auto update_custom_data_pointers = [](GeometryComponent &component) {
PointCloudComponent &pointcloud_component = static_cast<PointCloudComponent &>(component);
PointCloud *pointcloud = pointcloud_component.get_for_write();
if (pointcloud != nullptr) {
BKE_pointcloud_update_customdata_pointers(pointcloud);
}
};
static CustomDataAccessInfo point_access = {
[](GeometryComponent &component) -> CustomData * {
PointCloudComponent &pointcloud_component = static_cast<PointCloudComponent &>(component);
PointCloud *pointcloud = pointcloud_component.get_for_write();
return pointcloud ? &pointcloud->pdata : nullptr;
},
[](const GeometryComponent &component) -> const CustomData * {
const PointCloudComponent &pointcloud_component = static_cast<const PointCloudComponent &>(
component);
const PointCloud *pointcloud = pointcloud_component.get_for_read();
return pointcloud ? &pointcloud->pdata : nullptr;
},
update_custom_data_pointers};
static BuiltinCustomDataLayerProvider position(
"position",
ATTR_DOMAIN_POINT,
CD_PROP_FLOAT3,
CD_PROP_FLOAT3,
BuiltinAttributeProvider::NonCreatable,
BuiltinAttributeProvider::Writable,
BuiltinAttributeProvider::NonDeletable,
point_access,
make_array_read_attribute<float3, ATTR_DOMAIN_POINT>,
make_array_write_attribute<float3, ATTR_DOMAIN_POINT>,
nullptr,
nullptr);
static BuiltinCustomDataLayerProvider radius(
"radius",
ATTR_DOMAIN_POINT,
CD_PROP_FLOAT,
CD_PROP_FLOAT,
BuiltinAttributeProvider::Creatable,
BuiltinAttributeProvider::Writable,
BuiltinAttributeProvider::Deletable,
point_access,
make_array_read_attribute<float, ATTR_DOMAIN_POINT>,
make_array_write_attribute<float, ATTR_DOMAIN_POINT>,
nullptr,
nullptr);
static CustomDataAttributeProvider point_custom_data(ATTR_DOMAIN_POINT, point_access);
return ComponentAttributeProviders({&position, &radius}, {&point_custom_data});
}
} // namespace blender::bke
/* -------------------------------------------------------------------- */
/** \name Geometry Component
* \{ */
const blender::bke::ComponentAttributeProviders *GeometryComponent::get_attribute_providers() const
{
return nullptr;
}
bool GeometryComponent::attribute_domain_supported(const AttributeDomain domain) const
{
using namespace blender::bke;
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return false;
}
return providers->supported_domains().contains(domain);
}
int GeometryComponent::attribute_domain_size(const AttributeDomain UNUSED(domain)) const
{
BLI_assert(false);
return 0;
}
ReadAttributePtr GeometryComponent::attribute_try_get_for_read(
const StringRef attribute_name) const
{
using namespace blender::bke;
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return {};
}
const BuiltinAttributeProvider *builtin_provider =
providers->builtin_attribute_providers().lookup_default_as(attribute_name, nullptr);
if (builtin_provider != nullptr) {
return builtin_provider->try_get_for_read(*this);
}
for (const DynamicAttributesProvider *dynamic_provider :
providers->dynamic_attribute_providers()) {
ReadAttributePtr attribute = dynamic_provider->try_get_for_read(*this, attribute_name);
if (attribute) {
return attribute;
}
}
return {};
}
ReadAttributePtr GeometryComponent::attribute_try_adapt_domain(
ReadAttributePtr attribute, const AttributeDomain new_domain) const
{
if (attribute && attribute->domain() == new_domain) {
return attribute;
}
return {};
}
WriteAttributePtr GeometryComponent::attribute_try_get_for_write(const StringRef attribute_name)
{
using namespace blender::bke;
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return {};
}
const BuiltinAttributeProvider *builtin_provider =
providers->builtin_attribute_providers().lookup_default_as(attribute_name, nullptr);
if (builtin_provider != nullptr) {
return builtin_provider->try_get_for_write(*this);
}
for (const DynamicAttributesProvider *dynamic_provider :
providers->dynamic_attribute_providers()) {
WriteAttributePtr attribute = dynamic_provider->try_get_for_write(*this, attribute_name);
if (attribute) {
return attribute;
}
}
return {};
}
bool GeometryComponent::attribute_try_delete(const StringRef attribute_name)
{
using namespace blender::bke;
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return {};
}
const BuiltinAttributeProvider *builtin_provider =
providers->builtin_attribute_providers().lookup_default_as(attribute_name, nullptr);
