This repository has been archived on 2023-10-09. You can view files and clone it. You cannot open issues or pull requests or push a commit.
Files
blender-archive/source/blender/io/alembic/exporter/abc_writer_mesh.cc
Philipp Oeser 8f5a4a2453 Alembic export: evaluation mode option
This option will determine visibility on either render or the viewport
visibility. Same for modifer settings. So it will either evaluate the
depsgrah with DAG_EVAL_RENDER or DAG_EVAL_VIEWPORT.
This not only makes it more flexible, it is also a lot
clearer which visibility / modfier setting is taken into account (up
until now, this was always considered to be DAG_EVAL_RENDER)

This option was always present in the USD exporter, this just brings
Alembic in line with that.

ref. T89594

Maniphest Tasks: T89594

Differential Revision: https://developer.blender.org/D11820
2021-07-06 13:22:22 +02:00

566 lines
17 KiB
C++

/*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/** \file
* \ingroup balembic
*/
#include "abc_writer_mesh.h"
#include "abc_hierarchy_iterator.h"
#include "intern/abc_axis_conversion.h"
#include "BLI_assert.h"
#include "BLI_math_vector.h"
#include "BKE_customdata.h"
#include "BKE_lib_id.h"
#include "BKE_material.h"
#include "BKE_mesh.h"
#include "BKE_modifier.h"
#include "BKE_object.h"
#include "bmesh.h"
#include "bmesh_tools.h"
#include "DEG_depsgraph.h"
#include "DNA_layer_types.h"
#include "DNA_mesh_types.h"
#include "DNA_meshdata_types.h"
#include "DNA_modifier_types.h"
#include "DNA_object_fluidsim_types.h"
#include "DNA_particle_types.h"
#include "CLG_log.h"
static CLG_LogRef LOG = {"io.alembic"};
using Alembic::Abc::FloatArraySample;
using Alembic::Abc::Int32ArraySample;
using Alembic::Abc::OObject;
using Alembic::Abc::V2fArraySample;
using Alembic::Abc::V3fArraySample;
using Alembic::AbcGeom::kFacevaryingScope;
using Alembic::AbcGeom::OBoolProperty;
using Alembic::AbcGeom::OCompoundProperty;
using Alembic::AbcGeom::OFaceSet;
using Alembic::AbcGeom::OFaceSetSchema;
using Alembic::AbcGeom::ON3fGeomParam;
using Alembic::AbcGeom::OPolyMesh;
using Alembic::AbcGeom::OPolyMeshSchema;
using Alembic::AbcGeom::OSubD;
using Alembic::AbcGeom::OSubDSchema;
using Alembic::AbcGeom::OV2fGeomParam;
using Alembic::AbcGeom::UInt32ArraySample;
namespace blender::io::alembic {
/* NOTE: Alembic's polygon winding order is clockwise, to match with Renderman. */
static void get_vertices(struct Mesh *mesh, std::vector<Imath::V3f> &points);
static void get_topology(struct Mesh *mesh,
std::vector<int32_t> &poly_verts,
std::vector<int32_t> &loop_counts,
bool &r_has_flat_shaded_poly);
static void get_creases(struct Mesh *mesh,
std::vector<int32_t> &indices,
std::vector<int32_t> &lengths,
std::vector<float> &sharpnesses);
static void get_loop_normals(struct Mesh *mesh,
std::vector<Imath::V3f> &normals,
bool has_flat_shaded_poly);
ABCGenericMeshWriter::ABCGenericMeshWriter(const ABCWriterConstructorArgs &args)
: ABCAbstractWriter(args), is_subd_(false)
{
}
void ABCGenericMeshWriter::create_alembic_objects(const HierarchyContext *context)
{
if (!args_.export_params->apply_subdiv && export_as_subdivision_surface(context->object)) {
is_subd_ = args_.export_params->use_subdiv_schema;