if (builtin_provider != nullptr) {
return builtin_provider->try_delete(*this);
}
bool success = false;
for (const DynamicAttributesProvider *dynamic_provider :
providers->dynamic_attribute_providers()) {
success = dynamic_provider->try_delete(*this, attribute_name) || success;
}
return success;
}
bool GeometryComponent::attribute_try_create(const StringRef attribute_name,
const AttributeDomain domain,
const CustomDataType data_type)
{
using namespace blender::bke;
if (attribute_name.is_empty()) {
return false;
}
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return false;
}
const BuiltinAttributeProvider *builtin_provider =
providers->builtin_attribute_providers().lookup_default_as(attribute_name, nullptr);
if (builtin_provider != nullptr) {
if (builtin_provider->domain() != domain) {
return false;
}
if (builtin_provider->data_type() != data_type) {
return false;
}
return builtin_provider->try_create(*this);
}
for (const DynamicAttributesProvider *dynamic_provider :
providers->dynamic_attribute_providers()) {
if (dynamic_provider->try_create(*this, attribute_name, domain, data_type)) {
return true;
}
}
return false;
}
Set<std::string> GeometryComponent::attribute_names() const
{
Set<std::string> attributes;
this->attribute_foreach([&](StringRefNull name, const AttributeMetaData &UNUSED(meta_data)) {
attributes.add(name);
return true;
});
return attributes;
}
void GeometryComponent::attribute_foreach(const AttributeForeachCallback callback) const
{
using namespace blender::bke;
const ComponentAttributeProviders *providers = this->get_attribute_providers();
if (providers == nullptr) {
return;
}
/* Keep track handled attribute names to make sure that we do not return the same name twice. */
Set<std::string> handled_attribute_names;
for (const BuiltinAttributeProvider *provider :
providers->builtin_attribute_providers().values()) {
if (provider->exists(*this)) {
AttributeMetaData meta_data{provider->domain(), provider->data_type()};
if (!callback(provider->name(), meta_data)) {
return;
}
handled_attribute_names.add_new(provider->name());
}
}
for (const DynamicAttributesProvider *provider : providers->dynamic_attribute_providers()) {
const bool continue_loop = provider->foreach_attribute(
*this, [&](StringRefNull name, const AttributeMetaData &meta_data) {
if (handled_attribute_names.add(name)) {
return callback(name, meta_data);
}
return true;
});
if (!continue_loop) {
return;
}
}
}
bool GeometryComponent::attribute_exists(const blender::StringRef attribute_name) const
{
ReadAttributePtr attribute = this->attribute_try_get_for_read(attribute_name);
if (attribute) {
return true;
}
return false;
}
static ReadAttributePtr try_adapt_data_type(ReadAttributePtr attribute,
const blender::fn::CPPType &to_type)
{
const blender::fn::CPPType &from_type = attribute->cpp_type();
if (from_type == to_type) {
return attribute;
}
const blender::nodes::DataTypeConversions &conversions =
blender::nodes::get_implicit_type_conversions();
if (!conversions.is_convertible(from_type, to_type)) {
return {};
}
return std::make_unique<blender::bke::ConvertedReadAttribute>(std::move(attribute), to_type);
}
ReadAttributePtr GeometryComponent::attribute_try_get_for_read(
const StringRef attribute_name,
const AttributeDomain domain,
const CustomDataType data_type) const
{
ReadAttributePtr attribute = this->attribute_try_get_for_read(attribute_name);
if (!attribute) {
return {};
}
if (attribute->domain() != domain) {
attribute = this->attribute_try_adapt_domain(std::move(attribute), domain);
if (!attribute) {
return {};
}
}
const blender::fn::CPPType *cpp_type = blender::bke::custom_data_type_to_cpp_type(data_type);
BLI_assert(cpp_type != nullptr);
if (attribute->cpp_type() != *cpp_type) {
attribute = try_adapt_data_type(std::move(attribute), *cpp_type);
if (!attribute) {
return {};
}
}
return attribute;
}
ReadAttributePtr GeometryComponent::attribute_try_get_for_read(const StringRef attribute_name,
const AttributeDomain domain) const
{
if (!this->attribute_domain_supported(domain)) {
return {};
}
ReadAttributePtr attribute = this->attribute_try_get_for_read(attribute_name);
if (!attribute) {
return {};
}
if (attribute->domain() != domain) {
attribute = this->attribute_try_adapt_domain(std::move(attribute), domain);
if (!attribute) {
return {};
}
}
return attribute;
}
ReadAttributePtr GeometryComponent::attribute_get_for_read(const StringRef attribute_name,
const AttributeDomain domain,
const CustomDataType data_type,
const void *default_value) const
{
ReadAttributePtr attribute = this->attribute_try_get_for_read(attribute_name, domain, data_type);
if (attribute) {
return attribute;
}
return this->attribute_get_constant_for_read(domain, data_type, default_value);
}
blender::bke::ReadAttributePtr GeometryComponent::attribute_get_constant_for_read(
const AttributeDomain domain, const CustomDataType data_type, const void *value) const
{
BLI_assert(this->attribute_domain_supported(domain));
const blender::fn::CPPType *cpp_type = blender::bke::custom_data_type_to_cpp_type(data_type);
BLI_assert(cpp_type != nullptr);
if (value == nullptr) {
value = cpp_type->default_value();
}
const int domain_size = this->attribute_domain_size(domain);
return std::make_unique<blender::bke::ConstantReadAttribute>(
domain, domain_size, *cpp_type, value);
}
blender::bke::ReadAttributePtr GeometryComponent::attribute_get_constant_for_read_converted(
const AttributeDomain domain,
const CustomDataType in_data_type,
const CustomDataType out_data_type,
const void *value) const
{
BLI_assert(this->attribute_domain_supported(domain));
if (value == nullptr || in_data_type == out_data_type) {
return this->attribute_get_constant_for_read(domain, out_data_type, value);
}
const blender::fn::CPPType *in_cpp_type = blender::bke::custom_data_type_to_cpp_type(
in_data_type);
const blender::fn::CPPType *out_cpp_type = blender::bke::custom_data_type_to_cpp_type(
out_data_type);
BLI_assert(in_cpp_type != nullptr);
BLI_assert(out_cpp_type != nullptr);
const blender::nodes::DataTypeConversions &conversions =
blender::nodes::get_implicit_type_conversions();
BLI_assert(conversions.is_convertible(*in_cpp_type, *out_cpp_type));
void *out_value = alloca(out_cpp_type->size());
conversions.convert(*in_cpp_type, *out_cpp_type, value, out_value);
const int domain_size = this->attribute_domain_size(domain);
blender::bke::ReadAttributePtr attribute = std::make_unique<blender::bke::ConstantReadAttribute>(
domain, domain_size, *out_cpp_type, out_value);
out_cpp_type->destruct(out_value);
return attribute;
}
OutputAttributePtr GeometryComponent::attribute_try_get_for_output(const StringRef attribute_name,
const AttributeDomain domain,
const CustomDataType data_type,
const void *default_value)
{
const blender::fn::CPPType *cpp_type = blender::bke::custom_data_type_to_cpp_type(data_type);
BLI_assert(cpp_type != nullptr);
WriteAttributePtr attribute = this->attribute_try_get_for_write(attribute_name);
/* If the attribute doesn't exist, make a new one with the correct type. */
if (!attribute) {
this->attribute_try_create(attribute_name, domain, data_type);
attribute = this->attribute_try_get_for_write(attribute_name);
if (attribute && default_value != nullptr) {
void *data = attribute->get_span_for_write_only().data();
cpp_type->fill_initialized(default_value, data, attribute->size());
attribute->apply_span();
}
return OutputAttributePtr(std::move(attribute));
}
/* If an existing attribute has a matching domain and type, just use that. */
if (attribute->domain() == domain && attribute->cpp_type() == *cpp_type) {
return OutputAttributePtr(std::move(attribute));
}
/* Otherwise create a temporary buffer to use before saving the new attribute. */
return OutputAttributePtr(*this, domain, attribute_name, data_type);
}
/* Construct from an attribute that already exists in the geometry component. */
OutputAttributePtr::OutputAttributePtr(WriteAttributePtr attribute)
: attribute_(std::move(attribute))
{
}
/* Construct a temporary attribute that has to replace an existing one later on. */
OutputAttributePtr::OutputAttributePtr(GeometryComponent &component,
AttributeDomain domain,
std::string final_name,
CustomDataType data_type)
{
const blender::fn::CPPType *cpp_type = blender::bke::custom_data_type_to_cpp_type(data_type);
BLI_assert(cpp_type != nullptr);
const int domain_size = component.attribute_domain_size(domain);
void *buffer = MEM_malloc_arrayN(domain_size, cpp_type->size(), __func__);
GMutableSpan new_span{*cpp_type, buffer, domain_size};
/* Copy converted values from conflicting attribute, in case the value is read.