}
if (is_subd_) {
CLOG_INFO(&LOG, 2, "exporting OSubD %s", args_.abc_path.c_str());
abc_subdiv_ = OSubD(args_.abc_parent, args_.abc_name, timesample_index_);
abc_subdiv_schema_ = abc_subdiv_.getSchema();
}
else {
CLOG_INFO(&LOG, 2, "exporting OPolyMesh %s", args_.abc_path.c_str());
abc_poly_mesh_ = OPolyMesh(args_.abc_parent, args_.abc_name, timesample_index_);
abc_poly_mesh_schema_ = abc_poly_mesh_.getSchema();
OCompoundProperty typeContainer = abc_poly_mesh_.getSchema().getUserProperties();
OBoolProperty type(typeContainer, "meshtype");
type.set(subsurf_modifier_ == nullptr);
}
Scene *scene_eval = DEG_get_evaluated_scene(args_.depsgraph);
liquid_sim_modifier_ = get_liquid_sim_modifier(scene_eval, context->object);
}
Alembic::Abc::OObject ABCGenericMeshWriter::get_alembic_object() const
{
if (is_subd_) {
return abc_subdiv_;
}
return abc_poly_mesh_;
}
Alembic::Abc::OCompoundProperty ABCGenericMeshWriter::abc_prop_for_custom_props()
{
if (is_subd_) {
return abc_schema_prop_for_custom_props(abc_subdiv_schema_);
}
return abc_schema_prop_for_custom_props(abc_poly_mesh_schema_);
}
bool ABCGenericMeshWriter::export_as_subdivision_surface(Object *ob_eval) const
{
ModifierData *md = static_cast<ModifierData *>(ob_eval->modifiers.last);
for (; md; md = md->prev) {
/* This modifier has been temporarily disabled by SubdivModifierDisabler,
* so this indicates this is to be exported as subdivision surface. */
if (md->type == eModifierType_Subsurf && (md->mode & eModifierMode_DisableTemporary)) {
return true;
}
}
return false;
}
ModifierData *ABCGenericMeshWriter::get_liquid_sim_modifier(Scene *scene, Object *ob)
{
ModifierData *md = BKE_modifiers_findby_type(ob, eModifierType_Fluidsim);
if (md && (BKE_modifier_is_enabled(scene, md, eModifierMode_Render))) {
FluidsimModifierData *fsmd = reinterpret_cast<FluidsimModifierData *>(md);
if (fsmd->fss && fsmd->fss->type == OB_FLUIDSIM_DOMAIN) {
return md;
}
}
return nullptr;
}
bool ABCGenericMeshWriter::is_supported(const HierarchyContext *context) const
{
if (args_.export_params->visible_objects_only) {
return context->is_object_visible(args_.export_params->evaluation_mode);
}
return true;
}
void ABCGenericMeshWriter::do_write(HierarchyContext &context)
{
Object *object = context.object;
bool needsfree = false;
Mesh *mesh = get_export_mesh(object, needsfree);
if (mesh == nullptr) {
return;
}
if (args_.export_params->triangulate) {
const bool tag_only = false;
const int quad_method = args_.export_params->quad_method;
const int ngon_method = args_.export_params->ngon_method;
struct BMeshCreateParams bmcp = {false};
struct BMeshFromMeshParams bmfmp = {true, false, false, 0};
BMesh *bm = BKE_mesh_to_bmesh_ex(mesh, &bmcp, &bmfmp);
BM_mesh_triangulate(bm, quad_method, ngon_method, 4, tag_only, nullptr, nullptr, nullptr);
Mesh *triangulated_mesh = BKE_mesh_from_bmesh_for_eval_nomain(bm, nullptr, mesh);
BM_mesh_free(bm);
if (needsfree) {
free_export_mesh(mesh);
}
mesh = triangulated_mesh;
needsfree = true;
}
m_custom_data_config.pack_uvs = args_.export_params->packuv;
m_custom_data_config.mesh = mesh;
m_custom_data_config.mpoly = mesh->mpoly;
m_custom_data_config.mloop = mesh->mloop;