* TODO: An optimization could be to not do this, when the caller says that the attribute will
* only be written. */
ReadAttributePtr src_attribute = component.attribute_get_for_read(
final_name, domain, data_type, nullptr);
for (const int i : blender::IndexRange(domain_size)) {
src_attribute->get(i, new_span[i]);
}
attribute_ = std::make_unique<blender::bke::TemporaryWriteAttribute>(
domain, new_span, component, std::move(final_name));
}
/* Store the computed attribute. If it was stored from the beginning already, nothing is done. This
* might delete another attribute with the same name. */
void OutputAttributePtr::save()
{
if (!attribute_) {
CLOG_WARN(&LOG, "Trying to save an attribute that does not exist anymore.");
return;
}
blender::bke::TemporaryWriteAttribute *attribute =
dynamic_cast<blender::bke::TemporaryWriteAttribute *>(attribute_.get());
if (attribute == nullptr) {
/* The attribute is saved already. */
attribute_.reset();
return;
}
StringRefNull name = attribute->final_name;
const blender::fn::CPPType &cpp_type = attribute->cpp_type();
/* Delete an existing attribute with the same name if necessary. */
attribute->component.attribute_try_delete(name);
if (!attribute->component.attribute_try_create(
name, attribute_->domain(), attribute_->custom_data_type())) {
/* Cannot create the target attribute for some reason. */
CLOG_WARN(&LOG,
"Creating the '%s' attribute with type '%s' failed.",
name.c_str(),
cpp_type.name().c_str());
attribute_.reset();
return;
}
WriteAttributePtr new_attribute = attribute->component.attribute_try_get_for_write(name);
GMutableSpan temp_span = attribute->data;
GMutableSpan new_span = new_attribute->get_span_for_write_only();
BLI_assert(temp_span.size() == new_span.size());
/* Currently we copy over the attribute. In the future we want to reuse the buffer. */
cpp_type.move_to_initialized_n(temp_span.data(), new_span.data(), new_span.size());
new_attribute->apply_span();
attribute_.reset();
}
OutputAttributePtr::~OutputAttributePtr()
{
if (attribute_) {
CLOG_ERROR(&LOG, "Forgot to call #save or #apply_span_and_save.");
}
}
/* Utility function to call #apply_span and #save in the right order. */
void OutputAttributePtr::apply_span_and_save()
{
BLI_assert(attribute_);
attribute_->apply_span();
this->save();
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Point Cloud Component
* \{ */
const blender::bke::ComponentAttributeProviders *PointCloudComponent::get_attribute_providers()
const
{
static blender::bke::ComponentAttributeProviders providers =
blender::bke::create_attribute_providers_for_point_cloud();
return &providers;
}
int PointCloudComponent::attribute_domain_size(const AttributeDomain domain) const
{
BLI_assert(domain == ATTR_DOMAIN_POINT);
UNUSED_VARS_NDEBUG(domain);
if (pointcloud_ == nullptr) {
return 0;
}
return pointcloud_->totpoint;
}
/** \} */
/* -------------------------------------------------------------------- */
/** \name Mesh Component
* \{ */
const blender::bke::ComponentAttributeProviders *MeshComponent::get_attribute_providers() const
{
static blender::bke::ComponentAttributeProviders providers =
blender::bke::create_attribute_providers_for_mesh();
return &providers;
}
int MeshComponent::attribute_domain_size(const AttributeDomain domain) const
{
BLI_assert(this->attribute_domain_supported(domain));
if (mesh_ == nullptr) {
return 0;
}
switch (domain) {
case ATTR_DOMAIN_CORNER:
return mesh_->totloop;