m_custom_data_config.totpoly = mesh->totpoly;
m_custom_data_config.totloop = mesh->totloop;
m_custom_data_config.totvert = mesh->totvert;
try {
if (is_subd_) {
write_subd(context, mesh);
}
else {
write_mesh(context, mesh);
}
if (needsfree) {
free_export_mesh(mesh);
}
}
catch (...) {
if (needsfree) {
free_export_mesh(mesh);
}
throw;
}
}
void ABCGenericMeshWriter::free_export_mesh(Mesh *mesh)
{
BKE_id_free(nullptr, mesh);
}
void ABCGenericMeshWriter::write_mesh(HierarchyContext &context, Mesh *mesh)
{
std::vector<Imath::V3f> points, normals;
std::vector<int32_t> poly_verts, loop_counts;
std::vector<Imath::V3f> velocities;
bool has_flat_shaded_poly = false;
get_vertices(mesh, points);
get_topology(mesh, poly_verts, loop_counts, has_flat_shaded_poly);
if (!frame_has_been_written_ && args_.export_params->face_sets) {
write_face_sets(context.object, mesh, abc_poly_mesh_schema_);
}
OPolyMeshSchema::Sample mesh_sample = OPolyMeshSchema::Sample(
V3fArraySample(points), Int32ArraySample(poly_verts), Int32ArraySample(loop_counts));
UVSample uvs_and_indices;
if (args_.export_params->uvs) {
const char *name = get_uv_sample(uvs_and_indices, m_custom_data_config, &mesh->ldata);
if (!uvs_and_indices.indices.empty() && !uvs_and_indices.uvs.empty()) {
OV2fGeomParam::Sample uv_sample;
uv_sample.setVals(V2fArraySample(uvs_and_indices.uvs));
uv_sample.setIndices(UInt32ArraySample(uvs_and_indices.indices));
uv_sample.setScope(kFacevaryingScope);
abc_poly_mesh_schema_.setUVSourceName(name);
mesh_sample.setUVs(uv_sample);
}
write_custom_data(
abc_poly_mesh_schema_.getArbGeomParams(), m_custom_data_config, &mesh->ldata, CD_MLOOPUV);
}
if (args_.export_params->normals) {
get_loop_normals(mesh, normals, has_flat_shaded_poly);
ON3fGeomParam::Sample normals_sample;
if (!normals.empty()) {
normals_sample.setScope(kFacevaryingScope);
normals_sample.setVals(V3fArraySample(normals));
}
mesh_sample.setNormals(normals_sample);
}
if (args_.export_params->orcos) {
write_generated_coordinates(abc_poly_mesh_schema_.getArbGeomParams(), m_custom_data_config);
}
if (liquid_sim_modifier_ != nullptr) {
get_velocities(mesh, velocities);
mesh_sample.setVelocities(V3fArraySample(velocities));
}
update_bounding_box(context.object);
mesh_sample.setSelfBounds(bounding_box_);
abc_poly_mesh_schema_.set(mesh_sample);
write_arb_geo_params(mesh);
}
void ABCGenericMeshWriter::write_subd(HierarchyContext &context, struct Mesh *mesh)
{
std::vector<float> crease_sharpness;
std::vector<Imath::V3f> points;
std::vector<int32_t> poly_verts, loop_counts;
std::vector<int32_t> crease_indices, crease_lengths;
bool has_flat_poly = false;
get_vertices(mesh, points);
get_topology(mesh, poly_verts, loop_counts, has_flat_poly);
get_creases(mesh, crease_indices, crease_lengths, crease_sharpness);
if (!frame_has_been_written_ && args_.export_params->face_sets) {
write_face_sets(context.object, mesh, abc_subdiv_schema_);
}
OSubDSchema::Sample subdiv_sample = OSubDSchema::Sample(
V3fArraySample(points), Int32ArraySample(poly_verts), Int32ArraySample(loop_counts));
UVSample sample;
if (args_.export_params->uvs) {
const char *name = get_uv_sample(sample, m_custom_data_config, &mesh->ldata);
if (!sample.indices.empty() && !sample.uvs.empty()) {
OV2fGeomParam::Sample uv_sample;
uv_sample.setVals(V2fArraySample(sample.uvs));
uv_sample.setIndices(UInt32ArraySample(sample.indices));
uv_sample.setScope(kFacevaryingScope);
abc_subdiv_schema_.setUVSourceName(name);
subdiv_sample.setUVs(uv_sample);
}
write_custom_data(
abc_subdiv_schema_.getArbGeomParams(), m_custom_data_config, &mesh->ldata, CD_MLOOPUV);
}
if (args_.export_params->orcos) {
write_generated_coordinates(abc_poly_mesh_schema_.getArbGeomParams(), m_custom_data_config);
}
if (!crease_indices.empty()) {
subdiv_sample.setCreaseIndices(Int32ArraySample(crease_indices));
subdiv_sample.setCreaseLengths(Int32ArraySample(crease_lengths));
subdiv_sample.setCreaseSharpnesses(FloatArraySample(crease_sharpness));
}
update_bounding_box(context.object);
subdiv_sample.setSelfBounds(bounding_box_);
abc_subdiv_schema_.set(subdiv_sample);
write_arb_geo_params(mesh);
}
template<typename Schema>
void ABCGenericMeshWriter::write_face_sets(Object *object, struct Mesh *mesh, Schema &schema)
{
std::map<std::string, std::vector<int32_t>> geo_groups;
get_geo_groups(object, mesh, geo_groups);
std::map<std::string, std::vector<int32_t>>::iterator it;
for (it = geo_groups.begin(); it != geo_groups.end(); ++it) {
OFaceSet face_set = schema.createFaceSet(it->first);
OFaceSetSchema::Sample samp;
samp.setFaces(Int32ArraySample(it->second));
face_set.getSchema().set(samp);
}
}
void ABCGenericMeshWriter::write_arb_geo_params(struct Mesh *me)
{
if (liquid_sim_modifier_ != nullptr) {
/* We don't need anything more for liquid meshes. */
return;
}
if (frame_has_been_written_ || !args_.export_params->vcolors) {
return;
}
OCompoundProperty arb_geom_params;
if (is_subd_) {
arb_geom_params = abc_subdiv_.getSchema().getArbGeomParams();
}
else {
arb_geom_params = abc_poly_mesh_.getSchema().getArbGeomParams();
}
write_custom_data(arb_geom_params, m_custom_data_config, &me->ldata, CD_MLOOPCOL);
}
void ABCGenericMeshWriter::get_velocities(struct Mesh *mesh, std::vector<Imath::V3f> &vels)
{
const int totverts = mesh->totvert;
vels.clear();
vels.resize(totverts);
FluidsimModifierData *fmd = reinterpret_cast<FluidsimModifierData *>(liquid_sim_modifier_);
FluidsimSettings *fss = fmd->fss;
if (fss->meshVelocities) {
float *mesh_vels = reinterpret_cast<float *>(fss->meshVelocities);
for (int i = 0; i < totverts; i++) {
copy_yup_from_zup(vels[i].getValue(), mesh_vels);
mesh_vels += 3;
}
}
else {
std::fill(vels.begin(), vels.end(), Imath::V3f(0.0f));
}
}
void ABCGenericMeshWriter::get_geo_groups(Object *object,
struct Mesh *mesh,
std::map<std::string, std::vector<int32_t>> &geo_groups)
{
const int num_poly = mesh->totpoly;
MPoly *polygons = mesh->mpoly;
for (int i = 0; i < num_poly; i++) {
MPoly &current_poly = polygons[i];
short mnr = current_poly.mat_nr;
Material *mat = BKE_object_material_get(object, mnr + 1);
if (!mat) {
continue;
}
std::string name = args_.hierarchy_iterator->get_id_name(&mat->id);
if (geo_groups.find(name) == geo_groups.end()) {
std::vector<int32_t> faceArray;
geo_groups[name] = faceArray;
}
geo_groups[name].push_back(i);
}
if (geo_groups.empty()) {
Material *mat = BKE_object_material_get(object, 1);