case ATTR_DOMAIN_POINT:
return mesh_->totvert;
case ATTR_DOMAIN_EDGE:
return mesh_->totedge;
case ATTR_DOMAIN_POLYGON:
return mesh_->totpoly;
default:
BLI_assert(false);
break;
}
return 0;
}
namespace blender::bke {
template<typename T>
static void adapt_mesh_domain_corner_to_point_impl(const Mesh &mesh,
const TypedReadAttribute<T> &attribute,
MutableSpan<T> r_values)
{
BLI_assert(r_values.size() == mesh.totvert);
attribute_math::DefaultMixer<T> mixer(r_values);
for (const int loop_index : IndexRange(mesh.totloop)) {
const T value = attribute[loop_index];
const MLoop &loop = mesh.mloop[loop_index];
const int point_index = loop.v;
mixer.mix_in(point_index, value);
}
mixer.finalize();
}
static ReadAttributePtr adapt_mesh_domain_corner_to_point(const Mesh &mesh,
ReadAttributePtr attribute)
{
ReadAttributePtr new_attribute;
const CustomDataType data_type = attribute->custom_data_type();
attribute_math::convert_to_static_type(data_type, [&](auto dummy) {
using T = decltype(dummy);
if constexpr (!std::is_void_v<attribute_math::DefaultMixer<T>>) {
/* We compute all interpolated values at once, because for this interpolation, one has to
* iterate over all loops anyway. */
Array<T> values(mesh.totvert);
adapt_mesh_domain_corner_to_point_impl<T>(mesh, *attribute, values);
new_attribute = std::make_unique<OwnedArrayReadAttribute<T>>(ATTR_DOMAIN_POINT,
std::move(values));
}
});
return new_attribute;
}
template<typename T>
static void adapt_mesh_domain_point_to_corner_impl(const Mesh &mesh,
const TypedReadAttribute<T> &attribute,
MutableSpan<T> r_values)
{
BLI_assert(r_values.size() == mesh.totloop);
for (const int loop_index : IndexRange(mesh.totloop)) {
const int vertex_index = mesh.mloop[loop_index].v;
r_values[loop_index] = attribute[vertex_index];
}
}
static ReadAttributePtr adapt_mesh_domain_point_to_corner(const Mesh &mesh,
ReadAttributePtr attribute)
{
ReadAttributePtr new_attribute;
const CustomDataType data_type = attribute->custom_data_type();
attribute_math::convert_to_static_type(data_type, [&](auto dummy) {
using T = decltype(dummy);
/* It is not strictly necessary to compute the value for all corners here. Instead one could
* lazily lookup the mesh topology when a specific index accessed. This can be more efficient
* when an algorithm only accesses very few of the corner values. However, for the algorithms
* we currently have, precomputing the array is fine. Also, it is easier to implement. */
Array<T> values(mesh.totloop);
adapt_mesh_domain_point_to_corner_impl<T>(mesh, *attribute, values);
new_attribute = std::make_unique<OwnedArrayReadAttribute<T>>(ATTR_DOMAIN_CORNER,
std::move(values));
});
return new_attribute;
}
} // namespace blender::bke
ReadAttributePtr MeshComponent::attribute_try_adapt_domain(ReadAttributePtr attribute,
const AttributeDomain new_domain) const
{
if (!attribute) {
return {};
}
if (attribute->size() == 0) {
return {};
}
const AttributeDomain old_domain = attribute->domain();
if (old_domain == new_domain) {
return attribute;
}
switch (old_domain) {
case ATTR_DOMAIN_CORNER: {
switch (new_domain) {
case ATTR_DOMAIN_POINT:
return blender::bke::adapt_mesh_domain_corner_to_point(*mesh_, std::move(attribute));
default:
break;
}
break;
}
case ATTR_DOMAIN_POINT: {
switch (new_domain) {
case ATTR_DOMAIN_CORNER:
return blender::bke::adapt_mesh_domain_point_to_corner(*mesh_, std::move(attribute));
default:
break;
}
}
default:
break;
}
return {};
}
/** \} */