std::string name = (mat) ? args_.hierarchy_iterator->get_id_name(&mat->id) : "default";
std::vector<int32_t> faceArray;
for (int i = 0, e = mesh->totface; i < e; i++) {
faceArray.push_back(i);
}
geo_groups[name] = faceArray;
}
}
/* NOTE: Alembic's polygon winding order is clockwise, to match with Renderman. */
static void get_vertices(struct Mesh *mesh, std::vector<Imath::V3f> &points)
{
points.clear();
points.resize(mesh->totvert);
MVert *verts = mesh->mvert;
for (int i = 0, e = mesh->totvert; i < e; i++) {
copy_yup_from_zup(points[i].getValue(), verts[i].co);
}
}
static void get_topology(struct Mesh *mesh,
std::vector<int32_t> &poly_verts,
std::vector<int32_t> &loop_counts,
bool &r_has_flat_shaded_poly)
{
const int num_poly = mesh->totpoly;
const int num_loops = mesh->totloop;
MLoop *mloop = mesh->mloop;
MPoly *mpoly = mesh->mpoly;
r_has_flat_shaded_poly = false;
poly_verts.clear();
loop_counts.clear();
poly_verts.reserve(num_loops);
loop_counts.reserve(num_poly);
/* NOTE: data needs to be written in the reverse order. */
for (int i = 0; i < num_poly; i++) {
MPoly &poly = mpoly[i];
loop_counts.push_back(poly.totloop);
r_has_flat_shaded_poly |= (poly.flag & ME_SMOOTH) == 0;
MLoop *loop = mloop + poly.loopstart + (poly.totloop - 1);
for (int j = 0; j < poly.totloop; j++, loop--) {
poly_verts.push_back(loop->v);
}
}
}
static void get_creases(struct Mesh *mesh,
std::vector<int32_t> &indices,
std::vector<int32_t> &lengths,
std::vector<float> &sharpnesses)
{
const float factor = 1.0f / 255.0f;
indices.clear();
lengths.clear();
sharpnesses.clear();
MEdge *edge = mesh->medge;
for (int i = 0, e = mesh->totedge; i < e; i++) {
const float sharpness = static_cast<float>(edge[i].crease) * factor;
if (sharpness != 0.0f) {
indices.push_back(edge[i].v1);
indices.push_back(edge[i].v2);
sharpnesses.push_back(sharpness);
}
}
lengths.resize(sharpnesses.size(), 2);
}
static void get_loop_normals(struct Mesh *mesh,
std::vector<Imath::V3f> &normals,
bool has_flat_shaded_poly)
{
normals.clear();
/* If all polygons are smooth shaded, and there are no custom normals, we don't need to export
* normals at all. This is also done by other software, see T71246. */
if (!has_flat_shaded_poly && !CustomData_has_layer(&mesh->ldata, CD_CUSTOMLOOPNORMAL) &&
(mesh->flag & ME_AUTOSMOOTH) == 0) {
return;
}
BKE_mesh_calc_normals_split(mesh);
const float(*lnors)[3] = static_cast<float(*)[3]>(CustomData_get_layer(&mesh->ldata, CD_NORMAL));
BLI_assert(lnors != nullptr || !"BKE_mesh_calc_normals_split() should have computed CD_NORMAL");
normals.resize(mesh->totloop);
/* NOTE: data needs to be written in the reverse order. */
int abc_index = 0;
MPoly *mp = mesh->mpoly;
for (int i = 0, e = mesh->totpoly; i < e; i++, mp++) {
for (int j = mp->totloop - 1; j >= 0; j--, abc_index++) {
int blender_index = mp->loopstart + j;
copy_yup_from_zup(normals[abc_index].getValue(), lnors[blender_index]);
}
}
}
ABCMeshWriter::ABCMeshWriter(const ABCWriterConstructorArgs &args) : ABCGenericMeshWriter(args)
{
}
Mesh *ABCMeshWriter::get_export_mesh(Object *object_eval, bool & /*r_needsfree*/)
{
return BKE_object_get_evaluated_mesh(object_eval);
}
} // namespace blender::io::alembic